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Abstract— The design of the SILO network architecture of
fine-grain services was based on three fundamental principles.
First, SILO generalizes the concept of layering and decouples
layers from services, making it possible to introduce easily
new functionality and innovations into the architecture. Second,
cross-layer interactions are explicitly supported by extending the
definition of a service to include control interfaces that can be
tuned externally so as to modify the behavior of the service. The
third principle is ‘““design for change:” the architecture does not
dictate the services to be implemented, but provides mechanisms
to introduce new services and compose them to perform specific
communication tasks. In this paper, we provide an update on
the current status of the architecture and the prototype software
implementation. We also introduce the concept of “software
defined optics” (SDO) to refer to the emerging intelligent and
programmable optical layer. We then explain how the SILO
architecture may enable the rapid adoption of SDO functionality
as well as evolving optical switching models, in particular, optical
burst switching (OBS).

I. INTRODUCTION

For more than thirty years, the Internet architecture has
evolved incrementally [13] to address the demands and re-
quirements presented by a continuously changing environment
of heterogeneous users, service needs, economic structures,
and threats. Typically, a solution for a specific problem is en-
gineered within the constraints of the current Internet architec-
ture. Often, such a solution only applies to a specific context;
consider, for example, the recent research on TCP variants for
high bandwidth-delay product networks [19], [23], [24], [49],
earlier work on TCP over wireless networks [4], [9], [10], [50],
and ongoing efforts towards cross-layer optimization [26],
[32], [35], [45]-[47]. In other cases, addressing broader needs,
such as IP address shortage or security, leads to the develop-
ment of a more general solution framework, which, however,
may violate some of the original principles of the Internet
or introduce new elements in its architecture; for instance,
network address translation is not consistent with the end-
to-end principle, whereas MPLS and transport layer security
solutions were introduced at layers 2.5 and 3.5, respectively.
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With the emergence of optical network technologies, there
have been calls for new architectures that take advantage of the
new capabilities at both the core [3], [31] of the network and
closer to the edges [25] to deliver better performance; these
approaches, however, focus primarily on performance issues
without explicitly targeting underlying architectural principles.

Recently, as the shortcomings and limitations of today’s
Internet architecture have become increasingly evident, many
in the networking community are convinced that resolving the
present “impasse” [2] is impossible without reconsidering the
fundamental assumptions and design decisions underlying the
current architecture. According to this point of view, it is time
for taking a “clean-slate” approach to address fundamental
problems and limitations by redesigning the Internet “from
scratch,” based on new core principles and without being
constrained by the existing architecture and protocols [17].
Major clean-slate research initiatives in the US (FIND [18])
and Europe (FIRE [21]) take a two-pronged strategy in clean-
slate design: promoting research into new network architec-
tures as well as building an extensive experimental facility for
evaluating the new concepts at scale with live traffic. In the
US, the NSF-funded FIND program has initiated a research
agenda that invites researchers to think carefully about the
requirements for the global network in 15 or 20 years, to
formulate a vision [41] for the future, and to take steps to
realize this vision by devising clean-slate designs unhindered
by the current architecture. The FIND program supports a
diversified portfolio of research projects with a strong archi-
tectural focus; descriptions of these projects are available at
the FIND website [20]. NSF has also provided initial funding
for the GENI [22] experimental facility designed to act as a
catalyst for research on new network applications, services,
and architectures. In Europe, FIRE activities are underway
within the FP 7 framework, while similar initiatives have
emerged in several other countries, including Canada, Japan,
and South Korea.

Our 2-year SILO project [37] was among the first batch of
projects funded by the FIND program in 2006. The outcome
of this project is a new network architecture that overcomes



the limitations of layering by introducing the concept of a
per-flow “silo” of fine-grained services that can be viewed as
a generalization of the traditional layer stack. SILO takes a
holistic view of network design with emphasis on facilitating
cross-layer interactions, and represents a complete departure
from current philosophy and practice; in that sense, it is a
truly clean-slate architecture. The SILO architecture and our
prototype implementation are described in detail in the next
section.

