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Packet Scheduling in Broadcast WDM Networks
with Arbitrary Transceiver Tuning Latencies

George N. Rouskas,Member, IEEE, and Vijay Sivaraman

Abstract—We consider the problem of scheduling packet trans-
missions in a broadcast, single-hop wavelength-division multi-
plexing (WDM) network, with tunability provided only at one
end. Our objective is to design schedules of minimum length to
satisfy a set of traffic requirements given in the form of a demand
matrix. We address a fairly general version of the problem as
we allow arbitrary traffic demands and arbitrary transmitter
tuning latencies. The contribution of our work is twofold. First
we define a special class of schedules which permit an intuitive
formulation of the scheduling problem. Based on this formulation
we present algorithms which construct schedules of length equal
to the lower bound provided that the traffic requirements satisfy
certain optimality conditions. We also develop heuristics which,
in the general case, give schedules of length equal or very
close to the lower bound. Secondly, we identify two distinct
regions of network operation. The first region is such that the
schedule length is determined by the tuning requirements of
transmitters; when the network operates within the second region
however, the length of the schedule is determined by the traffic
demands, not the tuning latency. The point at which the network
switches between the two regions is identified in terms of system
parameters such as the number of nodes and channels and
the tuning latency. Accordingly, we show that it is possible to
appropriately dimension the network to minimize the effects of
even large values of the tuning latency.

Index Terms—Optical networks, packet scheduling, tuning
latency, wavelength-division multiplexing.

I. INTRODUCTION

W AVELENGTH-division multiplexing (WDM) is con-
sidered as the most promising approach to fully ex-

ploiting the vast information-carrying capacity of single-mode
fiber. Our focus in this paper is on a WDM network ar-
chitecture known as thesingle-hoparchitecture [14]. Single-
hop networks are especially attractive as they areall-optical
in nature. In other words, any information transmitted into
the medium remains in the optical form until it reaches its
destination. Critical to the design of single-hop networks is
the availability oftunablelasers and/or optical filters, devices
with the ability to tune across all available channels. Such
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devices do exist today; however, their capabilities are limited
in terms of both tunability range and speed, and the ideal
device, one that can tune across the useful optical spectrum
in sub-microsecond times [11] remains elusive. We show,
however, that careful network design can mask the effects of
nonideal devices, making it possible to build single-hop WDM
networks usingcurrently availabletunable optical transceivers.

In a typical WDM environment, one with a large number of
users and a limited number of wavelengths, it seems possible
to mask the tuning times by letting a transceiver that was
previously idle take the place of one that is taken off-line
for retuning. Our work provides insight into this potentially
difficult problem of coordinating the packet transmissions
and retunings among the various nodes in the network. We
provide novel heuristics and optimal (under certain conditions)
scheduling algorithms, and we show that, if the network
operates within a certain region, even large values of the
tuning latency have no significant effect on the length of
the schedule (which provides a measure of the delay and
throughput performance).

Section II contains some background information, and Sec-
tion III describes the system and traffic model. In Section IV
we formulate the scheduling problem, and we derive lower
bounds on the schedule length. We introduce a special class of
schedules in Section V, and we develop scheduling algorithms
which, under certain conditions, construct optimal schedules
within this class. Scheduling heuristics are developed in Sec-
tion VI, and in Section VII we present some numerical results.
We conclude the paper in Section VIII.

II. BACKGROUND

Let denote thenormalized tuning latency, expressed in
units of packet transmission time. The value ofdepends
on the data rate, the packet size, and the transceiver tuning
time, and can be less than, equal to, or greater than one.
Underlying the design of a broad class of architectures is the
assumption that , i.e., that transceiver tuning times are
negligible compared to the duration of a packet transmission.
Accordingly, apaddingequal to time units can be included
within each slot to allow the transceivers sufficient time to
switch between wavelengths, with minimal effects on the
overall performance. This is reflected in the design of network
architectures and protocols for such environments [3], [12],
[16], [17] which has been geared toward improving the delay
and throughput characteristics of the network under various
traffic assumptions, completely ignoring transceiver tuning
times.
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Emerging communication environments, however, are such
that the tuning times of even the fastest available devices dom-
inate over packet transmission times, makingcomparable
to, and even greater than, one. Including a padding equal to

within each slot would be highly inefficient in this case;
instead, it is highly desirable to have the slot time equal to the
packet transmission time alone. Let us now define parameter

. In a slotted system with a slot time equal to the
packet transmission time, a transceiver instructed to switch to
a new channel will be unavailable for a number of slots equal
to .

