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Abstract— In this paper, we study a clustering technique for the
hierarchical traffic grooming approach in WDM mesh networks.
The objective is to minimize the cost of electronic ports, as well
as the wavelength requirement of the solution. In the hierarchical
grooming approach we have presented in previous work, the first
phase is to partition a large mesh network into clusters of nodes.
The clustering phase is very important for the final grooming
result. Various clustering approaches have been considered in
literature; however, not all are suitable for traffic grooming
application because they do not take grooming goals into account.
In this work, we select a suitable existing clustering algorithm,
developed for the K-Center problem, and study its performance
as a clustering algorithm for hierarchical grooming. We then
improve the algorithm, adapting it specifically for the traffic
grooming problem. Experimental results show that the improved
version generally provides better solutions than the original
algorithm, on various traffic patterns, for the general topology
grooming problem instances.

I. INTRODUCTION

Traffic grooming in general topology networks has gained
interest in recent years. In this architecture, WDM and
wavelength routing technologies are used to create a virtual
topology of optical continuous channels or lightpaths which
can span more than one phsyical link, and end-to-end user
demand traffic (typically sub-wavelength in magnitude) is
then multiplexed using TDM over a lightpath or sequence of
lightpaths. Various objectives have been considered in traffic
grooming literature; a practical objective is to minimize the
total number of electronic ports required to originate and
terminate the set of lightpaths in the logical topology design.
This is equivalent to minimizing the total number of lightpaths
in the virtual topology. This objective is motivated by the
fact that electronic port devices still dominate WDM network
equipment cost. Both static and dynamic traffic models have
been considered by various researchers. Early work focused on
the ring topologies [1]–[3], which reflected the effort of up-
grading SONET with WDM technology. Since more backbone
and access optical networks are not, or will not be, constrained
to the elemental topologies, recent studies are extending the
research to grooming in general mesh networks [4]–[8]. The
current literature on traffic grooming has been reviewed and
classified by several surveys in the literature, such as [9].

Future interconnection requirements are expected to form
even larger (hundreds of nodes) optical networks with complex
topology. In recent work, we have shown that a hierarchical
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grooming approach can work well on networks consisting
of many nodes [10]. In this approach, the nodes in the
network are first partitioned into several clusters or groups.
This process is called clustering. Each cluster is groomed
by itself, and then the traffic between nodes in different
clusters is groomed. We describe pertinent details of this
approach briefly in the next section. Our results show that
this approach can provide good grooming characteristics, and
its decompositional approach also makes it scalable to large
network sizes.

In [10], we primarily focused on the hierarchical grooming
mechanism itself, assuming a suitable clustering of the net-
work graph to be available. Our approach is superficially sim-
ilar to that of [11], but the research presented in [11] pertains to
ring networks only, and cannot be easily generalized because
it rests on the existence of a set of contiguous or “close” nodes
that works for rings but does not extend to general topologies.

In this paper, we focus on a complementary problem to that
of [10]. Obviously, arbitrary clustering of the network nodes
would not generally provide good grooming performance; thus
we need good clustering algorithms that are designed with the
hierarchical approach in mind. Such an algorithm design is
the focus of this paper. Clustering is widely used in network
design, but for the general topology traffic grooming problem,
there has not been much related work in the literature. In this
work, we study the performance of a clustering algorithm from
the study of the K-Center problem, and make improvements
on the algorithm to make it more suitable for the hierarchical
grooming problem.

The rest of the paper is organized as follows. In Section II,
we briefly introduce the notation and the hierarchical grooming
approach. Section III gives a discussion on clustering methods
in general, and the need for clustering algorithm for the traffic
grooming problem. In Section IV, we study an algorithm
designed for the K-Center problem, and revise it to improve
its performance on the hierarchical grooming approach. We
obtain lower bounds for the number of lightpaths and the
number of wavelengths, and present numerical results in a
47-node network with various parameters in Section V, which
compares the original and improved clustering algorithms. We
conclude the paper in Section VI.
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II. OVERVIEW OF HIERARCHICAL GROOMING

