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Abstract— We study the traffic grooming problem on WDM
networks with the physical topology of a star. In star networks,
several nodes are connected to a single hub directly through a
bi-directional optical fiber, but are not connected to each other.
Previous studies concentrated on the objective of minimizing
the total amount of electronic switching. However, in order to
lower the network cost, we consider the objective of minimizing
the number of line terminating equipment (LTE), which is the
dominant cost among optical devices. We first present new
complexity results for this problem. The goal of minimizing
LTE cost can be embodied in two alternative objective functions,
the total number of LTE or the number of LTE at the node
with the greatest such number (Min-Max). We provide heuristic
algorithms for both objectives, and we present numerical results
to demonstrate the effectiveness of our algorithms. One of our
main contributions is to show that for star networks, it is
usually possible to obtain near-optimal values for both objectives
simultaneously, and our heuristics can obtain such solutions.
The most consistently useful solutions for both objectives can
be obtained by addressing the Min-Max objective as primary.

I. INTRODUCTION

Wavelength division multiplexing (WDM) technology has
the potential to satisfy the ever-increasing bandwidth needs
of network users on a sustained basis. WDM is the pro-
cess of transmitting data simultaneously at multiple carrier
wavelengths over an optical fiber cable. The wavelengths can
be kept sufficiently far apart that they do not interfere with
each other. Thus, a single strand of fiber can be thought of
as a collection of high capacity virtual fibers. Today, WDM
systems are widely deployed in long-haul networks, and have
a major presence in metro-area networks as well.

A lightpath is defined as a clear channel (or wavelength
in this case) in which the signal remains in optical form
throughout the physical path between two end nodes. The set
of lightpaths defines a logical topology, which can be designed
to optimize some performance measure for a given set of
traffic demands. The logical topology design problem has been
studied extensively in the literature. Typically, the traffic de-
mands have been expressed in terms of whole lightpaths, while
the metric of interest has been the number of wavelengths,
the congestion (maximum traffic flowing over any link), or
a combination of the two. In WDM networks, nodes are
equipped with optical cross-connects (OXCs), devices which
can optically switch wavelengths, thus making it possible
to establish lightpath connections between pairs of network
nodes. Since each network node needs to terminate data
destined to the site, and initiate traffic from it to other network
nodes, devices are needed to add/drop signals to/from the

This work was supported in part by NSF grant ANI-0322107.

lightpaths, and switch them to other channels, if necessary.
Since user data are expressed in electronic signals, some kind
of transformation between optical and electronic signals needs
to be done. The OEO (opto-electro-optical) transformation is
done by line terminating equipment (LTE) at each network
node. Digital cross-connects (DXC) can further be used to
switch the electronic signals for rearranging data multiplexed
onto the wavelengths.

With the deployment of commercial WDM systems, it
has become apparent that the cost of network components,
especially LTE, is one of the dominant costs in building optical
networks, and is a more meaningful metric to optimize than,
say, the number of wavelengths (since with current technology,
more than a hundred wavelengths can be multiplexed in one
fiber). Furthermore, with currently available optical technol-
ogy, the data rate of each wavelength is on the order of 2.5-
10 Gbps, while 40 Gbps rates are becoming commercially
available. In order to utilize bandwidth more effectively, new
models of optical networks allow several independent traffic
streams to share the capacity of a lightpath. These observations
give rise to the concept of traffic grooming, a variant of logical
topology design, which is concerned with the development
of techniques for combining lower speed components onto
wavelengths in order to minimize network cost.

In this paper, we consider the traffic grooming problem in
the star topology. Star networks arise in the interconnection
of LANs or MANs with a wide area backbone. Cable TV
networks and passive optical networks (PONs) are based on
a tree topology, which can be decomposed into stars as well.
Also, consider a relatively small optical WDM network with
a general topology. If we require that only one of the network
nodes has switching ability, the virtual topology formed by a
traffic grooming solution will be in the form of a star network.
Although direct lightpaths that “pass through” the hub node
may not actually pass the OXC at the hub, the virtual topology
(by ignoring the physical links) will look just like that in the
star topology. Therefore, if we use the star virtual topology as
building block, it may be possible to solve larger and more
general network topologies by employing a decomposition
method.

Typically, the goal of existing traffic grooming studies is
to minimize the LTE cost, given a set of traffic demands.
To this end, the problem is formulated so that its objective
reflects the amount of LTE either directly (e.g., by counting
the number of lightpaths established) or indirectly (e.g., by
considering the amount of electronic routing required, as
opposed to optical routing). However, most studies concentrate
on some aggregate representation of the LTE cost. That is, the
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objective to be minimized is usually expressed as the sum, over
all network nodes, of the LTE cost at each individual node.
While a metric that accounts for the network-wide LTE cost
is important, minimizing the total cost in the network without
imposing any bound on the cost of individual nodes may result
in a solution in which some nodes (such as the hub node in the
star topology) end up with a (very) large amount of LTE while
some others with only a small amount of LTE. Such a solution
may have a number of undesirable properties. First, a node that
requires a large amount of LTE may be too expensive or even
impractical to deploy (e.g., due to high interconnection costs,
high power consumption, or space requirements). Second, the
resulting network can be highly heterogeneous in terms of
the capabilities of individual nodes, making it difficult to
operate and manage. Third, and more important, a solution
minimizing the total LTE cost can be extremely sensitive
to the assumptions regarding the traffic pattern, as previous
studies [10] have demonstrated. Specifically, a solution that
is optimal for a given set of traffic demands may be far
away from optimal for another such set that is only slightly
different from the first. Since LTE involve expensive hardware
devices that are difficult to move from one node to another on
demand, an approach that attempts to minimize total LTE cost
may not be appropriate for dimensioning a network unless
the network operator has a clear picture of traffic demands
far into the future and these traffic demands are unlikely to
change substantially over the life of the network. Recently,
we studied the problem of minimizing the maximum nodal
LTE cost in a ring network [2]. We also note that a similar
approach of minimizing the maximum nodal cost was taken
in [4] in a different context, namely for routing and wavelength
assignment in the presence of converters.

