IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 6, DECEMBER 2000 747
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Abstract—We study a class of circuit-switched wave- electronics. The functionality of optical switches may be
length-routing networks with fixed or alternate routing and enhanced by employing wavelength converters, devices that
with random wavelength allocation. We present an iterative path are capable of shifting an incoming wavelength to a different

decomposition algorithm to evaluate accurately and efficiently the - . .
blocking performance of such networks with and without wave- outgoing wavelength [14], [1]. Wavelength conversion is a

length converters. Our iterative algorithm analyzes the original desirable feature since it improves the performance of the
network by decomposing it into single-path subsystems. These network in terms of call-blocking probability.

subsystems are analyzed in isolation, and the individual results  \Whijle the operation of wavelength-routing networks is ex-
are appropriately combined to obtain a solution for the overall - hocteq to be similar to that of conventional circuit-switched

network. To analyze individual subsystems, we first construct work | . . hich add sianificant
an exact Markov process that captures the behavior of a path in NEtworks, several new ISsues arise which adad significant com-

terms of wavelength use. We also obtain an approximate Markov Pl€Xity to the problems of design and performance evaluation
process which has a closed-form solution that can be computed of the former. Specifically, the existence of multiple distinct
efficiently for ShOft. paths. We_the_n develop an iterative algorithm wavelengths makes it necessary to employ a wavelength alloca-
to analyze approximately arbitrarily long paths. The path decom- tion policy to assign one of the (possibly many) available wave-
position approach naturally captures the correlation of both link | ths t . . Il Similarly. th | th
loads and link blocking events. Our algorithm represents a simple gng Stoan |.ncom_|ng call. simiarly, the Wavg eng .conver-
and computationally efficient solution to the difficult problem Sion feature gives rise to new problems associated with evalu-
of computing call-blocking probabilities in wavelength-routing ating the benefits of conversion and optimally placing the con-
networks. We also demonstrate how our analytical techniques can verters at the various nodes. Also, dynamic (or adaptive) routing
be applied to gain insight into the problem of converter placement g tightly coupled with wavelength allocation, since it involves
in wavelength-routing networks. . . .

a search over available wavelengths in addition to a search over

Index Terms—Call-blocking probability, converter placement,  the possible paths for establishing a call.

decomposition _algorlthms, wavelength-division multiplexing, The problem of computing call-blocking probabilities under
wavelength-routing networks. L - .

static (fixed or alternate) routing with random wavelength al-

location and with or without wavelength converters has been

I. INTRODUCTION studied in [1], [11], [2], [6], [14], [16], [15]. The model pre-

ECENT advances in wavelength-division muItipIexin%emed kinl'[]l-<] _is br?sed on thg gssqutidon thst t\:\./lz.avellercljgth use
(WDM) and optical switching make it possible to con- n each link Is characterized by a fixed probability, indepen-

template the deployment of wavelength-routing networks thg'l:"mlt)r/1 ofdother \.Nave':engthfstarflfq “Tks’ﬁnqt thus, it cann%t tcr?pt
will provide backbone connectivity over wide-area distancégre € dynamic nature of traffic. In [11] it was assumed tha

and at very high data rates [7]. A wavelength-routing netwoﬁgatlstlcs of link loads are mutually independent, an approxima-

consists of wavelength routers and the fiber links that interco}llc-)n thatis not accurate for sparse network topologies. The work

nect them. Wavelength routers are optical switches capable'rb1{2] developed a Markov chain with state-dependent arrival

routing a light signal at a given wavelength from any input po teds to ;nod.gtl call blcicklcri]gdw'\ agbl':raryl/t mesth topt;logle\:/?/hglnd
to any output port, making it possible to establish end-to-e gged routing, itwas extended In [6] to alternate routing. ne

lightpaths, direct optical connections without any intermediafB°"® accurate, th's approach is computatm_mal!y mte_nswe and
can only be applied to networks of small size in which paths

have at most three links. A more tractable model was presented
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was studied using simulation in [3], [11], and it was shownetwork. We analyze a given network by decomposing it into
to perform better than random allocation, while an analytical number of path subsystems. To analyze each subsystem, we
overflow model for first-fit allocation was developed in [8].first develop an exact Markov process model for a path with
A dynamic routing algorithm that selects the least loadeahd without converters. We then show how to slightly modify
path-wavelength pair was also studied in [8], and in [12his process to obtain an approximate Markov process model
an unconstrained dynamic routing scheme with a numbehich is time-reversible and which has a closed-form solution
of wavelength allocation policies was evaluated. We studididiat resembles the product form solution in queueing networks
the first-fit and most-used allocation policies in [19], and wgl0]. The solution to the time-reversible Markov process pro-
showed through analytical and simulation results that th&jdes an accurate approximation to the blocking probabilities
exhibit very similar performance over a wide range of traffiobtained through the exact process. Because of computational
loads and network topologies. requirements, both the exact and the approximate Markov
Most of the approximate analytical techniques developed fprocess models can only be applied to relatively short paths.
computing blocking probabilities in wavelength-routing netrFor longer paths, we then develop an iterative algorithm for
works [11], [2], [6], [16], [8], [12] make the assumption that linkcomputing the blocking probabilities by decomposing a path
blocking events are independent and amount to the well-knowro a series of shorter segments connected in tandem. Once
link decompositionapproach [5], while the development ofthe path subsystems have been analyzed in isolation, the
some techniques is based on the additional assumption that limlividual solutions are appropriately combined to form a
loads are also independent. Link decomposition has been salution for the overall network, and the process repeats until
tensively used in conventional circuit-switched networks whetke blocking probabilities converge. Our approach accounts
there is no requirement for treamewavelength to be used onfor the correlation of both link loads and link blocking events,
successive links of the path taken by a call. The accuracy gifing accurate results for a wide range of loads and network
these underlying approximations also depends on the traffippologies. Also, our algorithm can compute call-blocking
load, the network topology, and the routing and wavelenggitobabilities in a mesh network where only a fixed but arbitrary
allocation schemes employed. While link decompositiosubset of nodes are capable of wavelength conversion. Finally,
techniques make it possible to study the qualitative behaviortbe algorithm can be used to develop and evaluate converter
wavelength-routing networks, we believe that more accurgiacement strategies.
analytical tools are needed to both evaluate the performance ofn Sections Il and Ill we analyze a single path in wave-
these networks efficiently, as well as to tackle complex netwoléngth-routing networks. In Section IV we present a path
design problems, such as selecting the optical switches whdezomposition algorithm for analyzing mesh networks under
to employ wavelength converters. both fixed and alternate routing. In Section V we validate our
In this paper, we consider a wavelength-routing network witthecomposition algorithm through simulation, and we also study
an arbitrary topology. Each link in the network carri®swave- the problem of converter placement. We conclude the paper in
lengths. Call requests between a source and a destination ngdetion VI.
arrive atthe source according to a Poisson process with arate that
depends on the source—destination pair. Call holding times are
assumed to be exponentially distributed. We consider both fixed
and alternate routing[5]. lixedrouting, each source—destination !l- A SINGLE PATH IN A WAVELENGTH-ROUTING NETWORK
pairisassigned asingle path. Ifthere are nowavelengthconverters i i
inthe path, a callis blocked if no wavelengthis free on all links of [N this section we present an exact and an approximate
the path. Thisis known as theavelength continuitequirement, Markov process for &-hop path. We first study paths without
and it increases the probability of call blocking. If some nodd¥éavelength converters, and then we extend our results to paths
in the path employ wavelength converters, a call is blocked"1€ré converters are employed at some nodes. The following

no wavelength is free on all the links of any segment of the patation will be used in this and the next section (refer to