Minimizing the effects of transceiver tuning times on net-
work performance is possible only through specially designed
protocols. In [8], for instance, the time-division multiple access
(TDMA) scheme considered is such that the frame is divided
into transmitting and tuning periods in a fashion reminiscent
of the time slot assignment in TDM switching systems [5],
[10], [13]. Each transceiver operates on a fixed channel during
a transmitting period; no transmissions take place during the
tuning periods, which are reserved to retune transceivers. The
objective is to minimize the number of tuning periods within
the frame.

When the number of stations is greater than the number
of wavelengths, at most stations may be transmitting at

any given slot. Other stations may use that slot for retuning
to a new channel, so that they will be ready to access that
channel at a later slot. Thus, transceiver tuning times may be
overlapped with transmissions by other stations. The objective,
then, is to design schedules of minimum length, given a traffic
demand matrix. Various versions of this problem have been
formulated and studied previously in [1], [2], [6], [15]. In [1],
[6], [15] uniform traffic demands are considered, and lower
and upper bounds on the length of an optimal schedule are
derived. The work in [2] considers a traffic demand matrix
of 1’s and 0’s (representing the existence or not, respectively,
of a head-of-line packet at the various queues), and values of

. Our work is a generalization of the work in [1], [2],
[6], [15], as it considers arbitrary traffic demands and arbitrary
values of . Furthermore, our conclusions extend and provide
further support to the results of earlier work.

The problem of scheduling nonuniform traffic with arbitrary
tuning latencies has been previously studied in [4]. In contrast
to [4] where one heuristic is used throughout, we make the
fundamental observation that, depending on the traffic matrix
and the system parameters, the network can be operating in
one of two distinct regions. As a result, we develop different
optimal algorithms and heuristics for each region.

III. SYSTEM MODEL

We consider packet transmissions in an all-optical, single-
hop WDM network with a passive star physical topology.
Each of the nodes in the network employs one transmitter
and one receiver. The passive star supportswavelengths, or
channels; in general, . We consider tunable-transmitter,
fixed-receiver networks, but all our results can be easily
adapted to fixed-transmitter, tunable-receiver systems. Each
tunable transmitter can be tuned to any and all wavelengths

. The fixed receiver at station is assigned
one of the wavelengths, and we let denote the set of
receivers sharing wavelength .

Under the packet transmission scenario we are considering,
there is an traffic demand matrix , with

representing the number of slots to be allocated for trans-
missions from source to destination . Since a transmission
on wavelength is heard by all receivers listening on ,
given a partition of the receiver set into sets, we obtain
thecollapsed[2] traffic matrix . Element
of the collapsed matrix represents the number of slots to be
assigned to sourcefor transmissions on channel :

(1)

In this paper, we assume that , that is, each source
has to be allocated at least one slot on each channel. This

assumption is reasonable when the number of nodes,, is
significantly greater than the number of available channels (a
likely scenario in WDM environments), as each channel will
be shared by many receivers. We also letdenote the total
traffic demand .

There are several situations in which such a scenario arises.
Under a gated service discipline, may represent the number
of packets with destination in the queue of station at
the moment the “gate” is closed. A reservation protocol that
can be used to communicate this queue-length information is
described in [19]. Alternatively, may represent the number
of slots to be allocated to the source–destination pair
to meet certain quality of service criteria; then, may be
derived based on assumptions regarding the arrival process at
the source. All our results are applicable to both scenarios, as
they depend only on the matricesD and A, not on how the
elements of these matrices were obtained.

A. Transmission Schedules

A simultaneous transmission by two stations on the same
channel results in acollision. To avoid packet loss due to
collisions, some form of coordination among transmitters is
necessary. Atransmission scheduleis an assignment of slots
to source-channel pairs that provides this coordination: if slot

is assigned to pair ), then in slot , source may
transmit a packet to any of the receivers listening on.
Exactly slots must be assigned to the source-channel pair

, as specified by the collapsed matrixA. This assignment
is complicated by the fact that transmitters need time to tune
from one wavelength to another.