Because of its importance and difficulty, the traffic grooming
problem has drawn a lot of attention in recent years. Some
surveys on the general traffic grooming problem can be found
in [11], [19], [6], [23]. Recent studies aimed at more general
mesh topologies can be found in [9], [17], [22]. Additional
studies with the objective of minimizing LTE cost can be found
in [15], [16], [18], [13].

The new topic of dynamic grooming is emerging in some
recent work, where the traffic is not completely static, and
must be modeled by some means other than a single traffic
matrix (e.g., by subwavelength call arrivals and departures).
In [21], an efficient reconfiguration problem is studied using
a novel graph representation of the problem. The grooming
problem is then transformed into corresponding problems in
graph theory. Note that the Min-Max objective we consider
in this paper results in balanced equipment capability at each
network node. Thus it is eminently suitable for the emergent
area of dynamic traffic grooming, because such a solution
offers more adaptability toward changing traffic patterns.

The grooming problem in the star topology has also gained
interest recently. The objective considered in relevant studies
is to minimize the total amount of electronic switching (and,
thus, the delay introduced by OEO transformation), which is
related to, but different from, the objective we consider in

this study. In [5], the authors first prove that the problem is
equivalent to a Maximal Weighted Local Constraint Subgraph
(MWLCS) problem, which is NP-Complete. They also de-
scribe a greedy algorithm that guarantees a solution whose cost
is at most twice the optimal. In [1], the authors consider two
versions of the problem: minimizing the electronic switching
and maximizing the optical switching. Besides proving NP-
Completeness, they also proved an important result regarding
approximation of this problem. They have shown that an
approximation algorithm for either version cannot act as an
approximation for the other. They also provided approxima-
tion algorithms for both versions separately, by transforming
the corresponding versions of the problem to existing NP-
Complete problems. A polynomial-time optimization algo-
rithm is also given for the special case in which only two
wavelengths are available on each fiber. In earlier work [8] two
of the authors studied the grooming problem in stars, among
other elemental network topologies. For star networks, we
gave complexity proofs, and by pruning the search tree, found
a method that can give a series of upper and lower bounds. A
greedy heuristic was provided to make improvement towards
the objective at each iteration. The paper inspired some of the
NP-Completeness results we present.

In this paper, we concentrate on LTE cost. This is an
important measure of the actual cost of a network. We consider
both the problems of minimizing this cost as a total over all
the network nodes, as well as minimizing the LTE cost at the
node where this cost is maximum (the Min-Max problem).
We discuss the relation between the two, and present some
intuitive insights in this regard, as well as provide heuristic
algorithms for each objective that perform well in practice.
We show that addressing the Min-Max objective as the primary
one produces the most practically useful solutions, from the
point of view of either objective.

The rest of the paper is organized as follows. In the next
section we define the problem precisely. Section III presents
our results on the computational complexity of the various star
network grooming problems. In Section IV we present our
heuristic algorithms. Section V presents numerical results to
demonstrate the effectiveness of our approach, and Section VI
concludes the paper.

II. PROBLEM DEFINITION

The traffic grooming problem is an extension of the well-
known Routing and Wavelength Assignment (RWA) problem
in wavelength routed optical networks. An optical network can
be abstracted as a directed graph, with vertices representing
network nodes (sites), connected with directed edges showing
the optical fiber links. A traffic demand from node � to node�

(denoted as ��������	 ) can be carried on a certain physical
route of fiber links, and by certain wavelengths on each
of the links. If we consider a set of such demands 
 , the
RWA problem becomes: how to carry all the traffic demands
from the respective sources to the destinations using the
available wavelengths. Since data carried for each demand
are distinct, this is a multicommodity flow problem. If two



demands share the same fiber link, they must be carried on
different wavelengths. The goal of the RWA problem is to
satisfy all traffic demands in 
 , while minimizing the number
of wavelengths used in the whole network. Generally, the
RWA problem assumes no use of wavelength converters in the
network, that is, each traffic demand is carried on the same
wavelength throughout the routing path.

Previous studies show that wavelength assignment to mini-
mize the number of wavelengths can be solved in polynomial
time in paths and stars, but it is NP-hard [7] in tree topologies.
Not surprisingly, the RWA problem is NP-hard in general
network topologies [14] as well. However, if the topology is a
star, the problem is equivalent to the minimum edge coloring
problem in bipartite graphs, which is solvable in polynomial
time [20].