Among recent clean-slate research, there are two projects
whose scope extends to include the whole network stack and
hence are most closely related to our own project. The first
is work on the role-based architecture (RBA) [8], carried out
as part of the NewArch project [40]. RBA represents a non-
layered approach to the design of network protocols, and
organizes communication in functional units referred to as
“roles.” Roles are not hierarchically organized, and thus may
interact in many different ways; as a result, the metadata in the
packet header corresponding to different roles form a “heap,”
not a “stack” as in conventional layering, and may be accessed
and modified in any order. The main motivation for RBA was
to address the frequent layer violations that occur in the current
Internet architecture, the unexpected feature interactions that
emerge as a result [8], and to accommodate “middle boxes.”
The second is the recursive network architecture (RNA) [29],
[43] project, also funded by FIND. RNA introduces the con-
cept of a “meta-protocol” which serves as a generic protocol
layer. The meta-protocol includes a number of fundamental
services, as well as configurable capabilities, and serves as a
building block for creating protocol layers. Specifically, each
layer of a stack is an instantiation of the same meta-protocol;
however, the meta-protocol instance at a particular layer is
configured based on the properties of the layers below it.
The use of a single tunable meta-protocol module in RNA
makes it possible to support dynamic service composition, and
facilitates coordination among the layers of the stack; both
are design goals of our own SILO architecture, which takes a
different approach in realizing these capabilities.

Several years of research in new network architectures
(within or outside the FIND program) have produced a broad
spectrum of diverse ideas and innovations. More importantly,
as the environment (e.g., user requirements, economic factors,
threats, etc.) evolves, so will the research community’s views
regarding the network architecture. In fact, the last observation
is at the core of arguments against clean-slate research and in
favor of evolutionary approaches that adapt the network to the
prevailing environmental conditions [13]. While we agree that
the original Internet architecture has been quite successful in
accommodating change, we believe that continuing the current
practice of applying patches, however innovative, to solve new
problems, cannot continue for ever. Instead, we argue that a
new architecture, designed with evolvability and adaptability
in mind, is a far better proposition moving forward, and that
clean-slate research programs offer an excellent opportunity
for the community to converge to such a solution. Our goal
with the SILO project is not to design the “next” system,

or even the “best next” system, but rather a system that can
sustain continuing change. To this end, the SILO architecture
provides built-in mechanisms to incorporate new services and
compose them into silos, making it possible to incorporate
new innovations organically and gracefully without the need
for patches or add-ons.

The remainder of this paper is organized as follows. In
Section II, we provide a brief description of the SILO ar-
chitecture and of the software prototype we have developed.
In Section III, we introduce the concept of “software defined
optics” (SDO) and explain how SILO may enable the rapid
adoption of an intelligent and programmable optical layer.
In Section IV we argue that the SILO architecture may
accommodate optical burst switching (OBS) naturally, as well
as provide the springboard for the development of a wide
range of supporting services and functionality that cannot be
easily incorporated in today’s Internet architecture. Finally, we
conclude the paper in Section V.

II. THE SILO ARCHITECTURE AND PROTOTYPE

Our design of the SILO architecture was based on three
major principles. First, our goal was to maintain the concept
of layering, but also to generalize it so as to overcome the
current limitations in terms of introducing new functionality.
The building blocks of the architecture are fine-grain services;
each service implements a specific, reusable function of fine
granularity (compared to today’s protocols that embed com-
plex functionality). Services are composed vertically into silos
so as to carry out an end-to-end communication task; silos
can be thought of as a generalization of the protocol stack
concept, but are instantiated on a per-flow basis, allowing each
flow (application) to customize its stack according to its own
requirements and the properties of the underlying network.
Finally, the silo decouples layers from services, allowing a
service to be introduced at any point in the stack where it is
necessary rather than at a specific, predetermined layer.

The second design principle was to facilitate explicitly
cross-layer interactions which are awkward and difficult to
accomplish in the current architecture. To this end, the defini-
tion of a service includes not just the data interfaces to services
above or below it in the silo, but also a set of tuning inter-
faces, which we refer to as knobs. The knobs are adjustable
parameters specific to the functionality of the service (e.g.,
“compression factor” would be a knob of the “compression”
service) with a specified range of values and a well-defined
relationship between these values and the perceived perfor-
mance of the service. These tuning interfaces make cross-
service interactions an integral part of the architecture, as it
is now possible to employ algorithms that consider jointly the
behavior of the services in a silo and fune their knobs to the
benefit of the communication task at hand.

