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Packet Scheduling in Broadcast WDM Networks
with Arbitrary Transceiver Tuning Latencies

George N. Rouskasviember, IEEE and Vijay Sivaraman

Abstract—We consider the problem of scheduling packet trans- devices do exist today; however, their capabilities are limited
missions in a broadcast, single-hop wavelength-division multi- in terms of both tunab”ity range and Speed, and the ideal
plexing (WDM) network, with tunability provided only at one geyice one that can tune across the useful optical spectrum
end. Our objective is to design schedules of minimum length to . T ) . .
satisfy a set of traffic requirements given in the form of a demand in sub-microsecond times [11] remalns elusive. We show,
matrix. We address a fairly general version of the problem as however, that careful network design can mask the effects of
we allow arbitrary traffic demands and arbitrary transmitter ~ nonideal devices, making it possible to build single-hop WDM
tuning latencies. The contribution of our work is twofold. First  networks usingurrently availabletunable optical transceivers.
we define a special class of schedules which permit an intuitive |, a typical WDM environment, one with a large number of

formulation of the scheduling problem. Based on this formulation d a limited b f | ths. it bl
we present algorithms which construct schedules of length equal users and a fimited number ot wavelengins, it seems possibie

to the lower bound provided that the traffic requirements satisfy t0 mask the tuning times by letting a transceiver that was
certain optimality conditions. We also develop heuristics which, previously idle take the place of one that is taken off-line
in the general case, give schedules of length equal or veryfor retuning. Our work provides insight into this potentially

close to the lower bound. Secondly, we identify two distinct giticyit problem of coordinating the packet transmissions

regions of network operation. The first region is such that the - . .
schedule length is determined by the tuning requirements of and retunings among the various nodes in the network. We

transmitters; when the network operates within the second region Provide novel heuristics and optimal (under certain conditions)
however, the length of the schedule is determined by the traffic scheduling algorithms, and we show that, if the network
demands, not the tuning latency. The point at which the network operates within a certain region, even large values of the
switches between the two regions is identified in terms of system tuning latency have no significant effect on the length of

parameters such as the number of nodes and channels andth hedul hich id f the del d
the tuning latency. Accordingly, we show that it is possible to e schedule (which provides a measure of the delay an

appropriately dimension the network to minimize the effects of throughput performance).

even large values of the tuning latency. Section Il contains some background information, and Sec-
Index Terms—Optical networks, packet scheduling, tuning tion 11l describes the system and traffic model. In Section IV
latency, wavelength-division multiplexing. ' we formulate the scheduling problem, and we derive lower

bounds on the schedule length. We introduce a special class of

schedules in Section V, and we develop scheduling algorithms

which, under certain conditions, construct optimal schedules
AVELENGTH-division multiplexing (WDM) is con- within this class. Scheduling heuristics are developed in Sec-
sidered as the most promising approach to fully exion VI, and in Section VII we present some numerical results.

ploiting the vast information-carrying capacity of single-mod®&/e conclude the paper in Section VIII.

fiber. Our focus in this paper is on a WDM network ar-

chitecture known as thsingle-hoparchitecture [14]. Single- II. BACKGROUND

hop networks are especially attractive as they at®ptical Let § denote thenormalized tuning latencyexpressed in

in nature. In other words, any information transmitted imﬂnits of packet transmission time. The value ofdepends
the medium remains in the optical form until it reaches it§, e gata rate, the packet size, and the transceiver tuning
destination. Critical to the design of single-hop networks iS.,o and can be less than equal to, or greater than one
the availability oftunablelasers and/or optical filters, deVicestJndérlying the design of a broad class of architectures is the
with the ability to tune across all available channels. Su%&sumption that < 1, i.e., that transceiver tuning times are
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Emerging communication environments, however, are sugh,c = 1,---,C. The fixed receiver at statiop is assigned
that the tuning times of even the fastest available devices doome of theC' wavelengths, and we k. denote the set of
inate over packet transmission times, makihngomparable receivers sharing wavelength..
to, and even greater than, one. Including a padding equal tdJnder the packet transmission scenario we are considering,
6 within each slot would be highly inefficient in this casethere is anN x N traffic demand matriXD = [d;;], with
instead, it is highly desirable to have the slot time equal to tlk; representing the number of slots to be allocated for trans-
packet transmission time alone. Let us now define paramemeissions from sourceé to destination;. Since a transmission
A = [6]. In a slotted system with a slot time equal to then wavelength). is heard by all receivers listening oK.,
packet transmission time, a transceiver instructed to switchdiven a partition of the receiver set into sé®s, we obtain
a new channel will be unavailable for a number of slots equtle collapsed2] N x C traffic matrix A = [a;.]. Elementa,,.
to A. of the collapsed matrix represents the number of slots to be

Minimizing the effects of transceiver tuning times on netassigned to sourcefor transmissions on channg}.:
work performance is possible only through specially designed
protocols. In [8], for instance, the time-division multiple access ~ ai. = Z dij, i=1,---,N, e¢=1,---,C. (1)
(TDMA) scheme considered is such that the frame is divided JER.
into transmitting and tuning periods in a fashion reminiscent . .
of the time slot assignment in TDM switching systems [5]" thiS paper, we assume that. > 0Vz, ¢, that is, each source
[10], [13]. Each transceiver operates on a fixed channel durihd@S t© be allocated at least one slot on each channel. This
a transmitting period; no transmissions take place during tFh sumption is reasonable when the number of nodesis

tuning periods, which are reserved to retune transceivers. THgnificantly greater than the number of available channels (a

objective is to minimize the number of tuning periods withifKely scenario in WDM environments), as each channel will

the frame. be shared by many receivers. We also Iedenote the total
When the numbelV of stations is greater than the numbeffaffic demandD = 3, ;di;. ey

C of wavelengths, at mosF' stations may be transmitting at There are severgl S|tqat|pn_s in which such a scenario arises.