A. The Star Traffic Grooming Problem

Current optical technologies allow very high bandwidths
for each wavelength channel in a fiber link. Since individual
��� ����	 values are likely to be much lower, effective utilization
of the wavelength channel bandwidth requires multiplexing
lower-rate traffic streams onto a single wavelength using time-
division multiplexing. If we were to require that only traffic
belonging to the same source/destination pair be multiplexed
onto the same lightpath, the grooming problem would be
equivalent to the RWA problem. However, this constraint
means that we have to set up direct lightpaths for each
source/destination pair, which is generally impractical due
to wavelength constraints or optical device constraints, and
results in low utilization of the available bandwidth.

For this reason, each node in the optical network needs
to perform both optical and electronic switching. Each node
is designed to let some lightpaths pass through by opti-
cally switching them, and to terminate/originate other light-
paths. Some traffic may be switched electronically onto new
lightpaths to be carried to its destination. This electronic
switching function, referred to as grooming, allows for better
use of wavelength capacity, reduces wavelength requirements,
and enhances virtual connectivity. As a trade-off, expensive
electro-optic devices (e.g., line terminating equipment) and
electronic switches (digital cross-connects) need to be placed
at the network nodes. The traffic grooming problem is thus
defined as that of balancing the advantages and costs, and
obtaining a tradeoff that minimizes some measure of the cost
of network equipment.

We define a positive integer
�

as the capacity of one
wavelength, expressed as units of some basic transmission rate
(such as OC-3). The capacity

�
has also been variously called

the grooming factor, or granularity. Let � be the number of
wavelengths that each fiber can carry concurrently. A traffic
demand matrix 
���� ��������	�� can be defined, where integer � � ����	
denotes the number of basic transmission units to be carried
from node � to node

�
. (We allow the traffic demands to be

greater than the capacity of a lightpath, i.e., it is possible
that ��� ����	
	 �

for some ��� � .) Given the traffic matrix, the
traffic grooming problem involves the following conceptual
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Fig. 1. A 5-node star with 4 lightpaths

subproblems (SPs): (1) logical topology SP: find a set 
 of
lightpaths that forms a virtual topology, (2) lightpath routing
and wavelength assignment SP: solve the RWA problem on

 , and (3) traffic routing SP: route each traffic stream through
the lightpaths in 
 .

The first and third subproblems together constitute the
grooming aspect of the problem. Also, the number � of
wavelengths per fiber link is taken into consideration as a
constraint rather than as a parameter to be minimized. Note
that this is only a conceptual decomposition that helps in
understanding and talking about the problem, and we do not
suggest that the grooming problem can be generally solved by
solving these subproblems in order.

The optimization goal we consider is to minimize the cost of
LTE in the network. We consider two flavors of the objective
which gives rise to two different problems of star network
grooming:
Overall: Minimize the total number of LTE to be used in
the design. This is equivalent to minimizing the number of
lightpaths established in the system (since each lightpath
requires one LTE at both ends). Note that this objective is also
equivalent to minimizing the number of edges in the logical
topology formed by lightpaths. As we mentioned before,
this cost function is more appropriate when custom-designed
equipment may be placed at different nodes, and the traffic
pattern is expected to be quite static.
Min-Max: Minimize the number of LTE to be used at the node
at which the maximum such number is used, or equivalently
minimize the maximum number of lightpaths originating from
or terminating at any node. This is the same as minimizing
the maximum nodal degree in the logical topology. The nodal
degree is defined as the maximum of the in- and out-degrees
of a node. This cost function is more appropriate when we
are constrained to use the same equipment at each node, or
the traffic pattern is expected to vary even though the overall
traffic load may remain the same.

We restrict our study to the physical topology of a star.
Figure 1 shows a star network with 5 nodes. We always label
the central hub node with 0, followed by non-hub nodes. We
assume that every physical link is bi-directional, and no traffic
demand is allowed to traverse the same physical link more than
once. This assumption can ensure efficient use of wavelength



capacity. Thus, only the hub node can be an intermediate stop
for a traffic component, non-hub nodes are not allowed to
switch traffic.

Under these assumptions, there can be only two types of
lightpaths in the logical topology. The first type consists of
single-hop lightpaths which either originate at a non-hub node
and terminate at the hub node, or vice versa. The second type
consists of two-hop lightpaths that originate and terminate at
non-hub nodes, and are switched optically at the hub node.
Such a two-hop lightpath from node � to node

�
can only

carry the traffic component � � ����	 (in whole or part), and any
remaining bandwidth on it cannot be used to carry any other
traffic (due to the restriction that non-hub nodes switch no
traffic).

In star networks, wavelength assignment can always be done
in polynomial time, as long as other wavelength constraints are
not violated [12]. However, we prove in the next section that
the grooming problem as a whole remains intractable, whether
bifurcated routing is allowed or not.

III. COMPLEXITY RESULTS FOR STARS

We consider two types of traffic routing, based on whether
bifurcation of traffic is allowed or not allowed. When bifur-
cation is allowed, any traffic component � � ����	 can be split
into various parts which may follow different logical routings
from source to destination; however, the splitting has to be
into parts that are each integer multiples of the base rate.
When bifurcation is not allowed, such split-routing of traffic
is not permitted; that is, for any source-destination pair � ��� ���
such that ��� ����	�� � , we require that all � � ����	 traffic units be
carried on the same sequence of lightpaths from source � to
destination

�
. On the other hand, if � � ����	 	 � , it is not possible

to carry all the traffic on the same lightpath. In this case, we
allow the traffic demand to be split into ���	��

������ subcomponents
of magnitude

�
and at most one subcomponent of magnitude

less than
�

, and the no-bifurcation requirement applies to each
subcomponent independently.