A. Notation

In this study, we consider the static traffic grooming prob-
lem in general topology networks. The problem specifies as
input a fixed physical network topology as a graph G(V, E),
a wavelength limit W on each directed fiber link, a grooming
factor, or granularity C, and an N × N static traffic demand
matrix T = [t(sd)], denoting aggregate or estimated traffic
from each source node s to each destination node d (N denotes
the number of nodes i.e. N = |V |). Each link of G consists
of a bidirectional pair of fiber links. C defines the wavelength
channel capacity in multiples of a basic transmission rate
(such as OC-3). We allow individual traffic demands t(sd)

to be greater than C. We assume the wavelength continuity
constraint, that is a lightpath must use the same wavelength
over every fiber link it traverses. The output of the traffic
grooming problem is a configuration of the network that
carries all the traffic demands with a set of lightpaths. Our
main objective is to minimize the number of electronic ports
in the whole network, which is equivalent to minimizing
the number of lightpaths in the configuration. For a more
formal definition of the problem expressed in integer linear
programming formulation, please see [9].

Note that the wavelength limit W is treated as a constraint
rather than part of the optimization objective above, but it
remains a useful secondary objective to minimize. To obtain
a feasible solution, W must be greater than a certain lower
bound, but if there are sufficient number of wavelengths avail-
able in the network, we can concentrate on other objectives
as long as a solution requires no more wavelengths than the
given constraint. On the other hand, if a solution requires fewer
number of wavelengths, it is more likely to be feasible for a
given W . In our numerical results, we track the performance
of the grooming algorithm both in the number of lightpaths
and the number of wavelengths required.

B. The Hierarchical Grooming Approach

The traffic grooming problem (and even its subproblems)
in general topology networks has long been known to be NP-
hard [12]–[14], and heuristic approaches have been advanced
in literature. In [10], we have presented a heuristic based on
a heirarchical approach. In this section, we describe the broad
nature of the approach to provide the context for the clustering
algorithm. Briefly, it consists of three phases; the clustering
algorithm is needed in Phase 1.

1. Clustering of network nodes. Partition the network into
m clusters and designate one node in each cluster as the hub
node.

2. Logical topology design and traffic routing. For each
cluster, traffic from one node in the cluster to another is
designated either to travel directly on a lightpath, or over two
lightpaths via the hub where it is electronically groomed with
other traffic. Thus each cluster can be treated as a virtual star
for the purpose of grooming intra-cluster traffic. This requires
us to solve as many virtual stars as the number of clusters.

First−level clusters with hubs forming a second level
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Fig. 1. A 32-node WDM network, its partition into eight first-level clusters
B1, · · · , B8, and second-level cluster B consisting of the eight first-level hubs

Finally, inter-cluster traffic can be groomed by viewing the
set of all hubs as a single virtual star again, and designating
a second-level hub. Specific enhancements can be made to
this approach to address conditions such as some node pairs
in different clusters having a large amount of traffic to each
other; for details see [10].

3. Lightpath routing and wavelength assignment. Each
of the lightpaths created in Phase 2 are assigned a wavelength
and path on the underlying physical topology of the original
mesh network. Since the RWA problem on arbitrary network
topologies has been studied extensively in the literature [6],
[7], [12], [15], [16], and RWA is not the focus of our research,
we choose not to develop an RWA algorithm of our own for
use in this work. Instead, we adopt the LFAP algorithm [15]
from recent research, which is fast, conceptually simple, and
has been shown to use a number of wavelengths that is close
to the lower bounds on different problem inputs. For lack of
space, we cannot describe the details of the RWA method,
please consult [15] for details.

Figure 1 shows an example of clustering on a 32-node
network with 8 clusters, B1, . . . , B8, each assigned a hub node
shown in bold. These hub nodes form a higher level in the
network, where inter-cluster traffic is carried between them.
Note that the RWA in Phase 3 is no longer constrained by the
virtual stars; this is one of the strengths of our approach. For
instance, in cluster B8, the virtual star solution might dictate
that a lightpath be formed between nodes 28 and 30. In a
physical star, such a lightpath would pass through the hub
node 32, but in our approach the RWA also has the option
to route it over the direct link between nodes 28 and 30. A
similar approach is followed at the second (inter-cluster) level.