any given slot. Other stations may use that slot for retuniner a gateq service d|s.0|pbl|r.u§y» may represent thg ngmber

to a new channel, so that they will be ready to access t ¢ packets with 965“2“",‘“00 in the queue ‘?f Station at

channel at a later slot. Thus, transceiver tuning times may% moment the “gate IS closeq. A reservation _protocol_tha_t

overlapped with transmissions by other stations. The objecti" P€ used to communicate this queue-length information is

then, is to design schedules of minimum length, given a traffi¢Scribed in [19]. Alternatively/;; may represent the number

demand matrix. Various versions of this problem have beé)ltl slots to be_ aIIoca_ted to the,’J ) sc_>ur(_:e—dest|nat|on pair

formulated and studied previously in [1], [2], [6], [15]. In [1]’to meet certain quality of service crltgna; thed)y»' may be

[6], [15] uniform traffic demands are considered, and low rived based on assumptions reg_ardlng the arrival process at

and upper bounds on the length of an optimal schedule élpg source. All our results are gpphcable to both scenarios, as

derived. The work in [2] considers a traffic demand matri{'eY depend only on the matricés and A, not on how the

of 1's and 0’s (representing the existence or not, respectiveﬂ}?'ﬁnents of these matrices were obtained.

of a head-of-line packet at the various queues), and values of

§ < 1. Our work is a generalization of the work in [1], [2],A- Transmission Schedules

[6], [15], as it considers arbitrary traffic demands and arbitrary A simultaneous transmission by two stations on the same
values ofé. Furthermore, our conclusions extend and providghannel results in &ollision. To avoid packet loss due to
further support to the results of earlier work. collisions, some form of coordination among transmitters is

The problem of scheduling nonuniform traffic with arbitrarhecessary. Aransmission schedulis an assignment of slots
tuning latencies has been previously studied in [4]. In contrast source-channel pairs that provides this coordination: if slot
to [4] where one heuristic is used throughout, we make tk}eis assigned to pai(i7)\c)' then in slot7, sources may
fundamental observation that, depending on the traffic mattbansmit a packet to any of the receivers listening Xn
and the system parameters, the network can be operatingEictly a;. slots must be assigned to the source-channel pair
one of two distinct regions. As a result, we develop differerqg \.), as specified by the collapsed mat#ixThis assignment
optimal algorithms and heuristics for each region. is complicated by the fact that transmitters need time to tune
from one wavelength to another.

If the a,. slots are contiguously allocated for all pajisi.),
the schedule is said to b@npreemptiveotherwise we have

We consider packet transmissions in an all-optical, singlapreemptiveschedule. Under a nonpreemptive schedule, each
hop WDM network with a passive star physical topologytransmitter will tune to each channel exactly once, minimizing
Each of theN nodes in the network employs one transmittethe overall time spent for tuning. Since our objective is to mini-
and one receiver. The passive star supp@rigavelengths, or mize the time needed to satisfy the traffic demands specified by
channels; in general; < N. We consider tunable-transmitter the collapsed traffic matrid, we only consider nonpreemptive
fixed-receiver networks, but all our results can be easibchedules. A nonpreemptive schedule is defined as a set
adapted to fixed-transmitter, tunable-receiver systems. Eathk= {7;.}, with 7;. the first of a block ofz;. contiguous slots
tunable transmitter can be tuned to any and all wavelengissigned to the source-channel p@ir\.). Since each source

Ill. SYSTEM MODEL
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Fig. 1. Optimum length schedule for a network with = 5, C' = 3, and A = 2.

has exactly one laser which needsslots to tune between period with transmissions in th@revious frame, possibly
channels, all time intervalg;. — 1, 7;. +a;. +A — 1) must be resulting in a smaller schedule lengdtiReferring to Fig. 1,
disjoint! yielding a set ohardware constrainten scheduleS: we see that in a repeating schedule, the tuning of transmitter 5
from \; to A\, (to start the next frame) is overlapped with the
[Tie = 1 Tie + @ic + A= 1) N [ier = LTier + @i + A =1)  packets sent by transmitter 2 ap during the current frame. In
=¢ Ve#d; i=1,---,N. (2) any case, the length of a schedule derived under the assumption
N ] o ] that transmissions repeat over time will be at mastslots
In addition, to avoid collisions, at most one transmitter shoulgy,~j1er than if this assumption is not made. We can then use
be allowed to transmit on a given channel in any given slohe schedules derived here in situations where a schedule is
resulting in a set oho-collision constraints used only once, after adding an initial period of at mast
slots. Even though our assumption does affect the schedule
length somewhat, it does not affect our conclusions about the
network’s regions of operation, to be discussed shortly.

1) N [Ti/c — 1, 7ire +ay. — ]_)
,C. ®3)

[Tic - 177_ic + a;e —
—¢ Vi,

A nonpreemptive schedul§ is admissibleif and only if
S satisfies both the hardware and the no-collision constraints. V. SCHEDULE OPTIMIZATION AND LOWER BOUNDS

Unless otherwise specified, from now on the term “schedule” oyr gbjective is to determine an optimum length schedule
will be used as an abbreviation for “admissible nonpreemptiygr matrix D, as such a schedule would both minimize the
schedule.” ~ delay and maximize throughput. This problem, which we

The length M, of a scheduleS for the collapsed traffic il call the Packet Scheduling with Tuning Latencies (PSTL)
matrix A is the number of slots required to satisfy all traffigroplem, can be stated as follows.
demandsy;. underS._Fig. 1 shows an optimum length sched- proplem 1 [PSTL]: Given the numberN of nodes, the
ule for a network withV.= 5 nodes,C = 3 channels, and nymberC of channels, the traffic matri = [d;;], and the
A =2; matrix A can be easily deduced from the figure. Notgning slotsA, find a schedule of minimum length f@.
that all hardware and no-collision constraints are satisfied. InproplemPSTLcan be logically decomposed into two sub-
is slot 13, rather than slot 12, as its laser needs two slotsjta.. ¢ must be obtained, and from them the collapsed traffic
tune fromA; to A,. _ matrix, A= [a;.], must be constructed and b) for alland