While many grooming problems have been known to be NP-
Complete, the computational complexity of traffic grooming
in star networks (a particularly simple topology) under the
objective functions mentioned above has remained an open
question so far. We have obtained proofs which settle these
questions. For bifurcated routing, we have the following result:

Theorem 3.1: The decision version of the grooming prob-
lem in star networks with the Min-Max objective (bifurcated
routing of traffic allowed) is NP-complete.

The proof is by reduction from the constrained PARTITION
problem. By creating a star network with two source nodes
and ��� destination nodes ( � is related to the PARTITION
parameters), we can set up the traffic demand matrix so that
exactly half of the residual demands need to be carried from
each source to � of the destinations, and that the sum of the
demands are equal to a certain value. The detailed proof can
be found in [3].

A similar construction allows us to prove the same result for
the Overall objective as well. Then we can claim the following

corollary; the detailed proof can be found in [3].
Corollary 3.1: The decision version of the grooming prob-

lem in star networks with the Overall objective (bifurcated
routing of traffic allowed) is NP-complete.

Similarly, for the non-bifurcated case, we have:
Theorem 3.2: The decision version of the grooming prob-

lem in star networks with the Min-Max objective (bifurcated
routing of traffic not allowed) is NP-complete.

The proof is by reduction from the BIN-PACKING problem.
For each instance of the BIN-PACKING problem, we can
create a star network with one source node and � destination
nodes. The bin size is the capacity of one wavelength. By
setting up the traffic demands, we can force the solution to
partition the � residual demands into the available wavelengths
while not violating the wavelength capacity constraints. The
detailed proof can be found in [3].

Again, the problem restriction allows us to extend the result
to the Overall objective as well. Further, because of the con-
struction in the proof, we can claim the following aggregated
result for the non-bifurcated case in the star topology:

Corollary 3.2: The decision version of the grooming prob-
lem in star networks with the Min-Max or the Overall objective
(bifurcated routing of traffic not allowed) is NP-complete, and
remains so even when a candidate logical topology is provided
as part of the problem instance.

IV. HEURISTIC GROOMING ALGORITHM FOR STARS

Clearly, for practical purposes a polynomial-time algorithm
with good performance is needed for star networks of large
size, preferably one that provides near-optimal grooming solu-
tions. In this section, we present polynomial-time algorithms
for star networks with either the Min-Max or the Overall
objective. We have focused only on the case where bifur-
cated routing is allowed, since this is a more realistic design
scenario; bifurcated routing is more flexible, allows better
utilization of network resources and may be preferred in some
situations because of security concerns.

A. Star Grooming for the Min-Max Objective

As we have mentioned before, wavelength assignment in
stars can be performed in polynomial time, therefore we will
concentrate only on the virtual topology and routing problem
in our heuristic algorithm.

The detailed algorithm is described in Figure 2. The concept
of reduction of a traffic matrix (in Line 1 of the algorithm)
is to reduce the matrix 
 so that all elements are less than
the capacity

�
of a single wavelength, by assigning a whole

lightpath to traffic between a given source-destination pair that
can fill it up completely. The available wavelengths on the
links of the path segment from the source to the destination
node are also decremented by the number of lightpaths thus
assigned. Since breaking such lightpaths would increase the
amount of LTE at some intermediate nodes of the path, this
procedure does not preclude us from reaching an optimal
solution, nor does it make the problem inherently easier or
more difficult. We continue using the same notation for the



Min-Max Traffic Grooming Algorithm for Star Networks
Input: A star network with � non-hub nodes and a hub 0, �
wavelengths, capacity � of each wavelength, and traffic matrix����� �
	���

���

.
Output: The number of lightpaths ��� � from node � to node � of
the star, and traffic routing quantities

� 	���
��� � ; or failure if no feasible
solution exists.

procedure StarMinmaxGrooming
1. Reduce the traffic matrix by assigning direct lightpaths

to traffic components greater or equal to �
2. Use 1-hop lightpaths to carry the remaining two-hop traffic
3. Check feasibility. If infeasible, exit with failure
4. Initialize � � ��� � 	���

�� � , record indegree � � , outdegree � �

and remaining capacity� � � on lightpath � � � �"! in the current topology
5. #%$ max degree of the non-hub nodes
6. while max hub degree &'# do
7. Sort all the 2-hop residual

��	(��
��
in non-increasing order

8. for each of the sorted
�
	���
��

do
9. if carrying

�
	(��
��
directly does not increase # then

re-route the traffic on direct lightpaths
update all variables accordingly

10. endfor
11. if #*)+� and max hub degree &+# then # ++
12. else break; endif
13. endwhile
14. Use the polynomial-time WLA algorithm in [12] to assign

wavelengths to the lightpaths
end procedure

Fig. 2. Traffic Grooming Algorithm for Star Networks with the Min-Max
Objective

traffic matrix and traffic components, but in what follows they
stand for the same quantities after the reduction process.