From the point of view of the clustering algorithm however,
these enhancements are incidental; the focus is on generating
a clustering of a given graph, grouping topologically close
nodes together. In the next section, we will discuss the existing
clustering methods in the literature and how they may relate
to the traffic grooming problem.
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III. NETWORK CLUSTERING METHODS

Clustering is a common approach in network design and or-
ganization. A classic text [17] defines clustering as “grouping
of similar objects”, and discusses many mainstream clustering
algorithms. The algorithms were summarized into two cate-
gories: minimum cut and spanning tree. The inputs were gen-
erally a set of nodes (objects) and edge weights (relationships)
between them, while the outputs are an objective function
minimized or maximized. Most studies in the literature also
define clustering along these general lines.

In the hierarchical grooming context, we want to find good
clustering as the first phase of the whole approach, where the
situations are more complicated. For instance, the inputs of
our problem consist of not only a physical network topology,
but also a traffic demand matrix and several constraints; the
outputs also do not have an objective function clearly related to
the network topology graph such as physical cut size or inter-
cluster traffic. For that reason, most of the existing clustering
techniques are not directly applicable in our study.

For instance, some study considers only the communication
between nodes. The work in [18] introduced an algorithm
that can group a nearly completely decomposable (NCD)
matrix into blocks, so that the weighted arcs between blocks
have values not exceeding a given threshold. The algorithm,
called TPABLO, was used to group nodes in large Markov
Chains. In the traffic grooming context, we want the traffic
demands within a cluster to be ‘denser’ than inter-cluster
traffic, which is similar to what TPABLO wants. However, the
algorithm does not consider the given physical topology, so if
we directly apply it to the grooming problem, nodes that are
far away from each other may be grouped together, resulting
in unnecessary long lightpaths even for local traffic, which
will require significantly more wavelengths to avoid channel
collision.

Some other work concentrated on the physical topology
only. The goal was generally to partition the nodes into
contiguous clusters containing roughly equal number of nodes,
and at the same time minimize the overall cut size. An
example of the work can be found in [19], and the authors
developed a software package named METIS for solving a
set of similar problems. Such a clustering method is still not
directly applicable to traffic grooming. First, we do not have
the constraint that each cluster must be equal in size; second,
an overly small physical cut size will result in bottlenecks for
inter-cluster traffic, which is not good for lowering wavelength
requirement. In fact, the algorithms are designed to deal with
VLSI design, a very different problem, where equality in size
and a minimum of cross-layer connections are essential for
each module.

There is another set of clustering problems concerned with
the physical topology, namely K-Center, K-Clustering, K-
Median and Facility Location problems [20]–[23]. Unlike the
partitioning problem in METIS, they do not require the size
of each cluster to be roughly equal. Of all the variations, the
K-Center problem is the most suitable for our needs. Give a

graph G, the goal of the K-Center problem is to find a set
S of K “center” nodes in G, so that the maximum distance
from any network node to its nearest center node in S is
minimized. Thus, the set S implicitly defines K clusters with
corresponding hub nodes in S.

The K-Center clustering method can be useful in the traffic
grooming problem, because it can avoid long lightpaths within
a cluster, which is bad for lowering the wavelength require-
ment in the routing and wavelength assignment step. Also, this
type of clustering tends to avoid forming path-like physical
topology for each cluster as well (which are undesirable for
us because the virtual star method on such a cluster will result
in high congestion on links connected to the hub, see next
Section). Moreover, the parameter K defines the number of
clusters in the clustering result, thus allows ready tuning for
grooming needs.

The related K-Median problem is the overall version of the
K-Center problem. That is, it minimizes the sum of distances
between network nodes and their respective centers. There is
also a variation of the K-Center problem called the capacitated
K-Center problem, which adds restriction to the size of each
cluster. In the hierarchical grooming problem we consider, we
care more about the length of each local lightpath, and do not
restrict on the cluster size, so we will focus on the original
K-Center problem in this work.

IV. K-CENTER ALGORITHMS FOR HIERARCHICAL

GROOMING

In this section, we first describe a K-Center algorithm that
was known to have the best approximate rate, then we make
revisions on it according to our needs in a separate subsection.