The third design principle has to do with our desire to
“design for change.” We accomplish this goal by making
sure that we do not dictate the services to be implemented.
Instead, we provide mechanisms to introduce new services into
the framework and compose them into silos. Specifically, we
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create an ontology of services that stores service semantics
(e.g., their function and data and tuning interfaces) as well
as the relationships among services in the form of constraints
(e.g., relative ordering constraints). We have also developed a
composition algorithm that takes as input service requests (if
any) from an application and uses the information and con-
straints in the ontology to construct a valid silo. Consequently,
introducing a new service is straightforward: a developer only
needs to provide a description of the service and register it
with the ontology for users to be able to include it in their
silos.

Figure 1 illustrates the design principles discussed above.
The figure shows three applications, each with its own silo of
services. It also shows the decoupling of services and layers;
for instance, service S6 is at layer 3 of the rightmost silo,
but at layer 2 of the middle silo. Each service has its own
tuning interface (knobs) that are accessed and tuned by a cross-
service algorithm. Finally, the silo and service manager uses
the composability constraints to compose services into valid
silos. For additional information on the SILO architecture, the
reader is referred to [7], [15].

A. SILO Software Prototype

As part of the deliverables of our current FIND project,
we have implemented a working prototype which serves as
proof-of-concept demonstration of the feasibility of the SILO
framework. This prototype, which is publicly available from
the project website [37], is implemented in portable C++ and
Java as a collection of user-space processes running in a recent
version of Linux (although the prototype carries no explicit
dependencies on the Linux kernel). Individual services as well
as tuning algorithms are implemented as dynamically loadable
libraries (DLLs or DSOs). Figure 2 shows the architecture of
the software prototype, and its main components are explained
briefly in the remainder of this section.
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Fig. 2. SILO software prototype architecture

The application communicates with the SILO management
agent (SMA) over the SILO API, which consists of header
files and library code and serves as a replacement to the
common socket interface. Initially, an application creates a
service request, which describes its communications require-
ments. The request is passed on to the SILO construction
agent (SCA), a major component of the architecture whose
responsibility it is to assemble a silo based on an application
service request. It utilizes the SILO ontology, an inference
engine, and a collection of service composition algorithms we
have developed to convert the application request into a silo
recipe that it returns to the SMA.

Given a silo recipe, the SMA constructs a silo for the



application by by dynamically linking in the necessary code
for the services (residing in the universe of services storage
(USYS)), instantiating the state for the new silo, and starting
any required execution context.. Once the silo has been con-
structed, the SMA returns a silo handle to the application,
which is now ready to transmit/receive data using the silo.
The SMA also maintains the silo state throughout the com-
munications session. A component within the SMA, called
the SILO tuning agent (STA) is responsible for manipulating
the tuning interfaces of the services within a silo in order
to optimize either the individual or collective behavior of
silos within a single node or among many nodes. The STA
selects appropriate tuning strategies from the Tuning Strategies
Storage (TSS), after taking into account appropriate user- or
administrator-specified policies that are in effect within the
USS.

The universe of services storage (USS) serves as the main
repository of information about the SILO framework. It con-
tains (1) the ontology that describes relationships between
silo services and service interfaces; (2) a database of service
implementations which helps the SMA locate the executable
code necessary to construct a given silo; and (3) current policy
settings which affect the operation of the SILO framework.
The USS has a query-based interface, which allows other
components of the SILO framework to utilize its functionality.
The SILO ontology describes the relationships between SILO
services used to create and operate SILOs. It also describes
the data interfaces between services as well as service tuning
interfaces.

In the terms of implementation, the SILO Management
agent is written in C++ as an event-driven loop that maintains
multiple silo structures and processes data in transmit or re-
ceive direction in individual silos. The SCA is implemented as
a stand-alone Java process utilizing the Jena RDF framework
APIL. The USS is implemented as an XML file describing
the location of the dynamically loadable code and default
parameters for each service. Finally, the ontology was defined
using the open source Protégé platform from Stanford and then
exported to RDF (Resource Description Framework).