consisting of links between successive nodes with convertershi§- 1)-
alternaterouting, asetof paths(consistingofoneprimarypathand 1) A k-hop path consists éf+ 1 nodes labeled, 1, ..., %,
oneormorealternate paths)isassignedtoeachsource—destination andhop,i =1, ..., krepresents the link between nodes
pair. This set is searched in a fixed order to find an available path ¢ — 1 ands.
forthe call. 2) A, j = 1, isthe Poisson arrival rate of calls that use hops
Once a path is selected, one of the (possibly many) free wave- i throughy, i.e., they originate at node- 1 and terminate
lengths in the path must then be assigned to the call. We only  at nodej.
consider the random wavelength assignment policy, whereby a3) 1/ is the mean of the (exponentially distributed) holding
call is allocated one of the available wavelengths at random. In  time of all calls. Also,p;; = A;;/u is the offered load of
a path with wavelength converters, a wavelength is randomly  calls using hop$ throughj.
assigned within each segment of the path whose starting andt) =;;, j > 4, is the number of calls using hopshrough;j
ending nodes are equipped with converters. that are currently active in the network.
We develop an iterativpath decompositioalgorithm [5] for 5) fi;, J = 4, is the number of wavelengths that are free on
computing call-blocking probabilities in wavelength-routing all hopst throughj.
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k
Fig. 1. Ak-hop path.
A. Exact Markov Process Model for Paths with No Wavelength Ay A,
Conversion ]
Let us first consider the two-hop path (without con- (“ /\
verters) shown in Fig. 2. The evolution of this system can A 0 ) {JrJ (2

be characterized by the four-dimensional Markov process
(n11, n12, na2, fi2). Since, on each hop, the number of busy hop 1 hop 2
wavelengths plus the number of wavelengths that are free

on both hops may not exceed the numb&r of available F9-2- Two-hop path.

wavelengths, the following two constraints must be satisfied:
Unfortunately, the large number of random variables in its state

N1y +ni2+ fio <KW oand nio +no + fio < W. (1) description makes it impossible to numerically solve it for any-
thing but very short paths and small valuesif In addition,
The above result can be generalized:tbop pathsk > 2. the transition rates of Markov procesd;, are state-dependent.
Let M, denote the Markov process corresponding tetop In Fig. 3 we show the transition diagram of Markov procéds
path. There aré? random variables in a state of Markov for W = 2 wavelengths. From this figure we can see that there

processM,., as follows: exists a sequence of states, ..., n,, such that
= (N11, P12y « oy Nlhy 122y« vy Ndkes « v oy Phiks r(ny, n2)r(ng, na)---r(ns_1, ns)r(ns, n1)
f12a f13a DR} flka f23a R f?ka R fk—l,k)- (2) #7)(ﬂ7 E)7(E7 715_1)"'7’(27 @)7(@7 ﬂ) (6)

The first(k(k 4 1)/2) random variables,;;, 1 < < j < k,in  Where r(n, n’) is the transition rate from state to state

the state description (2) provide the number of active calls e~ Two such sequences of states are: (1,1,1,0), (1,0,1,1),
tween all possible source—destination pairs in the path. The 165t0,0,1), (1,1,0,0), and (1,1,1,0), (1,0,1,1), (0,0,1,1),
((k — 1)k/2) random variableg;;, 1 < i < j < k, represent (0,1,1,0). Therefore, Kolmogorov's criterion for reversibility
the number of wavelengths that are free on all segments of {8 Which states that a process is time-reversible if and only if
path consisting of two or more links. The following constrainté8) holds with equality for any and all sequeness . . . , n,, is

are imposed on the state space of Markov progetss not satisfied. It is straightforward to show that this result is true
in general, and that proceggl;, £ > 2 is not time-reversible
Jis < fijm1 < < fisigns 1<i<j<k (3) whenW > 1.
fis £fiv1,; S < fic s 1<i<j<k (4

B. Approximate Time-Reversible Markov Process Model
A closer examination of Fig. 3 reveals that the two four-state

ok sequences mentioned above are the shortest sequences of states
anj + fiz2 €W for which (6) holds true. We also note that these two sequences
j=1 involve transitions that cause changes in the value of random

Pk variablen,. Let us definel, . as the sub-chain of Markov
ZZ”U Tl fom = i W, (5) PprocessM; that includes only the states for which the value

i=1 j=l of random variable:,, is constant, i.esn2 = c:
1=2 - k-1
k
Lo .=1{(ni1, n12, n N =c c=0,..., W.
Z”ik +fk—1,k <W 2,¢ {( 11, N12, N22, f12)| 12 }, ) )

L (@)

The set of constraints (3) [respectively, (4)] account for the faBub-chain, . corresponds to a new system with — ¢ wave-
that if a wavelength is free on all hops of anhop segment, lengths per hop, in which no calls using both hops ever arrive
thenitis also free on the first (respectively, last)- 1 hops of (thatis,A;2 = 0 in this new system). Then, it can be easily ver-
the segment, while thke constraints (5) ensure that the numbeified that Kolmogorov’s criterion for reversibility is satisfied by
of wavelengths (used or free) on each hop does not exdééed any sequence of states in sub-chéin..

ProcessM;, captures the correlation of wavelength use on On the other hand, let us consider the four-state sequence
all links of ak-hop path, and it can be used to provide an exagt = (n11, n12, n22, f12), n2 = (n11, ni2+1, na2, fiz—1),
solution for the probability that a call request will be blockedks = (n11 + 1, ni2 + 1, n22, fiz — 1), andny = (n11 +
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Fig. 3. State spac@ri1, n12, 22, fi2) of @ two-hop path withV = 2 wavelengths.

1, n12, na2, f12), shown in Fig. 4, which includes states from

two different sub-chains. We have that n, n,
r(ni, na2) = A2, r(ng, na) = (n12 + 1)p12,
r(n2, n1) = (n12 + o, (4, n3) = A2 (8)
o,y > n

L.

so these transition rates balance along the two directions. Ho

ever, the rates of the other transitions do not balance, since
Fig. 4. Four-state sequence with states from two different sub-cliains

(no. n3) = A 1— fr2 1 than two wavelengths, a larger number of transition rates must
(_27 _3) 11 W 1 e L . .
—(n2+1) —nn be modified to yield a time-reversible Markov process. The rule
. _ W — fi2 —ni2 —na for changing the transition rates is as follows.
r(ng, n1) =(n11 + Dpar | 1 — . )
ni +1 Consider all states = (n11, ¢, n22, f12) of sub-chain
r(ns, n2) = (n11 + D)pay Ly . Withny; > 0andny, > 0, for which there is a transi-
1 W—(niz2+1)— (fiz—1) — na tion from staten to a state’ = (n41, ¢+1, nas, fio—1)
AT L+ 1 of sub-chaingy, .., with rater(n, n’) = Apa. If these
transition rates are changed to
7‘(711, 714) :)\11 <1 — #> (9)
- — W —ni11 —ni2 -
7 (n, n') I)\12—f12( —9)
ProcessM. is not time-reversible due to transitions between Stz
J120W —¢)

states with different values af; ;. =\
Returning to Fig. 3, we note that if the transition rate from

state (1,0, 1, 1) to state (1, 1, 1, 0) is changezlt (from A2),

then the Markov process becomes time-reversible and has #¢hen we obtain a new Markov process which is time-re-

closed-form solution. However, when each hop supports moreversible.