A. An O(NK) K-Center Algorithm

Previous studies show that the K-Center problem is NP-
Complete, and is 2-approximable, while 2 is the best ap-
proximation rate we can get in polynomial time [24], [25].
We implemented the 2-approximable algorithm proposed by
Gonzalez [24] to do K-Center clustering, which is then com-
pared with the improved algorithm later in Section V. Note
that the algorithm assumes that edge weights obey the triangle
inequality. In our problem, this requirement is satisfied because
we use the shortest distance between two nodes as the weight.
We actually use the version of Gonzalez’ algorithm that can
be found in [26]; which we describe below for easy reference.
In what follows, we assume that all-pair shortest paths have
been calculated and recorded as input matrix dist.

1) Initialization: Create a single cluster of all nodes, B1 =
{v1, . . . , vn}, with hub node h1 = v1.

2) Our goal is to create k clusters, adding one cluster at
each iteration. Suppose in the current iteration, there
are x existing clusters, and a distance d is the current
maximum distance between any node and its hub, e.g.,
d = max {dist(vi, hj)}, vi ∈ Bj . We find such a node
v that the distance between v and its hub is d.

3) Continue at iteration x, Create a new cluster Bx+1 with
hx+1 = v as the only node. Then for each v′ ∈ B1 ∪
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. . .∪Bx, suppose v′ ∈ Bj , if we find that dist(v′, hj) >
dist(v′, v), that is, v′ is closer to the new cluster hub
than it is to its old hub, we move v′ from its old cluster
Bj to the new cluster Bx+1.

4) Iterate the previous two steps for K − 1 times, and we
finally get k clusters with corresponding hub nodes as
output.

In the algorithm, Steps 2 and 3 are iterated for K−1 times.
In Step 2, checking for the minimum node-to-hub distance
takes O(N) time, so does the update for the new cluster in
Step 3. Therefore, the whole algorithm has polynomial-time
complexity O(NK). (Note that if the all-pair shortest paths are
not provided as input, we need O(N3) preprocessing time to
calculate them from the given graph, e.g. with Floyd-Warshall
algorithm).

B. Improving the K-Center Algorithm

As we discussed in Section III, the K-Center problem itself
has only the physical topology as input, and the only goal
is to minimize the maximum node-to-hub distance. However,
in the traffic grooming context, hub capacity and lightpath
routing should also be considered.

Suppose we obtain a clustering solution from the original
K-Center algorithm, and apply it to the hierarchical grooming
approach. It is possible that the hub nodes in the clustering do
not have large physical degrees. Since hubs are responsible
for originating and terminating lightpaths that are locally
groomed, as well as traffic between different clusters, the
number of lightpaths that have to go through the physical
links connected to each hub is generally large. Since all such
lightpaths will have to be routed over physical links connected
to the hub node, this will result in a large number of wave-
lengths required, even if the RWA distributes the lightpaths
on the physical links perfectly evenly. For this reason, hub
nodes should be selected so that they have more capacity
- in this case, larger physical degree. That will potentially
allow each fiber to carry fewer number of lightpaths, which
results in lowered wavelength requirement. With this idea, we
make the following improvement on the K-Center algorithm
in Section IV-A:

1) In Step 1, instead of selecting h1 = v1, we choose the
node v that has the maximum physical degree as the hub
node;

2) In each iteration of Step 2, instead of selecting a single
node v, find the set of nodes {vd}, each having max
distance d to its corresponding hub;

3) For the corresponding iteration of Step 3, form the new
cluster Bx+1 has hub node hx+1 ∈ {vd}, such that hx+1

has the maximum physical degree.
Note that the revised algorithm does not change the charac-

teristics of the original algorithm with respect to the Min-Max
distance, which automatically ensures the same approximabil-
ity for the K-Center problem. However, it break ties when
there are more than one candidate nodes that can be chosen
as the new hub. By this improvement, we get a 2-approximable
K-Center algorithm in which the hub degrees can be larger.