The following step, checking feasibility, is straightforward:
determine if the all-electronic solution violates any wavelength
constraint. Note that after getting the all-electronic solution,
we have reached the lower bounds for the degrees at non-hub
nodes. Since we are considering the Min-Max objective, if the
hub degree is even smaller than one of the non-hub degrees, we
have already reached the optimal; otherwise, we need to lower
the hub degree without increasing our Min-Max objective. To
this end, we use a greedy heuristic which, at each step picks the
largest traffic component that has not been considered yet, and
attempts to optically route it, if doing so will reduce the hub
degree without increasing the maximum degree. Following this
procedure, we may reach a point where the maximum degree
is at one or more non-hub nodes, possibly jointly with the hub
node, in which case the algorithm terminates. Otherwise the
hub node still has a degree greater than that of any non-hub
node. If it would not violate the wavelength limit at any non-
hub node, we then decrease our Min-Max target by one and
repeat the procedure.

The complexity of the algorithm is straightforward to ob-
tain: the reduction and initial feasible solution takes time, �.-0/ � �

; the while loop between Steps 6-13 is executed no
more than � times, since a feasible solution requires 1 ��� ;

and there are no more than - ��-3254 � traffic elements to
consider within the loop. Thus, the overall complexity of the
algorithm is

, �.-'/ � �
.

B. Star Grooming for the Overall Objective

One of the main goals of this study was to understand the
relationship between the Overall and the Min-Max objectives.
Accordingly, we were interested in knowing whether the Min-
Max heuristic presented above could be used with little or
no modification to perform well for the Overall objective as
well. We found that a different approach is needed to address
the Overall objective, though there is some commonality. In
this section, we present our development of the algorithm for
and insight into the Overall objective; later in Section V, we
present data regarding the performance of these algorithms not
only for the objective each was designed for, but also for the
other objective.

First, we argue that the Overall results given by our Min-
Max heuristic in Figure 2 can hardly be improved without
violating the Min-Max objective. This is because we aimed at
the Min-Max objective alone in the algorithm. As we will see
in Section V, the Min-Max algorithm performs very close to
the optimal: for stars with 10 non-hub nodes, only 1 out of the
50 cases in our experiments results in a non-optimal solution.
However, this is accomplished at the expense of neglecting the
Overall objective. Let us consider the following approaches to
improve the value of the Overall objective.

(1) After the Min-Max heuristic terminates, continue rerout-
ing two-hop traffic onto direct lightpaths. This might improve
the nodal degree at the hub, but cannot be done without
violating the existing Min-Max solution, because at the last
iteration of the while loop at Step 6-13, we have rerouted all
such traffic that will not violate the current objective 1 in non-
increasing order (refer to the if statement at Step 9).

(2) Break some direct lightpaths back into two at the hub
node. This can only be done by examining the last iteration of
the while loop step by step, considering the candidate traffic
in nondecreasing order (because smaller traffic are more likely
to fit into remaining capacities). Moreover, we need to ensure
that (a) the hub degree cannot increase beyond 1 , and (b) the
non-hub degree cannot increase beyond 1 . Note that at the
previous iteration, we have reached the limit that the non-hub
degrees cannot increase beyond 162�4 , so there is little room
left for improvement.

Finding a good combination of the above two approaches
leads to combinatorial explosion. Therefore, if we want to
balance the two objectives, new approaches are needed. To
find a good algorithm, we use a Integer Linear Programming
(ILP) formulation for the star grooming problem. A more
general (and more straightforward) ILP can be found in [11],
but here we give a simplified version that has only binary (0-1)
variables. The formulation allows us to relax the constraints
to allow for traffic demands between each source/destination
pair that exceed the wavelength capacity

�
.

In this context, we need to distinguish between the prob-
lem parameters as given by the instance, and after some



preprocessing. First we perform the traffic matrix reduction
(as described above in Section IV-A), then we set up the
minimum number of single hop lightpaths to (and from) the
hub node from (and to) each non-hub node which are required
to carry traffic components that terminate (and originate) at
the hub (that is, traffic components of the form � � ��� 	 and
��������	 ). We define the following notation for quantities after
this preprocessing:

� � � ��	� : the traffic demand � � � � � � ��	� � � �
from � to

�
,

���� � �� � . We further define � ��
	 � ��� � � ������	� � � �
�� ��� � � ������	� .� ���	 � : the remaining capacity left on the (possibly) underuti-
lized lightpath � ��� � � . � �
�� is defined similarly.� ��
	 � : the full wavelengths available on link � ��� � � . � �
�� is
defined similarly.

We need to find � ������	���� � � 4�� , in which 0 denotes
electronic routing of remaining demand � � � ��	� , while 1 denotes
optical routing (setting up a two-hop lightpath dedicated to it).

Therefore, our goal to minimize the total number of light-
paths can be expressed as follows; note that we do not
count the lightpaths set up during reduction, because they are
necessary and we have no choice but to keep them.

Minimize:�
�

�
� ��
	 � 2 � ��
	 � 2 � � � � ����	� � � ����	� �

� �
�

�
� �
�� 2 � �
�� 2 � � � � � ��	� � � ����	� � � �

�! � � ������	 (1)

Subject to (link capacity constraints):

� ��
	 � 2 � ��
	 � 2
�
�

� ������	� � � � ��	 � � �
�
� � ����	 � � � ��
	 � ��" � (2)

� �
�� 2 � �
�� 2
�
�

� � ����	� � � ����	 � � �
�
� � � ��	 � � � �
�� ��" � (3)

Note that, except for � � ����	#�$� � � 4�� , all other values can be
calculated from the traffic matrix very easily, and really count
as parameters. Therefore, the total number of variables is at
most - �.- 2 4 � . Each variable is binary, thus the solution space
has �&% ��%('*) 	 combinations (or less if some traffic components
are zero).