(10)

(W — Ny — C)(W — Moo — C)
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In fact, it is straightforward to show that if the transition ratéhe solution of Markov proces$1, corresponding to a two-hop
r(n1, n2)in(8) is modified according to this rule, then the fourpath is
state sequence in Fig. 4 will satisfy Kolmogorov’s criterion for

reversibility.
The above results can be generalized &oleop pathf > 2. m(n11, ni2, n22, fi2)
Consider a sub-chaidy, . of M which includes all states of fu n11
the process for which the number of active calls using two or 1 p7'1* p3% py3? <f12> <f22 - f12> (14)
more hops is constant: T Ga(W) niinising,! X <n11 ¥ f11>
S22

Ly, ={n € My |n;; = ¢;j = constant, i < j},

). (12) wherefi; = W —ny; —ngz and foo = W — nge — nya,
while the solution to Markov proces§1; corresponding to a
three-hop path with state description= (n11, 712, 713, n22,

Sub-chain,., . models ak-hop path in which there are no ar-nas, 733 fi2, fis, f23) is given by

rivals of calls using two or more hops (i.e.;; = 0 for ¢ < j),

and in which each hop supports a fixed number of wavelengths

22(0127---7clk70237---702k7---7ck—1,k

. 1 pnllpnIZ pnIS pn22 pn23 anS
(that can be different from the number of wavelengths supported m(n) = 11 P12 P13 P22 P23 P33
by other hops). Then, it is straightforward to verify that any se- Gs(W) nuilnialngstngs!ngstngs!
quence of states in sub-chalp, . satisfies Kolmogorov’s crite- <f11> < ni1 )
rion for reversibility, but there exist sequences that include states y f12/) \fo2 — f12
from other sub-chains that violate this criterion. ni1 + f11

A time-reversible Markov processt; can be derived from < fa2 )
M,, as follows. The_ new processt), has the_ same s_tate space <f12> <n22 e+ far — f12>
and the same transitions Ad,.. The vast majority of its transi-
tion rates are the same as the respective transition rates,of x M3 fas — frs
However, to ensure that the new process is time-reversible, the <n22 +ni2 + f22>
transition rates between some pairs of states must be appro- fas
priately modified. Consider the statesof sub-chainz;, . for <f22 - f12> <n22 + 7112)
which there exists a transition with raig,,, I < m, to a state N Jo3 — f13) \ f33 — fo3 (15)
n’ of another sub-chail, ./, ¢ # ¢ <n22 + 119 + foo — f12>
f33 - f13

Nk,g:{ﬂe ['k,g|zli7 jv lv m, l S 1 <7 S m,
N >0, m55 > 0, N, < W, fi, >0}, (12) wherefir = W —ni1 — nia —nig, foo = W — ni2 — noo —
n13 — N2z, andfaz = W — ni3 — noz — nas.
We can write down the solution to any Markov procéss,
The transition rate(n, n') = Ay, in processM;. In process k > 3, by a straightforward generalization of (14) and (15).
M, the transition rate is changed to Specifically, the solution ta\1,, for anyk, is the product of:?
terms as follows. The firsk(k + 1)/2 terms are of the form
p:;j/nij, and each corresponds to one of random variabjes
in the state description (2). The ldstt — 1)/2 terms are com-
) binatorial terms, each corresponding to one of the dependent

variablesf;; in the state description (2).

!
<Z nit + fu

Tl(ﬂv 7’L_/) = )\lrnflrn =1

Ju The significance of the new Markov process; will be illus-
1 trated in Section V and in Figs. 9 and 10, where it will be shown
Z i 1+1 + fi41,041 that the blocking probabilities obtained through the closed-form
w Ni=l ... solution of M}, closely approximate the exact blocking proba-
Jirra bilities obtained through the numerical solution/of;.. In order
m—1
Z Nim—1 t fm—l,m—l IThe closed-form solution (14) is similar to the one presented in [14]. How-
i=1 13 ever, there are several important differences in the two approaches. First, the so-
x ( ) lution in [14] was derived by considering a three-dimensional Markov process

frnrn

(n11, n12, N22), While as we have shown, the fourth parameftgr is neces-

sary to completely characterize a two-hop path. Second, we have shown that
] ] the closed-form solution (14) is the exact solution to an approximate Markov
Markov process\t has a closed-form solution for its steadyprocess; in contrast, in [14, Section 11-C] this result was derived as a solution

state probability that resembles the product form solution g the original two-hop problem, without explicitly stating that it is an approxi-
mation. Finally, whereas only a two-hop path was studied in [14], our approach

queueing networks [10]. LeI;k(W) denote the nqrmalizing is far more general, and it leads to an approximate closed-form solution for any
constant for a&-hop path withiW wavelengths per link. Then, &-hop pathk > 2 [see also (15)].
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for the closed-form solution to be useful, we need to have a cothe path can be analyzed approximately by solving the corre-
putationally efficient procedure for calculating the normalizingponding Markov proces$;.. If, on the other handi > K,
constant. Using brute-force enumeration, we can calculate the approximate closed-form solution cannot be used directly. In
closed-form solution of\1;, for up to 25 wavelengths when thethis section, we develop an iterative decomposition algorithm to
number of hops i& = 3, and for up to eight wavelengths wheranalyze paths of length greater than

k = 4. (As a comparison, fok = 3, we can obtain the exact

numerical solution ofA;, for only up toW = 4.) The compu- A. Paths with No Wavelength Conversion

tation of the normalizing constant in time that is polynomial in we analyze &-hop pathk = (K +m, ! > 1, m < K, by

W andk has turned out to be a very difficult task. In view Ofdecomposing it into Onm-hop segment anﬂK-hop segments
this, an iterative decomposition algorithm was devised for patitstandem. Each segment is first analyzed in isolation using the
longer than four hops. This algorithm is described in Section #orresponding Markov processt’,, or M. The arrival rates
and it can be used to obtain the blocking probabilities for pat@$ calls originating in a segment but terminating in another seg-

of arbitrary length in an efficient manner. ment are accounted for by increasing the arrival rate of calls in
the individual segments. The individual solutions are appropri-
C. Paths with Wavelength Conversion ately combined to obtain an initial value for the blocking proba-

Rility of calls that traverse more than one segment. Using these

We now turn our attention to paths in which wavelength ... : . i
. mgtlal estimates, the arrival rates to each segment are modified
converters are employed at some nodes. Let us again refer 1o

; n h ment i in solved in isolation in order in
Fig. 2, and let us assume that wavelength converters are Ioca%eg each segment is again solved in isolatio order to obta

at node 1 (the only interesting possibility in this case). V\}E:einew solution. These new individual solutions are again com-

. ) i . bined to update the blocking probability of calls traversing mul-
immediately see that t.he two-hop system can now be descm%ﬁ)ae segments. This is repeated until the blocking probabilities
by the three-dimensional Markov proce$s;i, ni2, n2z2).

i . converge.
Random variablef;» is no longer necessary because wave- . : . . . N
A summary of our iterative algorithm is provided in Fig. 5.

length continuity is not required, and calls continuing on bOtEelow we describe the decomposition algorithm using the
hops can now usany of the (W — ni» — n22) available four-hop path shown in Fig. 6(a). This path is decomposed into

wavelengths on the second hop. In other words, the tvvo-hp
. . 0 two-hop segments, namely segment 1 and segment 2, as
system with a converter at node 1 becomes equivalent to_a

two-hop circuit-switched path shown in Fig. G(p). Segment 1 consists of nodes 0, 1, and 2, and
In the general case considékmop pathf > 2, with con- segment 2 consists ofnodes 2, 3, and 4.Lgt1 < i < j < 4,
! == be the arrival rates of calls to the original four-hop path, and let
verters employed at one or more nodes. This path can be m/o\a-) AW AW and A @ 1@ @ genote the arrival rates of
eled by a new Markov process which is simpler thef),. The ~LL® 12> 722 11> 12 v 722

new Markov process has the satii: + 1)/2) random vari- calls in the first anq second '_segments, respectwe]y. The inter-
. pretation of the arrival rates in the two segments is somewhat
ablesn;; as My, but some of the variablef; are no longer

present in the state description. Specifically, let us consider twgerent under our decomp_osmon algqnthm. Spemﬂcall%
case when a converter is employed at ngde < I < k, of accounts for all the calls in the original four-hop path that

the path. Then, variablef;, i < [ < j, which are required originate at node 0 and terminate at nodes 2 or higher; similarly
. ) N B = ’