In the following, we make the assumption that the schedule 5 way of placing thea;. slots to minimize the length
repeats over time; in other words, i is the start slot of of the schedule must be determined. The first subproblem
then so are slots;. + kM, k = 1,2,3, -+, wherek denotes assign receive wavelengths so that the traffic load, given by
the kth identical copy of the schedule. If parametels areé  matrix D, is balanced across th@ channels. Load balancing
derived based on the behavior and required quality of servige 3 well-known A"P-complete problem, and will not be
of longer term connections, we expect the schedule to repgghsidered further. Let us now turn our attention to the second
until there is a change in the traffic demands. Under a gatg@hproblem:; for reasons that will become apparent shortly, we
service discipline scenario, however, a new schedule has tofi¢ refer to this as theOpen-Shop Scheduling with Tuning
computed after all transmissions under the current schedypl@encies (OSTLproblem. It can be expressed formally as a
have been completed. We now argue that the schedules ye&ision problem.
derive are applicable even under the latter scenario. Problem 2 [OSTL]: Given the numberN of nodes, the

If the schedule is used only once, no transmissions &@mberC of channels, the matriA = [a;.], the tuning slots
possible during an initial period ah slots when transmitters A > o, and a deadliné/ > 0, is there a schedule that meets
tune to their initial channels. On the other hand, if the schedyl¢s geadline?
repeats over time, it may be possible to overlap this tuning

2Actually, a tuning period ofA slots is still needed the very first time the

1we make the assumption that stostarts at timer — 1 and occupies the schedule is used, but it can be ignored, especially if the schedule repeats for

time interval[r — 1, 7). a relatively large number of times.

c=1,---
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OSTLis a generalization of the nonpreemptive open-shdpree important properties: a) it completely masks the tuning
scheduling O problem in [9]; it reduces to the latter whenlatency, b) it is the shortest schedule for transmitting a total
we letA = 0. ProblemOS is N’P-complete when the numberdemand of D packets, and c) it achieves 100% utilization
of wavelengthsC > 3 [9]. But for C = 2, OS admits a of the available bandwidth, as no channel is ever idle. The
polynomial-time solution [9]. The following theorem confirmssignificance of the actual schedule length relative to the critical
our intuition thatOSTLIis in a sense more difficult tha®@S length is explored next.

The proof of the theorem is omitted, but can be found in [18].
Theorem 1: OSTL is N'P-complete for any fixed” > 2. B. Bandwidth Limited Versus Tuning Limited Networks

To get further insight on (6), let us consider the case of
A. Lower Bounds for PSTL and OSTL uniform traffic, whereby each source hds> 1 packets for
The length of any schedule cannot be smaller than teach possible destinatiod;; = 3 > 1 V¢, j. Then,D = SN2,
number of slots required to satisfy all transmissions on amayd substituting this value into (6) we get
given channel, yielding théandwidth bound(see also [2],

BN? BN?  NCA
4 1 9 —_— = _— —,
[4], [9]) o =AN+CAe “5- =0 (7)
N . .
Mb(g — max Z 4 b > D ) (4) In [2] and [15], (7) was _solved (with3 = 1) to obtain
1SesC | C the value ofC' that minimizes the lower bound for all-to-

all schedules. Typically, howevery, N, and A are given

The term in the brackets depends on the assignment of recgi¢@ameters. We can then solve (7) to obtain the optimal value
wavelengths to the nodes, but the rightmost term depends opjy 8, 5" = c* A

- ; N(N=C)
on thetotal traffic demand,D, and is a Iow_er bound oﬁS'_I'L Suppose now that we chooge< 3*; for simplicity, also
independently of the elements; of matrix D. Expression o+ nv ' pc 5o that the traffic demand can be perfectly
(4) implies that, given the number of wavelengths (whic

alanced across the channels. Then, the tuning bguv
determines the amount of bandwidth available), the bandwid . g 2 o
R : : A becomes greater than the bandwidth bou#, and
bound is minimized when the traffic load is perfectly balancet . . .
across theC’ channels e length of the schedule is determined by the transmitter
' tuning requirements. Since the total traffic demang3ig?

We obfcam a different pou‘nd by adopting a transmnter;ndﬁ < f3*, the throughput achievable under such a schedule
point of view. Each transmitterneeds a number of slots equa SN2 . .
< C. The throughput increases with; once

to the number of packets it has to transmit plus the numb&r BN+CA " :
of slots required to tune to each 6f channels. We call this q bgcorr][es grfhatirh thaﬂh, t?i bandwidth bclnf[nqtbecorr)es
the tuning bound[2], [4], [9]: ominant and the throughput becomes equal to its maximum

value, C.
0 < Increasing the value of3, however, has the effect of
My” = max z_:laic +CA increasing the length of the schedule. But this length is a

measure of packet delay, and it cannot be increased beyond
N D a certain level perceived as acceptable by the various higher

[Bax Zdij +CA > N~ CA.  (5) layer applications. The demand matrix corresponding to the

- =t value 3 = [3*] achieves a perfect balance between delay

The tuning bound is independent of the assignment of wa\?ﬁ]d throughput, as it provides for the smallest schedule length

: that results in a 100% channel utilization. Satisfying the delay
lengths to receivers, and only depends on paramaiers, A, . . .
g v y dep P BIs requirements, however, might mean choosthg [5*]. It is

and the total demand; it is minimized when each source, th ituati that ad : tical device technol
contributes equally to the total traffic demand. We now obtalf} these situations that advances in optical device technology

the overall lower bound ag/® — InaX{M(l) M(l)} The would make a difference. Note that the value @f, and
latter is minimized when bwr S consequently, the value of the critical length, is proportional

to A. Employing faster tunable transceivers would then bring

D _D D _ NCA #* closer to the acceptable (in terms of delay) operating value
=—4+CAe == . (6) .

¢ N ¢ N-C of 3, and improve the throughput.