If we relax the ceiling operations in the objective, we can get
a new formulation that inspires a greedy algorithm, as we show
below. The new constraints are (link capacity constraints):�

�
� � 2 � � � ��	� � � ������	 � � � ���	 � 2 � ���	 � � � ��
	 � ��" � (4)�

�
� � 2 � � ����	� � � � ����	 � � � �
�� 2 � �
�� � � �
�� ��" � (5)

The goal is now to minimize:�
�! � � � 2 � � � ����	� � � � ����	

�,+ �
�
� � ���	 � 2 � ���	 � � � �

�
� � �
�� 2 � �
�� ��- (6)

where the latter part is a constant. The ILP formulation resem-
bles the Multiconstraint 0-1 Knapsack Problem (MKP), also
called Multi-Dimensional 0-1 Knapsack Problem (MDKP).
However, it has special forms that characterize the star groom-
ing problem, so better approaches can be taken to get near-
optimal solutions.

We can now get insight into the development of a good
heuristic by using the 0-1 ILP formulation for the problem.
From the goal, we know that we should try to route all traffic
demands that are greater than

�/. � optically, so that the values
� � 2 � � � ����	� � � � ����	 are negative, and will decrease the goal.
However, we should guard against the constraints as well.
Therefore, our intention is to greedily route the traffic demands
that are more than

�0. � optically, while making sure not to
violate the constraints.

Note that minimizing the quantity
�
�! � � � 2 � � � ����	� � � � ����	

is the same as maximizing
�
�! � �	� � ������	� 2 � � � � ����	 . Hence,

for the relaxed objective, at each iteration, we are closer to
our goal by � � � ����	� 2 �

by routing � ������	� directly onto one
lightpath. However, for the original objective with the ceiling
operations, the performance of each iteration will depend on
the remaining capacities on the two corresponding lightpaths
� ��� � � and � � � � � . For instance, even if a � � ����	� � �/. � , when
both lightpaths have remaining capacity 1 � 2 � � ����	� , routing
the traffic directly on a single lightpath will decrease the total
degree by 2; accordingly, some traffic greater than

�0. � may
actually introduce a new lightpath without eliminating either
of the two one-hop lightpaths, adding penalty to the objective.
Therefore, we can make potential improvement by trying to
route more traffic directly which does not exceed

�0. � , and if
the results are better, we should accept the better solution.

This observation leads to the essentially greedy algorithm
presented in Figure 3. The algorithm is similar to the one
presented in [8], and that in [5] as well, although those
algorithms were designed to minimize an electronic routing
(not nodal degree) objective. Note the important difference
that in our algorithm, while the order of considering traffic
elements is essentially greedy, we continue until all traffic
elements have been considered, and then pick the best one.
This means that in case a succession of greedy steps produce
first an increase, followed by a larger decrease, we shall be
able to pick the best case; further, if several steps produce the
same objective value, we shall be able to pick any of them. The
importance of this ability will become clear in the discussion
of Section V-C.

The idea of the algorithm comes from the fact that the
optimal overall solution must lie between the all-electronic
and the all-optical solutions. Furthermore, intuitively, carrying
larger traffic demands on two-hop lightpaths will make better
use of the wavelength capacity. The disadvantage of the
all-electronic solution is excessive hub degrees, while the
drawback of the all-optical solution is the many underutilized
lightpaths that could have been avoided by grooming. With our
approach, we are likely to find near-optimal results in-between



Traffic Grooming Algorithm for Star Networks to Minimize The
Overall Number of Lightpaths
Input: A star network with � non-hub nodes and a hub 0, �
wavelengths, capacity � of each wavelength, and traffic matrix����� � 	���

� �

.
Output: The overall number of lightpaths � � � � from node � to
node � of the star, and traffic routing quantities

� 	���

�� � ; or failure if no
feasible solution exists.

procedure StarOverallGrooming
1. Reduce the traffic matrix, update corresponding variables,

and record residual traffic
� � 	(��
��� �

2. Use 1-hop lightpaths to carry all
� 	���

�� electronically

3. Check feasibility. If infeasible, exit with failure
4. Set � ���

; record the current overall degree as #��
5. Sort all the nonzero two-hop residual

� 	���
��� in
non-increasing order, labeled as ��� � �	� ��
�
�
�� ��
 ����� � �

6. while � � &�� do
7. Reroute � � directly on a new 2-hop lightpath

if doing so does not violate the constraints
8. Record the resulting overall degree as # � ; � $ ��� �
9. endwhile
10. Find the smallest of # � � # � ��
�
�
�� # 
 , and use the

corresponding virtual topology as the solution
11. Use the polynomial-time WLA algorithm in [12] to assign

wavelengths to the lightpaths
end procedure

Fig. 3. Traffic Grooming Algorithm for Star Networks with the Overall
Objective

the two extremes.
The complexity of the algorithm is again straightforward to

obtain. Up to -'/ iterations can be made in Step 4, each in, � 4 � time. Finding the smallest value in a list of - / values
takes time

, ������� - �
. Thus, the overall complexity for the

greedy algorithm is
, �.- / � .

V. NUMERICAL RESULTS

In this section, we present our experimental results with
stars for the two algorithms we discussed in the previous
section. First we present individual results for each algorithm,
then consider joint issues.