(1) (2) ;
for My, are not part of the state description of the new Mark r %‘22|' Onhtr;]e oth_er_ hand);, f:ljccountsdf(l)r all Ca"j In th_e
process. Because of the converter at nbdecall using hops original path that originate at nodes 2 and lower and terminate

through; can now be completed as long as there is at least gig"0de 4; similarly fon{?. The main steps of our algorithm
free wavelength on hogghroughl, and at least one free wave-2'€ as follows. _ o _ _
length on hopé -+ 1 through;. Therefore, random variablef Initially, we solve the firstsegmentinisolation using
and fi41,; (which remain part of the state description) provide AL = (1 = qr)A + (1 — @s)Ais + Ar (16)
all the information needed to determine whether the call can be O (1= ge)hou + (1 go3)hos + A a7)
completed, making;; redundant. 22 = 24) 24 23)723 7 A22

It is now straightforward to show that the Markov process for AP = (18)
ak—hop path that employs wavelength converters is not t'mQ'uantityqij,l < i <2< j< 4 representsthe currentestimate
reversible, except when converters are employeadlatternal - o¢ 16 conditional probability that a call using haptrough;
nodes of the path (a circuit-switched scenario). We can then ugg e re; jies within the first segment andies within the second
an approach similar to the one we followed in Section 1I-B Qg ment) will be blocked in the second segment given that a free
modify some of the transition rates of this process in order {0, elength for the call exists within the first segment. For the
obtain an approxmate,'tlme—rever3|ble Markov process Wh"ﬁpstiteration,we use;; = Oforalliands; howthese valuesare
has a closed-form solution. updated in subsequent iterations will be described shortly. Thus,
theterm(1 — ¢14)A141n (16) represents treffectivearrival rate
of calls using all four hops, as seen by the first segment; similarly
fortheterm(1 — ¢13)A13. Equation (17) fohg) includes similar

Let K denote the largest integer such that the closed-foterms that account for the effective arrival rate of calls which
solution to Markov process’, can be computed within a rea-originate at node 1 and terminate at nodes 2 or higher. Equation
sonably short amount of time. Considét-top path. Itk < K, (18) for)\ﬁ) does not include any such terms, since this type of

I1l. DECOMPOSITIONALGORITHM FOR LONG PATHS
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Decomposition Algorithm for Paths Without Converters

A k-hop path, k = K + m,m < K, is decomposed into a K-hop segment
(segment 1) and an m-hop segment (segment 2). Segment 1 consists of nodes
0 to K, and segment 2 consists of nodes K to K = m of the original path.
Aij refer to the call arrival rates in the original path, whereas Ag;) refer to call
arrival rates in segment n,n = 1,2.

1.
2.

7.
8.

begin

h«0 / /Initialization step

// p(l)(h) is the blocking probability of calls using hops ¢ through j of segment 1

// F ) is the average number of free wavelengths on hops ¢ through j of segment 1

p§]>(h) «0, F«W, 1<i<j<K

// p(2)( h) is the blocking probability of calls using hops ¢ through j of segment 2

// Fi; (2) is the average number of free wavelengths on hops i through j of segment 2
(2)(h)<—0, FPew, 1<i<j<m

/ / qi;j(h) is the condltlonal probability that an inter-segment call will be blocked in

// segment 2, given that it has found a free wavelength in segment 1

gij(h) « 0, 1<i<K<j<K+m

h«h+1 //h-th iteration

MP(h) + N, 1<i<i<K //Segment 1

M) e+ ST Ay (- ay(h-1),  1<i<K

// include the effective arnval rate of calls continuing to segment 2

Solve segment 1 to obtain new values for p(l) (h) and Fi(jl)(h)

)\(2) (h) « Ak+i,K+j) 1<i<j<m //Segment 2

Aﬁ-’ (B) 4= Ak41,K45 + Loiey MKt (1 —pi(h - 1)) , 1<j<m

// include the effective arrival rate of calls continuing from segment 1

Solve segment 2 to obtain new values for p“)(h) and Fi(f)(h)

// Condltlonal blocking probability of inter-segment calls

aii(h) < p7)_c(B) + (1=p0) k(W) Qi(M),1<i<K <j<K+m,

with Q;;(h) similar to @;; in expression (23)

Repeat from Step 3 until the blocking probabilities converge

end of the algorithm

Fig. 5. Decomposition algorithm for long paths.

753

A Ay M Ay N A calls in the first segment do not involve calls in the original path
Ay q_“?»n o i thatcontinue ontothe second segment.
L (a0 ey = : J‘/\ 74 > 4-hop path The solution to the first segment yields an initial value for the
A hop 1 hop 2 hop 3 1— hop 4 probabilitypgj), 1 <4< j <2, thata call using hopsthrough
Mia j of the first segment will be blocked within the segment. There-
0 ® @ fore, the effective arrival rate of calls originating at node 0 and
g Ay terminating at node 4 that is offered to the second segment can
segment 1 be initially estimated ag;4(1 — p%)), while the effective rate
(010 2 of calls originating at node 1 and terminating at node 4 can be
* ;@1 % estimated agz4(1 — pg)). We can now solve the second seg-

Fig. 6. (a) Four-hop path. (b) Its decomposition into two two-hop segments in

tandem.

H\l /Ln ment using
o (2] {13 ) (/D segment 2

(b)

A2 =

A2 =y (1 — pi?) + A2g (1 - péé)) +A3 (19)

D (1) 0 (1) 12

(21)
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Based on the above discussiafp? in (19) represents the effec-in the two segments, assuming that the two segments are inde-
tive arrival rate of calls using the last two hops of the four-hopendent. We have found experimentally that adjusting this prob-
path, as seen by the second segment. Equation (2gﬁ>ocan ability by the last factor in (23) reduces the effect of the indepen-
be explained using similar arguments. Equation (21)@ dence assumption and accurately approximates the probability
contains only one term since, as seen in Fig. 6, it does not invoRieblocking due to the wavelength continuity requirement for a
calls that originate in segment 1. The solution to the secondde range of arrival rates. Note that the tekm/Al3 in (23)
segment provides an estimate of the blocking probabiwfj?s represents the fraction of traffic requiring free wavelengths on
1 < j < 2, of calls traversing hops 1 and 2 of the second sefopsi through 2 of the first segment that is due to calls on hops
ment (i.e., hops 3 and 4 of the original path). 1 throughj > 2 in the original path [refer also to (16) and (17)].
We can now obtain new values for the conditional blockingimilarly, the termh;; /A _, in (23) represents the fraction of
probabilitiesg;;, 1 <4 < 2 < j < 4, used in (16) and (17), astraffic requiring free wavelengths on hops 1 through 2 of
follows. Consider a call using hopghroughj, wherei lies in  the second segment that is due to the calls under consideration.
the first segment angllies in the second segment. Given that dtlence, the last factor in (23) adjusts the blocking probability
least one free wavelength exists on hofisough 2 (i.e., the call obtained through the independence assumption to capture the
successfully makes it through the first segment), the call will g@ntribution of the calls using hogsthrough; of the original

blocked if path.
1) there is no free wavelength in the links it uses in the The new estimates fay;; are then used in (16)(18) to up-
second segment, or date the arrival rates for the first segment. The first segment is

2) there do exist free wavelengths in the second segment, Bigh solved again, the estimateszﬁé)jl) are updated and used in
they are not the same as the free wavelengths in the fit4P)—(21), and so on. We iterate in this fashion until the blocking
two hops. probabilities for all calls in the original path converge within

The probability of the first event occurring is equabﬁff),»_Q, a certain tolerance. In all cases studied, we have found that

which is obtained through the solution of the second segmetit€ algorithm converges in only a few (less than ten) iterations
The probability of the second event is equa te- p?)j,Q)Qij, even for long pgths, ar_1d that the blocking prqbqblhtles_obtalned
where parametep; ; represents blocking due to the wavelengthl0Sely match simulation results (more on this in Section V).
continuity requirement for calls using hopthroughj, where; ~ The decomposition algorithm described above is similar in
lies in the first segment angllies in the second segment. ProbSPirit to the decomposition algorithms developed for tandem
ability Q;; cannot be computed exactly since each segmentdideU€ing networks with finite-capacity queues (see [13]). This
solved independently of the other, and thus, it is not possible@JOrithm can be easily extended to handle paths decomposed
determine whether a wavelength which is free in one segmd© more than two segments. We note that when employing
will also be free in the other. An approximate value for this proih€ decomposition algorithm, the selection of the segment size
ability can be obtained as follows. Léti(lg [W = n] (respec- will depend on the following factors: length of the original path,