III. SOFTWARE DEFINED OPTICS (SDO)

In today’s networks, the physical layer is typically consid-
ered as a “black box:” sequences of bits are delivered to it
for transmission, without the higher layers being aware of
exactly how the transmission is accomplished. This separation
of concerns imposed by the layering principle has allowed the
development of upper layer protocols that are independent of
the physical channel characteristics, but it has now become
too restrictive as it prevents other protocols or applications
from taking advantage of additional functionalities that are
increasingly available at the physical layer. Specifically, in the
optical domain, we are witnessing the emergence of what we
call software defined optics (SDO), i.e., optical layer devices
that are:

1) intelligent and self-aware, that is, they can sense or
measure their own characteristics and performance, and

2) programmable, that is, their behavior can be altered
through software control.

Our use of the term SDO is a deliberate attempt to draw a
parallel to another recent exciting technology, software defined
radios (SDR), devices for which nearly all the radio waveform
properties and applications are defined in software [1], [16],
[27], [42].

The software logic defining more and more of these SDO
devices requires cross-layer interactions, hence the current
strictly layered architecture cannot capture the full potential
of the optical layer. For instance, the optical substrate increas-
ingly employs various optical monitors and sensors, as well
as pools of amplifiers and other impairment compensation
devices. The monitoring and sensing devices are capable of
measuring loss, polarization mode dispersion (PMD), or other
signal impairments; based on this information, it should then
be possible to use the appropriate impairment compensation
to deliver the required signal quality to the application. But
such a solution cannot be accomplished within the current
architecture, and has to be engineered outside of it separately
for each application and impairment type; clearly, this is
not an efficient or scalable approach. Reconfigurable optical
add-drop multiplexers (ROADMs) and optical splitters with
tunable fanout (for optical multicast) are two more examples
of currently available SDO devices whose behavior can be
programmed according to the wishes of higher layer protocols.
Looking several years into the future, one can anticipate
the development of other sophisticated devices such as pro-
grammable MUX-DEMUX devices (e.g., that allow the wave-
band size to adjust dynamically), or even hardware structures
in which the slot size can be adjustable’.

In the SILO architecture, all these new and diverse func-
tionalities within (what is currently referred to as) the physical
layer will typically be implemented as separate services, each
with its own control interfaces (knobs) that would allow
higher-level services and applications direct access to, and
control of, the behavior of the optical substrate. Hence, the
SILO architecture has the ability to facilitate a diverse col-
lection of critically important cross-layer functions, including
traffic grooming [14], impairment-aware routing [36], [48],
and multi-layer network survivability [28] that have been
studied extensively, as well as others that may emerge in the
future.

We also note that there is considerable interest within
the GENI community to extend the programmability and
virtualization functionality that is core to the GENI facility,
all the way down to the optical layer so as to enable meaning-
ful and transforming optical networking research. Currently,
however, a clear road map on how to achieve such a “GENI-
ized” optical layer has not been articulated, mainly due to
the lack of interfaces that would provide GENI operations

Note that even as SONET has increased in speed to 10 Gb/s and beyond
and its primary function has moved beyond carrying voice traffic, its slot size
is still defined by a voice channel; we have shown that the optimal slot size
depends on the mix of carried traffic, and should be adjusted as this mix
changes over time [33], [34].



access to the functionality of the optical layer devices. We
believe that the SILO architecture would be an ideal vehicle
for enabling optical-layer-aware networking within GENI, as
well as enabling cross-layer research through explicit control
interfaces (e.g., such as SILO knobs). Therefore, we are in
the process of outlining specific strategies for incorporating
the SILO concepts within the GENI architecture whenever
appropriate.

A. Future Research: Deployment in Optical Testbed

In order to gain wider acceptance of the SILO framework,
our goal is to extend the current software prototype and
develop a set of services that can provide examples for
implementors and at the same time enable experimentation
within the framework. Individual services cannot be tested
in isolation - they require a “scaffolding” of other services
around them that together create a complete and operational
ensemble of services constituting working silo. In order to
ease the experimentation with the framework we will seek
to implement and provide to the researcher community a
diverse set of services for these purposes. In the course of
this activity, we shall also implement the services required to
support the functionality for SDO. Specifically, as a proof-of-
concept demonstration of SILO’s capability to handle cross-
layer functions in a streamlined fashion using well-defined
knob interfaces (rather than the current ad-hoc, specially
engineered solutions), we plan to implement selected SDO
functions (including monitoring and sensing services) and
related cross-layer functions within an experimental optical
testbed facility, as described next.