The tradeoff between the K-Center objective and our re-
quirement for hub degrees deserves further study. For instance,
if we expand the candidate hubs {vd} in Step 2 to nodes with
hub distance d and d − 1, the resulting algorithm will not be
2-approximable, but the relaxation can facilitate in choosing
hubs with even larger degrees. In this paper, we consider
only the simple improvement that keeps the 2-approximation
characteristics.

V. NUMERICAL RESULTS

In this section, we present experimental results to demon-
strate the performance of the K-Center clustering algorithm
and the improved version.

The traffic matrix T = [t(sd)] of each problem instance we
consider is generated by drawing N(N − 1) random numbers
(rounded to the nearest integer) from a Gaussian distribution
with a given mean t and standard deviation σ that depend on
the traffic pattern. We consider two traffic patterns here:

1) Random pattern. We have found that random patterns
are often challenging in the context of traffic grooming,
since the matrix does not have any particular structure
that can be exploited by a grooming algorithm. To
generate a traffic matrix for a problem instance, we let
the standard deviation of the Gaussian distribution be
150% of the mean t. Consequently, the traffic elements
t(sd) take values in a wide range around the mean,
and the loads of individual links also vary widely. If
the random number generator returns a negative value
for some traffic element, we set the corresponding t(sd)

value to zero.
2) Falling pattern. This traffic pattern is designed to capture

the traffic locality property that has been observed in
some networks. Specifically, if the mean of the Gaussian
distribution for node pairs that have shortest distance 1 is
t, then the mean for node pairs with shortest distance 2
(respectively, 3) is set to 0.8t (respectively, 0.6t); for
all other pairs, the mean is set to 0.2t. We also let the
standard deviation of the Gaussian distribution be 20%
of the mean.

We also want to test the performance of the clustering al-
gorithm in the first phase of the hierarchical approach as well.
Since there is no existing clustering algorithm specifically
for the traffic grooming problem we consider, we implement
the known K-Center algorithm by Gonzalez described in
Section III and compare its performance with ours.

A. Lower Bounds

The actual numerical values of the number of lightpaths and
wavlengths in solutions obtained by these algorithms would
depend on the specific values of the parameters of different
problem instances. Thus a normalized value of these quantities
is much more preferable in understanding the performance
of the algorithms. Ideally, the values obtained should be
normalized to the optimal values; unfortunately, computing
the optimal by exhaustive computation or solving the ILP is
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out of the question due to the size of the problem instances.
In this section, we obtain lower bounds on both the number
of lightpaths and the number of wavelengths required to carry
the traffic matrix T , and then use the values of these bounds to
normalize the number of lightpaths and wavelengths obtained
by our algorithms. These bounds are obtained independently
of the manner (e.g., hierarchical or otherwise) in which traffic
grooming is performed. Therefore, the bounds are useful in
characterizing the effectiveness of our entire approach (and
hence the quality of the clustering as well).

1) ILP Lower Bound on the Number of Lightpaths: A
simple lower bound F l on the total number of lightpaths (our
main objective) can be found by:

F l = max

(

∑

s

⌈∑

d t(sd)

C

⌉

,
∑

d

⌈∑

s t(sd)

C

⌉

)

(1)

This bound is based on the observation that each node must
source and terminate a sufficient number of lightpaths to carry
the traffic demands from and to this node, respectively. This
bound can be determined directly from the traffic matrix T .

We also found a better lower bound by ILP relaxation. That
is, from the ILP formulation for the traffic grooming problem,
we remove some variables and some constraints, so that we
can obtain a relaxed solution that serves as a lower bound
for the original objective. We found that for large network of
general topology, we have to remove most of the constraints
and variables to get even a lower bound in reasonable time
constraint. Details on how to obtain the bounds can be found
in our recent work [10].

2) A Lower Bound on the Number of Wavelengths: Con-
sider a bisection cut of the network graph G, and let t be
the maximum amount of traffic that needs to be carried on
either direction of the links in the cut set. Let x be the
number of links in the cut set, and C the capacity of each
wavelength. Then, the quantity dt/xCe is a lower bound on the
number of wavelengths for carrying the given traffic matrix.
This bound does not require any information regarding the
logical topology or the routing and wavelength assignment of
lightpaths.