For any set of results, we use 50 problem instances. The
traffic matrix 
 � � ��������	�� of each of the instances is generated
by drawing - ��-�2*4 � random numbers (rounded to the nearest
integer) from a Gaussian distribution with a given mean � and
standard deviation � that depend on the traffic pattern. We
consider two traffic patterns, a random and a quasi-uniform
pattern.

We consider the random traffic pattern because this is often
the most challenging and general of traffic scenarios, when
there is no particular structure to the traffic matrix that can be
exploited by an algorithm. To generate a traffic matrix of this
pattern, we first determine the mean value � of the Gaussian
distribution according to the desired link load � , and we let the
standard deviation be 150% of the mean � . Consequently, the
traffic elements � � ����	 take values in a wide range around the
mean, and the loads of individual links also vary widely. With

such a high standard deviation, the random number generator
may return a negative value for some traffic elements; in this
case, we set the corresponding � � ����	 values to zero. Also, if a
traffic matrix generated in this manner is infeasible (i.e., the
load on some link exceeds the value � � ), then we discard it
and we generate a new matrix for the corresponding problem
instance. Note that with the high variation, the link load �
may not be balanced, and we can only guarantee a range of
link loads around the target load for the instances.

We also experiment on a quasi-uniform traffic pattern with
high loads, because such a pattern is quite realistic. Traffic
matrices are generated by the same procedure as above, but
the Gaussian distribution parameter is changed to make the
standard deviation 10% of the mean. In this case, when all
links have high loads of traffic, the wavelength constraints
will not allow for an all-optical solution, and the performance
of the algorithms will change accordingly. We revisit this issue
in Section V-D.

A. Results for the Min-Max Objective

Using the industry standard ILP solver CPLEX with the ILP
formulations, we can get some good results for the random
pattern with the Min-Max objective. Using an Sun UltraSparc
system, we were able to get optimal results for stars with up
to - � 4 � non-hub nodes.

We collected data for 50 cases with - � 4 � � �"! . We
also used the all-electronic solution as the scale to evaluate
our solutions and the optimal. The concept of “grooming
effectiveness” is used in the evaluation, which is defined as
the objective divided by the all-electronic result (at the hub
node for this case); note that lower is better for this measure.
We have found that our heuristic performs well in general. For
- � 4 � , only 4 of the 50 cases give non-optimal result; for
- � �"! , the number of non-optimal cases rises to 18.

Figure 4 shows results for stars with 24 non-hub nodes. We
find that all non-optimal results are very close to the optimal.
We also find that the grooming effectiveness is smaller (better)
when the star size grows: the typical grooming effectiveness
was around 40% for 10-node stars (not shown here) and is
around 25% for 24-node stars as seen in Figure 4, even though
the load was less for the former. This result suggests that
grooming techniques are more helpful in larger networks, even
if we restrict the network to the simple topology of stars.

B. Results for the Overall Objective

The Overall algorithm, after applying all the constraints,
also works quite well for stars with 10 non-hub nodes. When
the star size grows to 16, most of the cases we generate
take more than a few hours to solve with CPLEX, and we
were unable to obtain bulk results for the optimal in these
cases. The plot in Figure 5 shows results for 10-node stars.
The typical optimal grooming effectiveness is just under 60%,
which translates to an average of 446 lightpaths for each case,
and our algorithm obtains solutions with only 2 to 4 additional
lightpaths. The average difference is 2.96, which is less than
one percent from the optimal values.



Having seen that our algorithms perform well for the objec-
tives they were designed for, we investigate the performance
of each for the objective it was not designed for in the
next section. In Section V-D we investigate the behavior of
the algorithm of Figure 3 when the limit on the number of
available wavelengths in each fiber is ignored, again giving us
insight into the relationship between the two objectives.

C. Cross-Objective Performance results

From the nature of strong symmetry in stars, we have the
intuition that for the star network topology, the Min-Max and
the Overall objective are closely related to each other. That
is, by obtaining the Min-Max solution of the problem, the
resulting overall degrees are also close to the Overall objective,
and vice versa. Figure 6 shows how our solutions for the Min-
Max objective perform with respect to the Overall objective.
The results are for 50 instances of 10-node stars.

Figure 6 merits careful consideration. There are three sepa-
rate curves, and they all compare the result obtained for some
particular objective by a given algorithm versus the optimal
value of that objective, for individual problem instances. In all
cases, the optimal value of the two objectives were obtained
by solving the ILPs exactly. Thus the vertical axis represents
the percentage by which the output of a particular algorithm
exceeds the optimal value. For example, considering the first
three points on the dotted blue line with data points marked by
asterisks (’*’), we see that the maximum degree at a node in the
solution obtained by solving the ILP for the Overall objective
was 12% more than the minimum possible maximum degree
at a node (which was obtained by solving the ILP for the Min-
Max objective) for the first problem instance; for the second
instance, the maximum degree in the optimal solution of the
Overall ILP was the same as the optimal maximum degree,
and for the third instance it was 10% greater.