The above observations are of general nature, applying to

is independent of the demand matrix, and characterizes ﬂ%ﬁunlform demand_matnces as well. Similar to [2], we will
network under consideration. Relationship (6) between tR8Y tha.t a _ne_twor_k IS ) _ R
minimum bandwidth boundD/C, and the critical length * turg;ngllmlteld if the tuning bound dominates, i.é4 () =

is a fundamental one, and represents the point at which ;" > M, or

wavelength concurrency balances the tuning latency. If a* bandwidth limited if the bandwidth bound is dominant;
schedule has length equal to the critical length, it is such that then, M® = MY > M,

exactly C (respectively,N — C) nodes are in the transmitting To see why this distinction is important, note that any
(respectively, tuning) state within each slot. Consequently, akkar-optimal scheduling algorithm, including the ones to be
NCA tuning slots are overlapped with packet transmissionsresented shortly, will construct schedules of length very close
and vice versa. Such a schedule is highly desirable, as it lhashe lower bound. If the network is tuning limited, the length

Quantity ¥¢2, which we will call the critical length
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Fig. 2. Schedule for a bandwidth limited network.

of the schedule is determined by the tuning bound in (She first node) are the same for all channels:
which in turn is directly affected by the tuning latency. The

schedule length of a bandwidth limited network, on the other Se = (T1, M2y, TN), c=1,---,C. (8)
hand, depends only on the traffic requirements of the dominant

i N o a®
channel, i.e., the channgl. such thaty ;" a;c = M,,. The class of schedules defined in (8) is equivalent to the class

Based on this discussion, it is desirable to operate th
network at the bandwidth limited region, as doing so WOU|%
eliminate the effects of tuning latency. For uniform traffic this
can be accomplished by selectifig= [3*] since that would
make the bandwidth bound greater than the critical length in
(7). In the general case (nonuniform matBy we would like
to make the bandwidth bound in (6) greater than the critichhis class of schedules greatly simplifies the analysis, allowing
Iength,% > f\fé Given a value for\, and some information us to formulate theOSTL problem in a way that provides
about the delay requirements of higher layer applications, thisight into the properties of good scheduling algorithms.
expression may be satisfied by carefully dimensioning theWe now proceed to derive sufficient conditions for optimal-
network (i.e., initially choosing appropriate values f§rand ity and optimal algorithms for the class of schedules defined in
C) so that it operates in the bandwidth limited region. Sincé€8) and (9). Since we have found [18] that bandwidth limited
however, delay constraints and/or constraints on the valuesagl tuning limited networks are dual of each other, in this
N and C may make it impossible to satisfy this expressiopaper we only present results for bandwidth limited networks.
for a given system, we have developed scheduling algorithigry similar conditions for optimality and algorithms have
and heuristics for both regions of network operation. been derived for tuning limited networks, and can be found

in [18].

schedules such that the channel sequences (yittas the
st channel) are the same for all nodes:

Ui:()‘ﬂ'lv)‘ﬂ'zv"'v)‘ﬂ'c)v t=1,---,N. (9)

V. A CLASS OF SCHEDULES FOROSTL

Let A be a collapsed traffic matrix, an§l a schedule of A- Bandwidth Limited Networks
length A satisfying the hardware and no-collision constraints We present a formulation of proble@STL applicable to
(2) and (3), respectively. Consider now the order in whicbandwidth limited schedules within the class (8). kebe a

the various transmitters are assigned slots within, say, chansethedule of lengtid/ for such a network, and 1€t,2,---, V)
A1, starting with some transmitter;. We will say thats; = be the transmitter sequence on all channels. For each channel,
(71,72,---,7n) iS thetransmitter sequencen channel\; if consider the frame which begins with the first slot assigned

7o IS the first node after; to transmit on\;, 73 is the second to transmitter 1. Let the start of the frame on chankglbe
such node, and so on. Since we have assumed that scieduteir reference point, and lgt. denote the distance between
repeats over time, after noete; has transmitted its packets orthe start of a frame on channgl and the start of the frame
A1, the sequence of transmissions implied dyystarts anew. on the first channel, as in Fig. 2. Obviousk; = 0. We also
Similarly, we will say thatv; = (Ax,, Ar,, -+, Az ) IS the let g;. denote the number of slots that chaniglremains idle
channel sequender node 1, if this is the order in which nodebetween the end of transmissions by nadend the start of

1 is assigned to transmit on the various channels, starting witansmissions by node+ 1; we will refer to quantitiegy;. as
channel),,. Given &, the transmitter sequences with as the gapswithin the channels.

the first node, are completely specified for all channels The problem of finding an optimum schedule such that a) the
In general, these sequences can be different for the vari@ebedule is in the class defined in (8) and b) the transmitter
channels. However, in what follows we concentrate on a classquence ig1,2,---,N), can be formulated as an integer
of schedules such that the transmitter sequences ¢witas programming problem, to be referred to le@ndwidth limited
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OSTL (BW-OSTL) Lemma 1: Let A be a collapsed traffic matrix such that
N the lower boundM® = MY > MY (bandwidth limited
BW — OSTL : 1min M — max Z(aic +gic) b (10) network). Then, a schedule of length equal A6 exists
gic, Ko c = within the class (8) for any transmitter sequence, if the
elements ofA satisfy the following condition:

subject to
M®
i—1 i1 Qi — ' <e Vi, ¢ (14)
Kc + Z(ajc + gjc) Z Kc—l + Z(aj,c—l + gj,c—l)

j=1 j=1 with ¢ given by

+ai,c—l+A7 6227"'70; L:]-va (11)
2M® 11 A
e=—— | = ——=— — (15)

i—1 i—1 N + 2 C N M(l)

M+Z(aj1 +g51) 2 Ke + Z(ajc +gjc) +aic + A, Lemma 1 provides an upper bound on the “degree of
[?z_ll N i=1 12 nonuniformity” of matrix A in order to guarantee a schedule
b=5 12)  of length equal to the lower bound. Its proof, however, is

based on a worst case scenario; in general, we expect such
Gic, Ko, M - integers g, >0 Vi, c; Ky = 0; an optimal schedule to exist for significantly higher degrees
K.>Ke1: ¢=2--.,C; M>Kc. (13) of nonuniformity.