. 2) B L how efficiently we can calculate the closed-form solution of the
tively, 1.:J'—2[W = m]) denote the probability that ther(_e € Markov process\; associated with each segment, and how ac-
(respectivelyyn) free wavelengths on the hops of the first (re

vl d ¢ d by th | Ret q curate the approximate solution 8ff; is. It is well known in
Spfct'r\]/e Y SS.(;.On )I Seg?iq.tuiﬁ ttril e callkegt, m) de- decomposition algorithms that the larger the individual subsys-
note the conditional probablility that there are o Common Wavg, ¢ 1 at have to be analyzedinisolation, the better the accuracy
lengths for the call to use in the two segments, given that th

FFthe decomposition algorithm. Thus, as we mentioned at the

aremn (respective_lym) free wavelengths on the hops it uses e inning of this subsection, we decompose a path in segments
the first (respectively, second) segment. Because of the rand8 he largest sizé for which we can efficiently analyze the

wavelength assignment policy, we have that Markov process\t’,, plus, possibly, a segment of smaller size,

0, n=00rm=0 if the path length is not a multiple k.
1, n+m>W
R(n, m) = <W - ”) (22) B. Paths with Wavelength Conversion
IT,In/ , otherwise. The iterative algorithm described above can also be used for
<m> paths with converters. We note, however, that the addition of

[ < k converters leads to a natural decomposition &flzop
Then, we approximate the probabili€y;; of blocking due to path intol + 1 segments, with each segment consisting of the
the wavelength continuity requirement as links between successive nodes where converters are employed.
w W Given such a decomposition, the blocking probability of calls
Qi = Z Z [Pg) W =n] fo?}_Q[W =m|x R(n, m)} spanning several segments now depends only on the number of
n=1m=1 calls within each segment (similar to the circuit-switching case),
y [1 <)\ij N Aij ) andnoton the actual wavelengths used by those calls. Hence, the
2\ AT,

(23)  probability that a call spanning multiple segments will be suc-
cessfully established becomes equal to the product of the prob-

The double summation in the right-hand side of (23) is the prohbilities of finding a free wavelength (not necessarily the same
ability that there are no common wavelengths for the call to usee) within each segment. Therefore, we decompose a path into




ZHU et al: PATH DECOMPOSITION APPROACH IN WAVELENGTH-ROUTING NETWORKS 755

segments, each consisting of all the links between two succ @ @—>@—>@
sive nodes with converters. Each segment is then analyzec ‘\\ : : @
4

isolation as described above. Specifically, if it is feasible, w
analyze the segment’s underlying approximate time-reversil(1) ) (3 @—>@—>@

Markov process\t. . Otherwise, we analyze it using the decom @
position algorithm presented in Section IlI-A. . . @

As an example, let us considerkahop path with a single @—>@_>@

converter located at nod€ < k. This path can be analyzed

using the decomposition algorithm in Fig. 5 after making th @ ®_)@
following single modification: in Step 6, the expression for th ‘ @—>®
conditional blocklng prgbabﬂmes is changeddgg = pf)j._K. & @

(The second term in this expression represents blocking due

the wavelength continuity requirement, and sidgg = 0 in @—>@

this case, it drops out.) The decomposition algorithm can | @
extended in a straightforward way to handle paths with mo C

than one converters. (a) (b)

Fig. 7. (a) Original network. (b) Sék’ of paths into which the network is

IV. PATH DECOMPOSITIONALGORITHM FORMESHNETWORKS  jocomposed.

A. Fixed Routing

We analyze a mesh network by decomposing itinto a numﬂEF

of subsystems where each subsystem is a single path. Each anif £ seS(r) lies in the fact that the blocki
system is analyzed in isolation using the algorithms develop € significance of S (r) lies in ne fact that the blocking
robability experienced by calls using the links of patmay

in Sections Il and lll. Specifically, subsystems consisting _ _ )
three links or less are analyzed by solving the correspondi %aﬁected by the calls using the links of a p@FH S(r), and
e versa. Thus, when we compute the solution to pathe

i
Ist appropriately modify the call arrival rates along this path

ersect (i.e., have at least one link in common) with paths
bQxample, path (1, 4, 3) in Fig. 7 intersects with path (4, 3, 5).

approximate time-reversible Markov process of Section 1I-g!
Subsystems longer than three hops are analyzed using th"t! ) .
erative decomposition algorithm of Section 11l to obtain thio account for the effect of calls along paths that intersect with
call-blocking probabilities. The individual solutions obtained o .

from the subsystems to which the mesh topology is decomposeéfve are now ready to present the deco_mposmon algc_Jrlthm
are appropriately combined by modifying the call arrival rate sed for the analysis of a wavelength-routing network with an

to each subsystem to reflect the newly computed blocking prZ%_bitrary topology. A detailed description of our decomposition

abilities. The process is repeated until all blocking probabiliti gorithm |s.prOV|de_d in Fig. 8. We wil |IIustr-ate f[he operauo_n
converge within a prescribed tolerance of the algorithm using the network shown in Fig. 7. We will

Let R denote the set of paths assigned to the source—dalow how to update the arrival rates along each path subsystem
tination pairs, with|R| = N(N — 1). The first step in ana- after each iteration of the algorithm by considering only paths
lyzing a giver; network is to decompose it into a &t C R (1,4,3)and (4, 3,5). The other path subsystems are handled ina
of paths such that: a) no pathe R’ is contained within a similar way. Without loss of generality, we assume that shortest
pathg € R, g # 7 and b) any paﬂq ¢ R either belongs paths are used for fixed routing in this network. e be the
to R’ or is completely contained within a pathe R’. These 27fival rate for source—destination péi, d). We also leth.q

requirements ensure that a minimal set of subsystems thatqﬁmte the arrival rates used to solve the various path subsys-

cludes all possible paths is used. We can construct such& seiﬁms' .A.S erpla;:;edk ?ﬁxt’ the trf?@fl akcctc)) utnts for aIchaIIds dOf
by using the following steps. First, the pathsRnare sorted in € onginal network that use the finks between nosies

a list in order of decreasing length. The first patin the list within a pathr, and is updated at the beginning of each iteration

is removed and inserted iR’. Then, any sub-paths af that of th.e. algorithm. N - . .
are also in the list are removed from it. The process continu sm't'a”y_’ we solvg path (1, 4,3) in Fig. 7 in isolation using
with the next path in the list and is repeated until the list bé- ese arrival rates:
comes empty. It is straightforward to show that this algorithm s =Aus (24)
will construct a selR’ which satisfies the above two properties. Az = Ais (25)
Fig. 7(b) shows the set of subsystefsobtained by applying [N 1~ P 26
this algorithm to the network of Fig. 7(a). As we can see, while 13 = Az 15)Ad- (26)
there are 20 source—destination pairs and corresponding patesnote that only calls from node 1 to node 4 use link (1, 4)
in the network, only ten-path subsystems are used. For instarafepath (1, 4, 3), thus, the arrival rate of calls using this link as
the blocking probability on the path from, say, node 1 to node deen by the path subsystem (1, 4, 3) is given in (24). Similarly,
will be obtained as a byproduct of the solution to the subsystd@2b) can be explained by the fact that only calls from node 1 to
corresponding to the path from node 1 to node 3. node 3 use both links of subsystem (1, 4, 3). On the other hand,
Once the seR’ of subsystems has been selected, for ea¢?6) for Aas is slightly different because, in addition to calls
pathr € R’ we need to determine the set of pafi{s) C Rthat from node 4 to node 3, calls from node 4 to node 5 also use
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Decomposition Algorithm for Mesh Networks with Fixed Routing
Input: Network topology, set R of paths for all source-destination pairs, and
arrival rates Agq