The first line (with plus ‘+’ signs) plots the value of the
overall degree in the optimal solution to the Min-Max ILP and
the second line (with cross ‘X’ signs) plots the value of the
overall degree in the solution returned by the Min-Max heuris-
tic algorithm of Figure 2. The first obvious observation is that
the Min-Max heuristic algorithm has very good performance
with respect to the Overall objective, exceeding the optimal
by only 3-4%. It is interesting to notice that with respect to
the Overall objective, the Min-Max heuristic algorithm gives
better results than the Min-Max optimal solutions given by
CPLEX. This is not surprising because CPLEX simply returns
the first optimal solution from its branch-and-bound search of
the solution space, and the results may have many high-degree
nodes due to the search sequence. For the same reason, we also
note the important fact that the variability is much less for the
Min-Max heuristic, thus the Min-Max heuristic minimizes the
overall degree much more consistently.

Now we do a reverse comparison. The third line in Figure 6
(with asterisk ‘*’ signs) plots the value of the maximum degree
at a node in the optimal solution to the Overall ILP. The figure
shows that while we try to minimize the overall degree, the
maximum degree from the solution is also not far from the

optimal Min-Max objective in star networks. However, it is
quite inconsistent: several of the values are close to optimal
while several others are between 10% and 15% higher. We
can explain this result by recalling that often a reduction in
the overall degree can be obtained at the cost of increasing
the degree of the hub node and reducing the degrees at the
non-hub nodes. In the next section, we further investigate the
behavior of the Min-Max objective as the overall degree is
sought to be minimized.

D. Evolution of the Two Objectives

In our heuristic algorithm for the Overall objective, a simple
greedy approach is used without considering the Min-Max
objective. In this section, we study the behavior of the two
objectives as the algorithm proceeds from the all-electronic to
the all optical solutions, and present the results in Figures 7-
9. We record the value for both objectives at each iteration,
and find the trends from all-electronic to all-optical solutions
to study the trend on both objectives. If our goal is to find
good solutions that are not far away from either of the two
objectives, we can analyze the two figures showing the steps
from the Overall algorithm, and find a point close to the trough
of both.

Initially, to allow us to focus on this evolution, we ignore the
constraint of the wavelength limit on a link. A star of size - �
4 � means that the number of outgoing lightpaths from a node� has a variation of at most 9 between the all-electronic and all
all-optical solutions. Therefore, the wavelength limit constraint
does not come into play for instances with low traffic load and
uniform pattern. For the Random traffic pattern, statistically,
a few cases may happen to reach the limits, but the chances
are low as long as the the link loads are low. On the other
hand, when many links have very high loads concurrently
(that is when the load is uniformly high), the wavelength limit
realistically constrains feasible solutions.

From our experiments, we find that the Min-Max objective
will generally go down and then later up during the transfor-
mation from all-electronic to all-optical solutions. The Overall
objective has the same general trend, but may “thrash” up and
down less smoothly. This justifies our strategy of picking the
best value from the results of all iterations, rather than stopping
when the Overall objective goes up for the first time.

Figures 7 and 8 present results for instances with random
traffic pattern and low loads (in the range of 50%) and
uniform traffic pattern with high load (95%) respectively.
The horizontal axis represents the number of traffic elements
which are routed optically instead of electronically, and the
vertical axes represent the actual objective values. For the
first instance, both objectives simultaneously reach their best
values at around the ! � ��� iteration. However, for the instance
of Figure 8, the Overall objective goes up well before the
Min-Max objective reaches its best value.

Finally, Figure 9 shows the effect of the wavelength limit.
It is the wavelength limit constrained version of Figure 8. (For
the case of Figure 7, the constraints do not make a difference
in the output; this is expected at low loads, as we mentioned



above.) In this figure, if rerouting the traffic optically at a
certain iteration would result in wavelength violation, we skip
the element and leave the results for corresponding iteration
blank. For instance, there is a big gap between Iterations 78
and 84, which means that the elements considered in those
iterations will generate infeasible solution if we attempt to
route them optically. We find that the effect of the constraints is
a dampening of the objective curves, but the general behavior
remains the same. On the whole, the removal of the constraints
(at high traffic loads) produce effects similar to those produced
by reducing the traffic load somewhat. We have obtained
more numerical results which confirm these observations.
Interestingly, the constraints do not in general affect the best
value of the objectives by much.

VI. CONCLUSIONS

We considered the traffic grooming problem in WDM
networks with the important physical topology of a star. We
considered two objectives related to minimizing the number of
Line Terminating Equipment. We proved that, for both objec-
tives, the problem is NP-Complete. We proposed polynomial-
time algorithms for both cases, and tested their performance.
We also studied the relationship of the two objectives.

The results show that our algorithms are practically useful
ones for this computationally hard problem. In star networks,
it is usually possible to get good values for both objectives
simultaneously; and our algorithms can be used for this pur-
pose. We also show that our algorithms will produce solutions
that are more robust to changes in traffic pattern and random
variation in the traffic matrix than even an optimal solution for
either objective, when such an optimal solution is produced by
an algorithm that is unaware of this duality of objectives (e.g.,
by simply solving an ILP model). Finally, we have shown that
our Min-Max heuristic consistently produces solutions that are
close to the Min-Max optimal, as well as close to the Overall
optimal. For star networks, unless there exist specific patterns
in the traffic that can be exploited, this appears to be the best
practical design approach. Using our greedy heuristic is an
easy way to get an estimation of whether good values can be
achieved simultaneously for a given problem instance.

Our algorithms can be extended to cope with more com-
plicated network topologies with only one switching node. In
this case, the virtual topology will be like a star. For larger-
sized networks, decomposition approaches can be applied to
break them into small pieces, and use the star approach to
solve each piece hierarchically. This is part of our ongoing
research in this area.
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