2) Scheduling Algorithm:We develop an algorithm which,

Constraint (11) ensures that following its packet tranginder the conditions of Lemma 1, produces schedules of
missions on channeh._;, the laser at nodeé has enough length M® . In fact, the algorithm is optimal under looser
time to switch to wavelength.. Constraint (12) ensures thatconditions that do not impose any bound on the variation of

transmitter; has enough time to tune from channel (the last a;. aroundw. The key idea is to schedule transmissions on

channel) to channel; to transmit in the next frame. These\; so that this channel is always busy, except, maybe after all
two constraints correspond to the hardware constraints (Apdes have been given a chance to transmit; we expect this
The no-collision constraints (3) are accounted for in the abostrategy to work well when channel is dominant, that is,
description by the constraint,. > 0 Vi,c; by definition of >, a;; = M©.
gie, this guarantees that the slots assigned to nodel on Algorithm Make_Bandwidth_Limited_Schedule (MBLS)
channelX. will be scheduled after the slots assigned to nodiescribed in detail in Fig. 3, operates as follows. All gaps
¢ in the same channel. in channel \; are initialized to zero; then, during Pass 1,

Finding an optimal schedule within the class (8) for problerttansmissions in channels, through A\ are scheduled at
OSTL, involves solvingN'! BW-OSTLproblems, one for each the earliest possible time that satisfies constraints (11). Doing
possible transmitter sequence, and choosing the schedulesaf however, may introduce large gaps into these channels,
smallest frame size. Solving probleBW-OSTLis itself a resulting in a sub-optimal schedule (refer to (10)). During
hard task since it is an integer programming problem. Recahe second pass, the algorithm attempts to compact the gaps
however, that we are considering bandwidth limited networkajthin each channel by shifting the slots to the right or left, but
and the bandwidth bound (4) dominates. In other words, theyely as far as constraints (11) and (12) allow. That algorithm
exists at least one channkl such thaty>~ | a;c = M@, If MBLS s correct follows from the fact that it constructs a
a schedule of lengtl/(® exists, then at least one channelschedule which satisfies constraints (11)—(13). It is also easy
say, channel., will never be idle; this schedule is such thato verify that its running-time complexity i€(CN?). We
gic = 0Vi. We will show that fixing the values of;. for now state the optimality properties of algorithmBLS the
one channel makes it possible to solve probBW-OSTLin proof of Theorem 2 can be found in Appendix B.
polynomial time. But first, we answer a fundamental question Theorem 2: Algorithm A BLS constructs a schedule of
related to the existence of schedules of lenfyfff’ within the minimum length among the schedules that: a) are within the
class (8). class (8) and the sequence of transmitterg1is2,---, N);

1) A Sufficient Condition for OptimalityLet A be the ma- b) channel}; is a dominant channel; and c) channel is
trix of a bandwidth limited network})/ () be the lower bound, never idle, except, possibly, at the very end of the frame (i.e.,
and define theaverage slot requiremerdasa = MO /N. If g3 = 0,i = 1,---,N = 1).
aic = aVi,c, then an optimum length schedule is easy to Corollary 1[Optimality of Algorithm MBLS]: Let A\; be a
construct; all of (11)—(13) will be satisfied by letting. = channel such thagf;l a;p = M®, and arbitrarily label
(c—=1)(a+ AWVc, gie =0 Vi,c;andM = M® = Na. The the transmitters 1 through’. Then, under the conditions of
guestion that naturally arises then, is whether we can guararniteenma 1, algorithm MBLS constructs an optimum length
a schedule ofi/(¥ slots when we allow nonuniform traffic. schedule.
The answer is provided by the following lemma whose proof Proof: According to Lemma 1, there exists a schedule
can be found in Appendix A. Note thatin the lemma is of length MY within the class defined by (8), such that the
greater than zero only wheb/ Y > NC€2: this is consistent transmitter sequence ($,2, - - -, N). Since); is the dominant

N—C
with our hypothesis of a bandwidth limited network. channel, any schedule of lengii“) is such that channel; is
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Algorithm Make_Bandwidth_Limited_Schedule (MBLS)
The algorithm assumes that channel A; is dominant. Also, references to channel A.;; when

¢ = C denote the next frame on channel A;.

1. begin
2. Set M = y.N ay
3. Set K and all gaps ¢;; on A; equal to 0
// Begin Pass 1
4. forc=2to C do
5. fori=1to N do
6. Schedule the ;. slots at the earliest possible time

such that constraint (11) is satisfied between channels A, and A._;
7. // end of for ¢ loop
// End of Pass 1 - initial values to all g;. have now been determined
8. Let M’ be the smallest integer satisfying constraint (12)
9. Set M = max{M, M'}
// Begin Pass 2
10. for ¢ = C downto 2 do

11. for : = N downto 1 do
12. Shift the a;. slots as much right as possible while

maintaining constraint (11) between channels A, and A,y
13. forj=i+1to N do
14. Shift the a;c slots as much left as possible while

maintaining constraint (11) between channels A, and A._,

15. // end of for ¢ loop — the final values of gaps for this channel have now been determined
16. Let M, = =N (aic + gic)
17. M = max(M, M,)

18. // end of for ¢ loop — M is now the final length of the schedule
19. // end of algorithm

Fig. 3. Scheduling algorithm for bandwidth limited networks.

never idle. Therefore, because of Theorem 2, algorithm MBLUStting a;. = aVi,c, we obtain a uniform matrix satisfying

will construct such a schedule. U the conditions of the theorem, i.e., such ttM]fQ = Na =
Cla+A) = Mt(l), and such that all transmitters and channels
B. Tuning and Bandwidth Balanced Networks are tight. Let us now modify some of the elements of this

nmatrix to construct a nonuniform matrix that continues to
and bandwidth bounds are equalf® = M® — MY sqatisfy the conditions of the theorem. At least four elements
. ] to T b hﬁlve to be modified to achieve this result. For if for some
Theorem 3 states that, in this case, even arbitrarily small. e leta < a, we have to increase, .,,c, # c
3 C1s 1,01 ’ 1,009 C2 1

o e e s ot o oy © ke UanSTte gt gain. And 10 make hanmck,
9 9 nd \., tight again, the least number of elements that need

bound. Note that neither the theorem nor its proof refer {0° "L ° 1% the two elemen < anda,.. . for some
the class of schedules defined by (8) and (9), therefore, this 9 1% N
result holds for arbitrary schedules.