The Breakable Experimental Network (BEN) is a testbed
facility currently under development in the Research Triangle
area. This testbed provides experimenters with the ability to
control the optical network down to any level they choose,
including the fiber transmission itself. BEN will connect
RENCI, North Carolina State University, UNC-Chapel Hill
and Duke University with dark fiber and will have networking
equipment installed at each site dedicated to experimentation,
not production services. Such a testbed will be invaluable in
testing the operation of services for Software Defined Optics.

As an example of deploying the SILO prototype on BEN,
consider the classical cross-layer issue of impairment-aware
routing in optical networks. We plan to use Dell blade servers
with 10G Extended Range (ER) NICs directly attached to dark
fiber, integrate them with off-the-shelf equipment that mea-
sure optical signal attenuation and chromatic and polarization
mode dispersion (CD-PMD), and implement appropriate SILO
services to demonstrate that the SILO framework is capable
of supporting optical-layer aware routing in an intuitive and
flexible manner. We may further utilize the optical fiber
switch available at each node of the testbed to demonstrate
how optical layer parameters can be dynamically tuned by
selectively adding on-demand dispersion compensation and
signal amplification for specific connections.

IV. SILO aAND OBS

Optical burst switching (OBS) [6], [38], [39], [51], [52] is a
switching technology that was introduced a decade ago [31],
[44] as a possible solution to carrying large volumes of
packet traffic over an optical transport infrastructure. Despite
the extensive research effort that has been devoted to OBS,
however, except for one prototype implementation [5], [6], the
technology has not followed the natural path to implementa-
tion, standardization, and wide deployment.

We argue that this unfortunate development is mainly due
to two factors. First, OBS does not fit well within the existing
Internet architecture. Note that OBS carries IP packets, hence,
it operates below the network layer (layer 3); however, OBS
semantics are end-to-end within the OBS network, hence it
operates above the data link layer (layer 2). Based on this
observation, one might be tempted to introduce OBS as layer
2.5 of the Internet architecture, but MPLS [11] is usually
considered as occupying layer 2.5. Since it has been suggested
that OBS would benefit from label switching [30], it appears
that OBS would have to be introduced as layer 2.75 of the
architecture, at best an awkward arrangement.

The second challenge has to do with the fact that TCP is
not necessarily an appropriate protocol in an OBS network
that aggregates TCP segments into bursts for transport over
an optical network. Although the performance of TCP over
OBS has also been studied extensively in recent years [12], one
should keep in mind that the various TCP versions were devel-
oped, refined, and optimized specifically for packet-switched
networks, hence their applicability to OBS is questionable. We
argue that wide deployment of OBS is not possible without a
transport protocol customized for this specific transport tech-
nology. But the development of such a protocol is inherently
a cross-layer design task that cannot be accommodated by
the existing network architecture, and has to be specifically
engineered using architectural “patches,” e.g., as in the case of
efforts for adapting TCP to wireless channels. Since applying
such patches to the architecture is a challenging and expensive
undertaking, it is no surprise that there have been no efforts
in this regard within the context of OBS.

Within the SILO framework, on the other hand, OBS may
be easily and naturally integrated into the architecture by
implementing its component services (e.g., burst assembly,
burst scheduling, contention resolution, etc.) and composing
them into silos at the edge or core nodes. More importantly,
through the design of appropriate control interfaces (knobs)
for each service, SILO also makes it possible to develop new
transport and routing services that are OBS-aware.

V. CONCLUDING REMARKS

In this paper, we reviewed the SILO network architecture
for the future Internet, as well as the software prototype
implementation of the architecture. We also introduced the
concept of “software defined optics” that pertains to emerging
optical layer devices characterized by increasing intelligence
and programmability. Finally, we demonstrated how the SILO
architecture may enable rapid adoption of functionality related



to software defined optics and optical burst switching technol-

ogy.
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