Output: Call blocking probabilities P4 for all source-destination pairs in the

network

1. begin

2. From R construct the set of path sub-systems R’ into which the network will be decomposed,
as described in Section IV-A

3. For each 7 € R’ construct the set S(r) = {g € R' | ¢ intersects with r}

4. h«0 // Initialization step
Psa(h) < 0 Vs,d // All blocking probabilities initialized to zero

5. heh+1 // h-th iteration
For each path r = (ry,r2,---,7¢) € R' do // compute the arrival rates for this iteration

For each path ¢ = (g1, --,7s,- 7, -, gm) € S(r) that intersects with r from node r; to r; do
// Calls using path g affect the blocking probability of calls using path r; the call arrival rate
// seen by path r must be increased appropriately to account for the effect of these calls
’\7‘1‘,7‘,‘ (h) « /\7‘1,7‘3' (h) + (1 - Plhme (h’ - 1)))‘41 »dm
Solve each path sub-system r € R’ using the algorithms in the previous section to obtain new
values for the blocking probabilities Psy(h)
7. Repeat from Step 5 until the blocking probabilities converge
end of the algorithm

®

Fig. 8. Path decomposition algorithm.

the second link of path (1, 4, 3) since paths (1, 4, 3) and (4, 3,\8% have studied, we have found that the algorithm converges
intersect. Quantity’y; in (26) represents the current estimate df only a few iterations, and that the blocking probabilities ob-
the probability that a call from node 4 to node 5 will be blockethined closely match simulation results.

on subsystem (4, 3,5). For the first iteration, we ilije = 0;

how this value is updated in subsequent iterations will be diB- Alternate Routing

cussed shortly. Therefore, the te(in— Py;)Ay; representsthe |y order to improve the call-blocking performance, a
effectivearrival rate of calls from node 4 to node 5 as seen by, rce—destination paits, d) may be assignech paths (one
subsystem (1, 4, 3), since a fractiéh; \4; of these calls will rimary andm — 1 alternates) which are searched in a fixed
be blocked in subsystem (4, 3, 5). Consequently, the right-hag@jer. 1n common implementations, theshortest paths from
side of (26) is the effective arrival rate of calls that use the link ;in the physical topology are used. If a call is blocked on the
(4,3) of path (1, 4, 3) when the latter is considered in isolatiopyimary path, the first alternate path is examined. If available

We also solve path (4, 3, 5) in isolation by using the following,ayelengths exist on this path, the call is established. Other-
arrival rates: wise, the next alternate path is examined, and so on. In other

Ay = Aus (27) words, the traffic offered to alternate pathi = 2, ---, m, is
Sy the overflowtraffic from path: — 1. The call is blocked if no
)\30 — )\30 (28) : 30
N free wavelength can be found on any of thepaths, i.e., if it
Az = A3 + (1 = Pia)Aas. (29)

overflows from the last alternate path.
Equations (27)—(29) can be explained using arguments similarAlthough the traffic offered to the primary path for
to the ones used for (24)—(26). In particular, the second termdaurce—destination pais, d) is Poisson with rate\y, it is
the right-hand side of (29) represents the effective arrival rate@éar that the overflow traffic offered to the alternate paths
calls originating in subsystem (1, 4, 3) and using the link (4, 3 not Poisson. The overflow traffic model has been studied
of subsystem (4, 3, 5). extensively in the literature, and moment matching techniques
The solution to the path subsystems (1, 4, 3) and (4, 3, 5) whilhve been used to characterize the overflow traffic model in
yield an initial value for the probabilitieB,; and P, 3 thata call circuit-switched networks with alternate routing [5]. Overflow
using links (3,5) and (1, 4), respectively, will be blocked. Thenodels have also been used in the study of blocking probabili-
new estimates foP,; and P;3 are then used in (26) and (29),ties in wavelength-routing networks in [8], [12]. In this paper
respectively, to update the arrival rates for the two path subsyge make the assumption that overflow traffic is also Poisson
tems, the subsystems are solved again and new estimates fowtitle an appropriate rate. This assumption permits us to use
blocking probabilities are obtained, and so on. We repeat tthee algorithm developed in the previous subsection to analyze
process until the blocking probabilities for all calls in the orignetworks with alternate routing. Despite this assumption, we
inal network converge within a certain tolerance. In all the casbave found that the iterative path decomposition approach is
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quite accurate for both regular and irregular topologies, and 1
a wide range of traffic loads.

We will now describe our approach to computing
call-blocking probabilities in networks with alternate routingg
by assuming that there is one primary and one alternate p &
per source—destination pair. This approach can be eas=
extended to handle a larger number of alternate paths, as v
as situations where the various source—destination pairs
assigned a different number of alternate paths.

Let R denote the set of primary and alternate paths for ¢
node pairs, withR| = 2N (N —1). FromR we construct the set
of path subsysteniR’ as described in the previous subsectior
In other words, we construct a decomposition of the original ne
work based on both the primary and alternate paths. We so
decompositioriR’ using the algorithm of Fig. 8 to obtain an

in

Blocking probability of calls

0.1 F
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0.001 |

0.0001

2-hop path
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Calls using both hops (approximate solution)

Calls using flrst hop only (approximate solution)
Calls using first hop only {exact solution)
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-
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-
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Number of wavelengths

initial estimate of the call-blocking probabilitiggs’ and P{>

along the primary and alternate paths, respectively. Becaus{,ﬁf_g' Exact and approximate blocking probabilities of the various calls in a

. . . . hop path.
our approximation, the arrival rate for the overflow traffic of-
fered to alternate paths is simply given by the product of tf - 3-hop patn
arrival rate of the traffic to the primary path times the blockin S Calis using all three hops (approximate solution) o~
. . . . . _ Calls using all three hops (exact solution) -+--
pr.obabmty along this path. A|§O, if a primary pathintersects Cals ugng e las v hops (approximate soluon) -2~
with an alternate path, the arrival rate on the alternate path orp o g e e Ror Sxac selution) x 1

(primary pathr) is taken into account when solving patfpath
q). This approach captures the effect that calls established o

alternate (primary) paths have on calls established over primis  **' ’\
(alternate) paths.
Once estimates for blocking probabilitiéé;) andej) have 0001 | Te

been obtained, an estimate of the blocking probability of cal
for the source—destination péir, ) can be computed &3, =

locking probability of calfs in a 3-hop path

o) ey
PS%) x Ps(j). These estimates are used to update the arrival ra® oot “
of calls to the network, and the decomposition is solved aga RS
This process is repeated until the blocking probabiliilescon-
verge for alls, d. B R P

Fig. 10. Exact and approximate blocking probabilities of various calls in a

V. NUMERICAL RESULTS three-hop path.

In this section we demonstrate the accuracy of our analyt- . T
ical techniques by comparing approximate resuits to either ex3EpXimate blocking probability is always very close to the exact
numerical results or simulation results. Simulation results af@e- _ _
plotted along with 95% confidence intervals estimated by the Fig. 10 is similar to Fig. 9, but it presents re_s_ults for a
method of replications. The number of replications is 30, widh"e€-hop path. We only plot the blocking probability of calls

each simulation run lasting until each type of call has at leddf three of the six source—destination pairs, namely, calls that

100000 arrivals. For the approximate results, the iterative d&averse all three hops, calls that use only the last two hops,

composition algorithm terminates when all blocking probabilignd calls that use only the first hop. The blocking probability
values have converged withid—7. curves for the other three types of calls are very similar to the

ones shown in Fig. 10 . Again, we observe that the values of
the blocking probabilities obtained through the closed-form
solution of the time-reversible procedg’ are very close to

In Fig. 9, we plot the blocking probability of calls for eachthe exact numerical values obtained from the procéss.
source—destination pair in a two-hop path without convertetdpwever, the figure does not include values for the exact
against the numbédi/ of wavelengths per hop. For each typdlocking probability wherlv > 4 because of the state space
of call we show two curves. The first curve is obtained througixplosion of the exact process. In general, for the same value
a numerical solution of the exact Markov procesty, and is W, the closed-form solution of processt; can be obtained
referred to in the figure as “exact solution.” The second cungignificantly faster, up to two orders of magnitude, than the
is obtained from the closed-form solution of the approximateumerical solution of the exact process.
Markov processM}, and is referred to as “approximate solu- Overall, the results shown in Figs. 9 and 10 indicate that the
tion.” As we can see, the overall behavior of the two curvespproximate time-reversible process is quite accurate for short
is similar for all types of calls, and, more importantly, the agpaths.