We now study the operation of the network when the tuni

ransmitterj # . We now let the matriXA be such that;; =
Tlheorem 3:Let A be a matrix such thad/® = Méf,f = ?52283_35 tol\}gﬁfly?hgﬁt@ CL:JFC{’(STXL)ZCI_]\?CIOL?}?Tiﬁéc{h&
Mt( ) and such that each transmitter and each channel gjEchannels and transmitters are tight. This traffic matrix is as
tight (i.e., the slot requirement on each channel and the sl@fsse to the uniform matrix as possible, while still satisfying
plus-tuning requirement of each transmitter are equaltd). ihe conditions of the theorem. Suppose now that a schedule
Then, the optimal schedule has length strictly greater thgp length Na = C(a + A) exists. Then neither any channel
M, even for any arbitrarily small nonuniformity among the, any transmitter can be idle at any time in such a schedule.
elements ofA. Assuming that the schedule starts at time 0, all transmissions
Proof: Consider a system aV ngges,c channels, and , ). through begin and end at times which are multiples
A tuning slots, and suppose that= ;= > 1 is an integer. o .- similarly for transmissions by stations 3 through
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Bandwidth Limited Scheduling Heuristic (BLSH)

1. Relabel the channels such that:

op

N N
MO = i — h > > :
= an = Y. ap = o 2 aic
i=1 i=1

1f
=

1

Label the transmitters as 1,---, N, and let s = (1). Repeat Step 2 fori = 2,--- N.

2. Let s = (x1,---,m_1) be the permutation produced by the previous iteration on
a network with only the first ¢ — 1 transmitters of the original network. Consider

transmitter ¢. Run algorithm MBLS on each of the ¢ permutations
(277|'17"'7771'71),(”1,277727"',771’—1)1"'7(7"17"',Wj,iﬂfjﬂa"'77Tz'~1)y"'7(7r17"'77Ti~1,i)

Let s() be the permutation that results in the least length schedule.

Fig. 4. Scheduling heuristic.

Without loss of generality, assume that node 1 is before nodet we have developedIBLS to solve BW-OSTLfor a
2 in the transmitter sequence of channelin this schedule, given transmitter sequence under the additional constraint that
and leti > 2 be the transmitter immediately before node 1 iany idling of the first channel occurs after all nodes have
this sequence. Let be the timei's transmission om; ends; transmitted on that channel. Thus, our approach to obtaining
thent must be a multiple of.. Since channel; is never idle, near-optimal schedules fdDSTL is based on making two
the transmission by node 1 oqn starts at timet, and ends at compromises.
time ¢t + « — 1. At that (nonmultiple ofa) time, node 2 is the  Suppose that an optimal transmitter sequence for a network
only candidate for immediate transmission &n so node 2 of n nodes has been determined, and that a new node is
must start transmitting on; at timet + ¢ — 1. Node 1, on added to the network. Instead of checking all possihle-1)!
the other hand, after a tuning period Af slots, is ready for transmitter sequences, our first approximation is to assume
its next transmission at time+ a — 1 + A; since this is not a that, in the optimal sequence for tiie + 1)-node network,
multiple of a, and since node 1 can never be idle, it can onte relative positions of nodesthroughn are the same as in
start transmission on channah. Using similar arguments, the sequence for the-node network; thus, we only need to
node 2's transmission must have just ended on chanpel determine where in the latter sequence nade 1 has to be
We have established that, under this schedule, on channelinserted. This can be accomplished by solvingl BW-OSTL
node 1 transmits from timeé to time ¢ + « — 1, and node 2 problems on &n + 1)-node network, one for each possible
from timet¢ 4 a — 1 to time ¢+ 2q, and on channek, node 2 placement of node: + 1 within the sequence ofi nodes.
transmits from timet + A to timet+ A+ a — 1, and node 1 Now let \; be the dominant channel. Our second compromise
from timet+ A 4+ a — 1 to timet + A + 2q. But, regardless is to use algorithmMBLSto solve the version oBW-OSTL
of the values ofe and A, this sequence of transmissions isvhich requires thaf; is never idle except at the end of the
impossible? contradicting our hypothesis that an admissiblgame. From Theorem 2, if a schedule of length equal#g)
schedule of length equal to the lower bouNd = C(a 4+ A) exists for the given transmitter sequenbBLSwill find such
exists. [0 aschedule. But if the optimal schedule has length greater than
M®, MBLS may fail to produce an optimal solution as the
VI. OPTIMIZATION HEURISTICS idling in the first channel may be anywhere within the frame,
We now develop a scheduling heuristic for bandwidthot necessarily at the end.
limited networks that performs well when applied to arbitrary For bandwidth limited networks, our heuristic is described
instances of0OSTLthat may not satisfy the optimality condi-in Fig. 4. Regarding the complexity of the heuristic, note
tions of the previous section. Using a very similar reasoningiat Step 2 will dominate. During théh iteration of Step 2,
it is relatively straightforward to obtain a heuristic for tuningalgorithm A/ BLS is called: times on a network of nodes.
limited networks. Since the complexity o\ BLS on a network ofi nodes is
Recall that for bandwidth limited networks, finding a sched?(C%?), the overall complexity of the heuristic 8(CN*).
ule within the class (8) that solves tRESTLproblem involves
solving N! BW-OSTLproblems, one for each possible trans-
mitter sequence. On the other hand, we have no efficient VII. NUMERICAL RESULTS
algorithm for solving the most general versionBW-OSTL. ~ We consider four algorithms for th©STL problem: 1)
3For instance. if < a— 1. we havel LA < f4a—1 < t4A4ae1 < algorithm MBLS described in Fig. 3; the algorithm is ap-
t + 2a, and thé transmissiéns of node 2 on channelsand Ao overlap; plied after the ChannelsNhave been labeled through Ac
similarly for A > a — 1. in decreasing order op ., a;., and the transmitters have
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Fig. 5. Algorithm comparison fol’ = 10 channels and\A = 1 tuning slots.