We use the METIS software [27] to find a small-cut
bisection on the network we experiment on, so that the number
of nodes in each side of the bisection is roughly equal. This
will potentially generate more traffic that traverses the cut,
resulting in tighter (higher) lower bounds for the wavelength
requirements.

B. Results on a 47-node Network

We experiment on a mid-sized network that is obtained by
slightly adapting a topology that appeared in a historical paper
on network design [28]. The network has a relatively balanced
physical topology, with 47 nodes and 96 links, and the nodes
have high connectivity, which offers more options for lightpath
routing. As a result, there is no significant bottleneck bisection
cuts.

For the falling traffic pattern, we first generate thirty prob-
lem instances, i.e., thirty traffic demand matrices using the

Falling traffic pattern, then we calculate the lightpath and
wavelength results obtained from the hierarchical grooming
method. For each problem instance, we calculate the resulting
lightpath count and wavelength requirement using different
cluster sizes (the parameter K in K-Center clustering), with
both the original and the improved clustering algorithms.

Figures 2 and 3 show the results on the 47-node network
with falling traffic pattern for the number of lightpaths, from
the original and revised K-Center algorithms, respectively. We
use the number of clusters K = 2, 4, 6 to generate different
clusters. Results show that the number of lightpaths from
the two methods don’t have much difference. However, as
Figures 4 and 5 illustrate, the revised algorithm outperforms
the original algorithm on wavelength requirements for all three
values of K .

The 47-node network has a balanced physical topology,
which is more likely to generate clusters of approximately
equal size for both algorithms. On the other hand, the revised
algorithm provides more hub capacity to route wavelengths,
so the solutions require much fewer wavelengths than those
from the original algorithm.

C. Results on a 128-node Network

We now consider a 128-node, 321-link network which
corresponds to the worldwide backbone operated by a large
service provider; we obtained the topology information from
data documented on CAIDA’s web site [29]. This topology is
imbalanced, in the sense that there exists a bisection with a
small cut size of 5 links that divides it into two parts of 114
and 14 nodes, respectively. We identify this critical cut with
the method discussed in Section V-A.2, and use it to calculate
the lower bound on the number of wavelengths.

For the 128-node network, because the physical topology
is not balanced, results from the two algorithms are more
different. From Figures 6 and 7 for the random traffic pattern,
we see that the revised algorithm not only outperforms the
original algorithm on the wavelength requirement greatly, but
also gives around 1% improvement on the lightpath count.
In more imbalanced topologies, node degrees may have large
difference, so the choice of hubs becomes more important.
Remember that in the K-Center algorithm, we choose a node
that has maximum distance to its hub node as a new hub. In
imbalanced networks, it is very possible that a ‘dangling’ node
will be chosen, that is, a ‘leaf’ node that has physical degree
1. Our revised algorithm, however, tries to avoid such case
from happening.

Although the revised algorithm considers only increasing
the hub capacities, interestingly, it is better with respect to
lightpath count as well, though the improvement is small. This
is mostly because in the revised algorithm, hub nodes have
larger connectivity, so the size of each cluster is likely to be
more balanced, which facilitates the virtual topology design
step for grooming both within and between clusters. The K-
Center problem does not have constraints on each cluster size,
but for networks with imbalanced topologies, the choice of
hubs with imbalanced cluster sizes may generate small but
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visible difference in the virtual topology design step. Another
reason is that the K-Center algorithm is a 2-approximation
algorithm and aims at the Min-Max objective, so the average
lightpath length from two algorithms can also be different.
This will further impact the results on the distance-dependent
traffic patterns.

VI. CONCLUDING REMARKS

We have studied the clustering algorithms in the hierar-
chical approach for efficient and scalable traffic grooming in
mesh WDM networks. We implemented an existing clustering
algorithm from the K-Center problem that is not dedicated
to the traffic grooming problem, then made improvements
to make it more suitable to our needs. Experimental results
showed that the improvements are effective on large general
network topologies with various traffic patterns. Currently,
we are continuing our research on comparing and improving
clustering algorithms for the general traffic grooming problem.
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