A. Validation of the Time-Reversible Markov Process
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10-hop path, W=10, calls traversing hops 1-10
T T T T

B. Validation of the Decomposition Algorithm for Long Paths , ,

T T
1x3x3x3 decomposition with converters at nodes 1,4,7 -—
Simulation with converters at nodes 1,4,7 -+-

In this subsection, we give approximate and simulation ri B33 decomposilon ilhoul conueriers x
sults for ten-hop paths with” = 10 wavelengths; results for
paths of different length can be found in [17]. We include re
sults for paths with and without converters. Because of the ve . e
large number of parameters that can potentially be varied, £ °”'f e T e ]
the results presented here we used the following vajues:,
Aij = 0.1,4 < j,and); = A. In other words, we let the mean £
holding time to be equal to one for all calls, we fix the arrivaz
rate of all calls traversing two or more hops to the value 0.1, al
we also set the arrival rate of calls traversing exactly one hop
A. Figs. 11 and 12 plot the call-blocking probability as a func

g Probal

tion of A.
In a ten-hop path there are 55 different source—destinati oo ———t v o o1 ot ois op
palrS mak|ng |t |mpOSS|b|e tO present I’eSU“IS fOI’ a” Of thenl Arrival rate of calls traversing only one hop (cther rates fixed to 0.1)

Thus, we show results for only two source—destination pairlffg. 11. Blocking probability of calls traversing all links of a ten-hop path with
The blocking probability of calls traversing all ten hops in thev = 10.

path is plotted in Fig. 11, and the blocking probability of calls

traversing hops 2 through 6 of the path is shown in Fig. 12. | 01 — _ 10foppaih W10, calls Waversing hops 26 :
both figures, the value of is varied from 0.05 to 0.21, while the O oot wilh comverters ot nades 1647 -
arrival rate of all other calls is fixed to 0.1, as mentioned abov S e alion wihout conventors -
Each figure contains two sets of plots, one for the ten-hop pe

without converters, and one for the same path employing thr
converters. Each set consists of two plots, one for the restL;
from our decomposition algorithm, and the other for the sirr"§
ulation results. For the no-converter case, approximate res@
are obtained through & x 3 x 3 x 3 decomposition, that is, %
we decompose the path to a one-hop segment followed by th
three-hop segments. For the converter case, the three convel
are assumed to be at nodes 1, 4, and 7, a configuration that ¢
results in al x 3 x 3 x 3 decomposition.

From the figures we observe that as the value of the hoiad or L , , , . , , ‘
creases, the blocking probability of both types of calls increase ey i S i 2
We also note that, when there are converters, the blocking prob-
ability for both types of calls is significantly lower than wherfig. 12. B!ocking probability of calls traversing links 2 through 6 of a ten-hop
there is no converter. Both these results are expected. The nfgewithvv” = 10.

important observation from these figures, however, is the fact ] )
that the values of the blocking probability obtained through offf" @ltérnate routing with one, two, or three alternate paths per

iterative decomposition algorithm are close to the values opRurce—destination pair can be found in [20], and are very sim-
tained through simulation, with the results in the lower tw@" t0 the ones presented here. _ _
graphs of Fig. 12 representing a worst-case scenario regarding'nce We will be using traffic data reported in [4], following
the performance of the algorithm. Overall, based on a very Iar’%@t study, we have also augmented the 14-node NSFNET
number of validation tests performed over a variety of differe@P0l0gy by adding two fictitious nodes, nodes 1 and 16 in
parameter values and reported in [20], we have found that fig- 13, to capture the effect of NSFNET's connections to
decomposition algorithm gives accurate results for long patr@nada’s communication network, CA*net. The resulting
and for a wide range of traffic loads. We have also observed t@pelogy consists of 16 nodes and a total of 240 source-des-

the algorithm always converges in a few iterations, taking of@ation pairs, as shown in Fig. 13. We assume that each link
minute for a ten-hop path, while the simulation takes seve/Z@TesW = 10 wavelengths. We present detailed results for
hours. the call-blocking probabilities of only a small number of pairs,

and summarize the results for the whole network. Specifically,
we present detailed results for the blocking probabilities of
calls involving nodes along the path (3,5,6,7,9,12,15, 16).
The 28 source—destination pairs in this path, along with the
In this section, we validate the decomposition algorithm aforresponding shortest path lengths and the labels used in
Section IV for mesh networks by comparing the approximatégs. 14 and 15 are shown in Table I.
blocking probabilities to simulation results for the NSFNET We have used two traffic patterns with the NSFNET topology.
irregular topology. Because of space considerations, we oflige first traffic pattern is designed to capture the locality of
present results for fixed routing. Results for other topologies atrdffic that has been observed in many networks. Specifically,

Blocki

C. Validation of the Decomposition Algorithm for Mesh
Topologies
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Fig. 13. NSFNET topology
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Source-destination pair label
the arrival rate for a source-destination péit d) with a ' N o o
shortest pathofengtt s gven byA.g = 0.6 L (note that. £t Brkn posphy o sl s sesraton pars i e
no shortest path is longer than four hops). The second traffic
pattern was designed to reflect actual traffic statistics collect™ . - —
on the NSFNET backbone network, as reported in the trafl ~ 'f Simuston, <
matrix in [4, Fig. 6]. The data in this traffic matrix represen A
the measured number of bytes transferred from a rottea
noded in the NSFNET backbone within a certain 15-minutt
interval. Clearly, this data, collected over a packet-switche,
network, cannot be directly applied to a circuit-switche{g 001 | \/
wavelength-routing network, such as the one considered in ti, Y
work. However, our intention is simply to capture the relativg
traffic demands among the different source—destination pai"n
To this end, we first divide the entries of the matrix in [4, Fig. 6
by the link capacity (T3 links) to obtain the “offered loagy 0.0001
per source—destination pair. Since the resulting values are
small, we multiply them by a constant to obtain reasonab
values for the offered load. Then, assuming that all calls ha =% s v 5 2 2
a mean holding time /. = 1, the offered load values become Soureerdestnaton palrlabet
the arrival rates\;q used in the experiments. As a result, theig. 15. Blocking probability for selected source-destination pairs in the
relative values of these arrival rates reflect the relative traffttSFNET witht = 10 and fixed routing (second traffic pattern).
requirements among the different source—destination pairs
according to the traffic pattern reported in [4]. analytical results are accurate despite the fact that in Fig. 15
Figs. 14 and 15 present the call-blocking probabilities for tHeocking probability values as high as 0.5 are involved. For these
selected pairs of Table | and for the first and second traffic patigh values, however, we can see that our analysis starts to un-
terns, respectively. The fixed route assigned to each source—dkgestimate the simulation, while it overestimates it at lower
tination pair is the shortest path between the source and destinlacking probability values. Despite this behavior, the analyt-
tion nodes. For the results of Fig. 14 the link utilizations is in thieal and simulation results are always very close even at high
range [1.846, 5.668] with an average of 3.494, while for Fig. 16ads.
the utilization is in the range [0.015, 8.059] with an average of Finally, Tables Il and Ill present a summary comparison of
3.976. analytical and simulation results for all 240 source—destination
From the two figures we see that calls established over longeirs of the NSFNET topology for fixed routing and for both
paths tend to experience higher blocking probability than catisaffic patterns used. The high maximum relative difference
using short paths. However, because of the irregular topologglues can be explained by the fact that, in an irregular topology
the blocking probability can be significantly affected by the acsuch as the NSFNET in Fig. 13, some paths are underutilized
tual load along the path taken by a call. For instance, we adnd the corresponding blocking probabilities are very low.
serve in Fig. 14 that the blocking probabilities of calls estalthough our analysis correctly predicts low probabilities in
lished over, say, one-hop paths vary widely depending on ttiese cases, the corresponding simulation results give zero (or
number of other calls using the same path. Regarding the aceery close to zero) values. For instance, the blocking proba-
racy of the decomposition algorithm, we note that, despite thdity for the second source—destination pair in Fig. 15 [i.e.,
wide range of blocking probability values involved, the curvpair (15, 16) in Fig. 13] obtained by the simulation was zero.
obtained analytically closely follows the simulation curve foAlthough the analytically computed probability was less than
the 28 source—destination pairs shown in Figs. 14 and 15. ThE ¢ (not plotted in the figures), the relative error was 100%.