been labeled 1 throughy in decreasing order oEcczl Qic)

Consider the performance MBLSandBLSHin the band-

2) algorithmMTLS with the same labeling of channels andvidth limitedregion; similar conclusions can be drawn for the
transmittersMTLShas not been described, but is very similaperformance oMTLSand TLSHin the tuning limitedregion.

to MBLS only targeted to tuning limited networks; 3) heuristidn general, the length of schedules producedMBLS and
BLSH described in Fig. 4; 4) heuristitLSHfor tuning limited BLSH are very close to the lower bound, and, for networks
similar to BLSH

networks; this heuristic has not been described, but is vemell within the bandwidth limited region (i.e., for sufficiently
large N), BLSHandMBLSconstruct schedules of lenggigual
Let M be the actual length of a schedule for matrito the lower bound. This is an important result, as it establishes
A produced by some scheduling algorithm. Figs. 5-7 pltiiat the lower bound accurately characterizes the scheduling
i M—MO
quantity =7—100

% against the number of node¥, for the efficiency. Since the lower bound is independent of the tuning
four algorithms described above; 95% confidence intervals daency in this region, this result also implies that it is possible
also shown in the figures. The elements of each matnixere to appropriately dimension the network to minimize the effects
chosen, with equal probability, among the integers 1 througt even large values ah. In the boundary of the tuning and
20. We show results only faf' = 10; very similar results for bandwidth limited regions where the tuning and bandwidth
other values ofC, as well as for matriced generated using bounds are close to each other, the algorithms do not perform
other distributions, can be found in [18]. We have used thrée close to the lower bound (although they are never more than
different values forA, namelyA = 1,4, 16, while V varies 15% away from it). When several channels and nodes have
from 10 to 80.

similar slot requirements, the algorithms have less flexibility
Our first observation from Figs. 5-7 is that the two heurigh placing the slots to obtain schedules of length close to the
tics, BLSH and TLSH always perform as good as, or bettelower bound. Theorem 3, however, suggests that this behavior
than the corresponding algorithmdBLS and MTLS respec- is not due to inefficiency inherent to the algorithms, but is

tively, as expected. The results also confirm our intuitiorather due to the fact that the optimal schedules in this region
regarding the two regions of network operation, and justifyave length greater than the lower bound.
the need for algorithms specially designed for each region.We conclude thaBLSH and TLSH achieve the best per-
Let us, for the moment, refer to Fig. 7 which shows resulfermance within the bandwidth and tuning limited regions,
for C = 10, A = 16. For these values of’ and A, and the respectively. Algorithm#BLSandMTLScan achieve almost
way the traffic matrices are constructed, a network is in tisémilar performance, but they are more efficient in terms of
bandwidth limited region ifV > 25, and in the tuning limited running time.
region, otherwise. It is not surprising then that algorithms
MBLS and BLSH outperform their counterpartdITLS and VIIl. CONCLUDING REMARKS
TLSH respectively, whenV > 25, while the opposite is true  We considered the problem of designing TDM schedules for
for N < 25. broadcast optical networks. Based on a new formulation of the

367
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Fig. 7. Algorithm comparison folC’ = 10 channels andA = 16 tuning slots.

scheduling problem, we presented algorithms which construery high data rates, usinzurrently availableoptical tunable
schedules of length very close to, or equal to the lower bourdevices.

We also established that, as long as the network operates within APPENDIX

the bandwidth limited region, even large values of the tuning

latency have no effect on the length of the schedule. The m#in Proof of Lemma 1

conclusion of our work is that through careful design, it is In proving Lemma 1 we will make use of the following
possible to realize single-hop WDM networks operating aésult.
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Lemma 2: If constraints (14) on the elements 6f hold, Equation (20) can be expressed in a compact form by intro-
then for any subsef of transmitters from{1,---, N} such ducing constantsy = ncy; = 1:
that| 7 |= n, and any channel.:

C4+1 fn.—1 ne—1—1 C
® ® — . .
7’LM N6 Z CLZC < 7’LM ]\276' (16) Kc+1 = z:l z:l Qjc z:l Aje + z:lanc,c + CA.
e=1 \ j= j= c=

21
Proof: If n < N/2, (16) follows directly from (14). If =)
n > N/2, let T = {1,2,---,N} — 7. The result in (13) We now define the sef to be a subset of1,2,--.,C}
follows from (14) and the fact that the size ®fis less than such thatc € S if and only if n. > n._1; we also let
N/2. O S=1{12,---,C} — S. Inequality (21) can then be written
We are now ready to prove Lemma 1. Although the proais:
refers to the problem formulation in (10)—(13), it does not

. ) Nne—1 Ne—1—1
depend on _the transmitter sequence. As a result, it holds for Koy = Z Z aje | — Z Z aje
any transmitter sequence, not just ttie2,---, N) sequence e Wl =\ =

=Ne— cc =Nc

implied in (10)—(13). -
Proof of Lemma 1:Let us introduce a new variable

Kc11 = M in the formulation of theBW-OSTLproblem in + Za"“c +CA. (22)

(10) - (13), Then, inequalities (11) and (12) can be rewritten

as one inequality (references to channgl; whenc = C Let |S| = k. Then, from Lemma 2 we have that

refer to the next frame on): L _
- MO ENe¢
2| 2 ] S| 2lne- ”c-ﬂl Nt @
cCS \Jj=ne_1 LecS

c=1

IN

i—1 i—1
Koyt = Ko 2 (aje+ 9je) = O (041 + Gjct1)

j=1 j=1 ne—1—1 B M(l)
+ aic + A, c=1,---,C; i=1,---,N. Z Z aje | > Z(”c—l—ﬂc) ~
17) &S NI LceS
a0 (C = k)Ne (24)
For the proof we consider a worst case scenario, under I S

which the total slot requirement agachchannel is equal to
the lower bound. A schedule of length/) under such a
scenario will ensure a schedule of lengéht® when the slot

If we subtract (24) from (23) all but one term cancel out
on the right hand side:

requirement on some channel is less thei”, as one can n.—1 ne_1-1 CNe
simply introduce slots in which this channel is idle. Z Z aje | — Z Z aje | < . (25)
Since we are trying to achieve a schedule of lengff), ceS \j=n._1 ccs \ j=n.

we are seeking a solution to probleBW-OSTLsuch that

gie =0 Vi,c. We can then rewrite inequality (17) as Using this in (22) and using (14) to boumg., we have an

upper bound onKcy1:

i—1 1—1
W
Koty — Ko 2 (Z aje =) “j:c“) +aic + 4, Kci < % + C<MT + e) +CA. (26
j=1 j=1

e=L, G d=1 N (18) " \e can then guarantee thaf) > K., if (15) is satisfied.

To satisfy (18) we need to sét.,; — K, to the largest U
possible value of the right hand side in (18)xlf is the value
of 4 which maximizes the the right hand side of (18), we seB. Proof of Theorem 2
ne—1 ne—1 Proof: Let Sched(cdenote the frame of the schedule on
Koy — (Z e — Z am“) +p. e+ A A, starting with the first slot in which transmittértransmits
=1 on \.. Sched(C+1)refers to the next frame on;. Once
c=1,---,C. (19) the schedule lengtd/ and gapsgi.,i = 1,---,N — 1, are
known, gapgn. is uniquely determined, and will be ignored
Adding up the above equations for all channels, we get: in the following. Let OPT denote the optimal length under

the assumptions of Theorem 2. We prove t6®T = M by

ni—1 ne—1 ne_1—1 . . .
_ tracing the algorithm and showing th&PT > M at every
Ko = Z i1 +Z 2 e Z tie step. ThatOPT > M at the end of Step 2 is obvious, since
I=t =2 \J= =t the optimal can be no smaller than the lower bound. In Pass
no_l 1, all transmitters are assigned the earliest possible slots on
- Z ajc ¢+ Z e +CA. (20) each channel, and Step 9 makes sure that the schedule length

is large enough so that each transmitter gets enough time to
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tune back to; after its transmission of-. ThereforeOPT
> M at the end of Pass 1.
In Pass 2, channels and transmitters are processed in rev

[9] T. Gonzalez and S. Sahni, “Open shop scheduling to minimize finish
time,” J. Assoc. Comput. Maghvol. 23, no. 4, pp. 665-679, Oct. 1976.
él(g I. Gopal and C. Wong, “Minimizing the number of switchings in an
IS€ss/TDMA system,”IEEE Trans. Communpvol. 33, no. 6, pp. 497-501,

order, and the algorithm tries to compact the gapss much June 1985.
as possible. We show that once the gaps on a chaknel [11] P. E. GreenfFiber Optic Networks Englewood Cliffs, NJ: Prentice-
' Hall, 1993.

have been compacted by Pass 2, it is not possible to compagt

them any further to reduce the length, thus proving (BT

> M. The proof is by a two-level induction—the first an

and the second ohwithin the same channél.. The induction T. inukai, “An efficient SS/TDMA time slot assignment algorithm,”

proceeds by assuming thst:hed(c+1)|s Opuma' (meaning IEEE Tran_s. Communvol. 27, no. ]_.0, pp. 1449-1455, Oct. 1979.
[14] B. Mukherjee, “WDM-Based local lightwave networks—Part I: Single-

that the gaps qmc+1 cannot be com.pacted any further), hop systems,"IEEE Network Mag. pp. 12—27, May 1992.

and that transmitters+ 1, - - -, IV are optimally scheduled on [15] G. R. Pieris and G. H. Sasaki, “Scheduling transmissions in WDM
Ac (i.e., that the gapg;t1,c---gv-1, cannot be compacted Egoazdcgzt‘i%‘é'_sf'leod:srtwfgaEEE/AC'V' Trans. Networkingvol. 2,
any further), and then showing that the gap cannot be [i6] G. N, Rouskas and M. H. Ammar, “Analysis and optimization of
compacted any more than what Pass 2 does. There are only transmission schedules for single-hop WDM network$ZEE/ACM

2 ways gapg;. can be compacted—either by moving thage Trans. Networkingvol. 3, no. 2, pp. 211-221, Apr. 1995.

¢ A . . G. N. Rouskas and M. H. Ammar, “Minimizing delay and packet loss in
slots to the right, or by moving slotg;.,j = ¢+ 1,---, N,

P. A. Humblet, R. Ramaswami, and K. N. Sivarajan, “An efficient
communication protocol for high-speed packet-switched multichannel
networks,” IEEE J. Select. Areas Communwol. 11, no. 4, pp. 568-578,
May 1993.

[13]

[17]

single-hop lightwave WDM networks using TDM schedules,”|EEE
to the left. But thea;. slots cannot be moved any more to , gmf’il- lgC ’9k5 pp. %1237—51,271, June “lg%th desian of optimal TOM
. . . . N. Rouskas and V. Sivaraman, “On the design of optima

the ”ght (Otheanse Step 12 would have done SO)_' neither Cgﬁ schedules for broadcast WDM networks with arbitrary transceiver tuning
slots a;. be moved any more to the left (otherwise Step 14 latencies,” North Carolina State University, Raleigh, NC, Tech. Rep.
would have done so). Hence gap. is as compact as can____ TR-95-07, 1995. . _
b d\. is optimal by induction. To complete the induction[lg] V. Sivaraman and G. N. Rouskas, “HiPgRA H:igh Performance

€, anda. IS op X y A : ’ p ) Reservation protocol witliook-ahead for broadcast WDM networks,”
proof, note that the inductive hypothesis holdsdet C, since in IEEE Proc. INFOCOM '97 Apr. 1997.
Sched(C+1)s the same as the schedule on channelhich
is optimal by assumption, as we only consider schedules in
which channel); is idle only at the end of the frame. . )
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