bilit

0.001 | 4
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TABLE |
SELECTED SOURCEDESTINATION PAIRS FOR THENSFNET ToPOLOGY
Pair (5,6) [ (1516) | (6,7) | (12,15) | (9,12) | (7.9) | (3,5) | (5,15) | (6,7) | (6,9)
Label 1 2 3 4 5 6 7 8 9 10
Shortest
Path Length 1 1 1 1 1 1 1 2 2 2
Pair (12,16) | (9,15) | (7,12) | (3,6) 3,9) [ (5,16) | (5,12) | (5,9) | (6,15) | (6,12)
Label 11 12 13 14 15 16 17 18 19 20
Shortest
Path Length 2 2 2 2 2 3 3 3 3 3
Pair (9,16) | (7,15) | (3,15) | (3,12) | (3,7) | (6,16) | (7,16) | (3,16)
Label 21 22 23 24 25 26 27 28
Shortest
Path Length 3 3 3 3 3 4 4 4
TABLE I
SUMMARY OF RESULTS FOR THENSFNET ToPOLOGY WITH FIXED ROUTING(FIRST TRAFFIC PATTERN )
Length of Absolute Difference Relative Difference
shortest path minimum average maximum || minimum | average | maximum
1 0.0000e+00 | 1.6249e-03 | 1.0968e-02 0.00% 50.21% 91.68%
2 0.0000e+-00 | 6.2733e-03 | 2.5302e-02 0.00% 26.93% 72.96%
3 0.0000e+00 | 1.5380e-02 | 8.0166e-02 0.00% 15.54% 53.04%
4 0.0000e+00 | 2.1954e-02 | 9.0578e-02 0.00% 13.37% 48.41%

TABLE 1lI
SUMMARY OF RESULTS FOR THENSFNET TOPOLOGY WITH FIXED ROUTING (SECOND TRAFFIC PATTERN)

Length of Absolute Difference Relative Difference
shortest path || minimum | average [ maximum [| minimum | average | maximum
1 0.0000e+00 | 6.7571e-03 | 5.8573e-02 0.00% 46.26% | 100.00%
2 3.1409e-06 | 2.2312e-02 | 1.4344e-01 0.06% 26.47% | 100.00%
3 0.0000e+00 | 4.2773e-02 | 1.3520e-01 0.00%. 16.79% 71.86%
4 9.4132e-03 | 7.2882e-02 | 1.3322¢-01 3.92% 16.18% 31.31%

T T
N “bowl" pattern —
. “inverted bowl” pattern -+-;
x, “uniform” pattern -&-/

Overall, however, we can see that the average absolute
relative difference between analytical and simulation values 28 b
very small, indicating that discrepancies between simulatic
and analysis are limited to blocking probability values that al
very low.

D. Converter Placement

We now consider the problem of determining the best plac
ment of/ converters on &-hop path,k > [, that minimizes
the blocking probability of calls that travel over &llhops. To 16}
find the best converter placement we first enumerate all possil
ways of placing converters on &-hop path; then, we calculate ;
the blocking probability of interest for each alternative usingth 2t/
decomposition algorithm. The best placementis the one with t N
minimum blocking probability.

We consider a ten-hop path with = 10, and three different
traffic load patterns. Fig. 16 plots the load of each hop in the pdfl§- 18- Bowl, inverted bowl, and uniform load patterns.
for each pattern. In the “uniform” pattern, all hops are equally
loaded, while the “bowl” (respectively, “inverted bowl”) patterna ten-hop path there are 55 node pairs, due to space constraints,
is such that the load decreases (respectively, increases) fromdecided not to include the 55 load values for each pattern.
hop 1 to hop 5, and then it increases (respectively, decreadesithermore, it may be difficult for the reader to tell the differ-
from hop 6 to hop 10. The load values were chosen so that #tece between two sets of 55 load values, while Fig. 16 clearly
total network load is the same for all patterns. Note that thidustrates the difference in the load patterns.
same link loads are achievable with many traffic patterns, eachin Fig. 17 we plot the blocking probability of calls using all
of which may lead to different blocking probabilities. Since foten hops of the path for the optimal placementf abnverters,

Load at each hop
~n

) L :
5 6 7 8 9 10
Hop number
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10-hop path, W=10, optimal converter placement
T T

01

“inverted bowl” pattern -+~

T
“powl” pattern ——

‘uniform” pattem -g--
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single-path subsystems. These subsystems are analyzed inisola-
tion either by applying an approximate Markov process model,
or, inthe case of longer paths, by decomposing them into shorter
segments. Results from individual subsystems are appropriately
combined to obtain a solution for the overall network. Our algo-
rithm can also be applied to the problem of converter placement
in wavelength-routing networks.

Blocking Probability of calls using all 10 hops

0.001 5

79

2 3
Number of converters

Fig. 17. Blocking probability and optimal converter placement for the load 1]
patterns of Fig. 16.

2
1 <[ < 5. For comparison purposes, we also plot the blocking[ !
probability of these calls on a path without converters (the values[S]
for zero converters in these figures). The optimal location of the
converters for each load pattern is also given next to each point
of the curves. 4]
As expected, the blocking probability drops as the number
of converters increases. However, after an initial steep drop/s]
the curves in general flatten as the number of converters in-
creases. This behavior is consistent with the results of earlier[
work [14], [15]. We also observe that the effect of converters
on the blocking probability is strongly dependent on the ac-
tual traffic pattern. Regarding the optimal node location of (g
converters for the different traffic patterns, we first note that
the results are intuitively obvious. The figure indicates, for
. 9]
example, that converters be placed at the middle of the patﬁ
for the “inverted bowl” pattern. However, we observe that the[10]
optimal placement also depends strongly on the load patter@.ll
This result suggests that in a dynamic environment wher
traffic patterns vary over time, there is no single assignment
of converters to nodes that will work well for all possible [12]
loads. Consequently, simple optimization approaches, such as
the one considered here, that seek to minimize the blocking3]
probability under a specific traffic pattern may lead to poor 14]
performance if the pattern changes. Instead, more compré-
hensive approaches to the converter placement problem are
needed, such as providing bounds for the blocking probability*>!
over a wide range of load patterns. Similar results have been
obtained for mesh topologies [18]. [16]

(7]

[17]

VI. CONCLUSION [18]
We have presented a path decomposition algorithm to eval—
ey . 19]
uate accurately and efficiently the call-blocking performance o
wavelength-routing networks with an arbitrary topology. Our
algorithm is applicable to networks with either fixed or alter- 20
nate routing and random wavelength allocation. Our iterativé ]
algorithm analyzes the original network by decomposing it into
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