If the slots are contiguously allocated for all pairs ,
the schedule is said to benonpreemptive; otherwise we have
a preemptiveschedule. Under a nonpreemptive schedule, each
transmitter will tune to each channel exactly once, minimizing
the overall time spent for tuning. Since our objective is to mini-
mize the time needed to satisfy the traffic demands specified by
the collapsed traffic matrixA, we only consider nonpreemptive
schedules. A nonpreemptive schedule is defined as a set

, with the first of a block of contiguous slots
assigned to the source-channel pair . Since each source
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Fig. 1. Optimum length schedule for a network withN = 5; C = 3, and � = 2.

has exactly one laser which needs slots to tune between
channels, all time intervals must be
disjoint,1 yielding a set ofhardware constraintson schedule :

(2)

In addition, to avoid collisions, at most one transmitter should
be allowed to transmit on a given channel in any given slot,
resulting in a set ofno-collision constraints:

(3)

A nonpreemptive schedule is admissibleif and only if
satisfies both the hardware and the no-collision constraints.

Unless otherwise specified, from now on the term “schedule”
will be used as an abbreviation for “admissible nonpreemptive
schedule.”

The length, , of a schedule for the collapsed traffic
matrix A is the number of slots required to satisfy all traffic
demands under . Fig. 1 shows an optimum length sched-
ule for a network with nodes, channels, and

; matrix A can be easily deduced from the figure. Note
that all hardware and no-collision constraints are satisfied. In
particular, the first slot assigned to station 3 on channel
is slot 13, rather than slot 12, as its laser needs two slots to
tune from to .

In the following, we make the assumption that the schedule
repeats over time; in other words, if is the start slot of
transmitter on channel under schedule of length ,
then so are slots where denotes
the th identical copy of the schedule. If parameters are
derived based on the behavior and required quality of service
of longer term connections, we expect the schedule to repeat
until there is a change in the traffic demands. Under a gated
service discipline scenario, however, a new schedule has to be
computed after all transmissions under the current schedule
have been completed. We now argue that the schedules we
derive are applicable even under the latter scenario.

If the schedule is used only once, no transmissions are
possible during an initial period of slots when transmitters
tune to their initial channels. On the other hand, if the schedule
repeats over time, it may be possible to overlap this tuning

1We make the assumption that slot� starts at time� � 1 and occupies the
time interval[� � 1; �).

period with transmissions in theprevious frame, possibly
resulting in a smaller schedule length.2 Referring to Fig. 1,
we see that in a repeating schedule, the tuning of transmitter 5
from to (to start the next frame) is overlapped with the
packets sent by transmitter 2 on during the current frame. In
any case, the length of a schedule derived under the assumption
that transmissions repeat over time will be at mostslots
smaller than if this assumption is not made. We can then use
the schedules derived here in situations where a schedule is
used only once, after adding an initial period of at most
slots. Even though our assumption does affect the schedule
length somewhat, it does not affect our conclusions about the
network’s regions of operation, to be discussed shortly.

IV. SCHEDULE OPTIMIZATION AND LOWER BOUNDS

Our objective is to determine an optimum length schedule
for matrix D, as such a schedule would both minimize the
delay and maximize throughput. This problem, which we
will call the Packet Scheduling with Tuning Latencies (PSTL)
problem, can be stated as follows.

Problem 1 [PSTL]: Given the number of nodes, the
number of channels, the traffic matrix , and the
tuning slots , find a schedule of minimum length forD.

ProblemPSTLcan be logically decomposed into two sub-
problems: a) sets of receivers, , sharing wavelength

, must be obtained, and from them the collapsed traffic
matrix, A , must be constructed and b) for alland
, a way of placing the slots to minimize the length

of the schedule must be determined. The first subproblem
can be solved by using an approximation algorithm [7] to
assign receive wavelengths so that the traffic load, given by
matrix D, is balanced across the channels. Load balancing
is a well-known -complete problem, and will not be
considered further. Let us now turn our attention to the second
subproblem; for reasons that will become apparent shortly, we
will refer to this as theOpen-Shop Scheduling with Tuning
Latencies (OSTL)problem. It can be expressed formally as a
decision problem.

Problem 2 [OSTL]: Given the number of nodes, the
number of channels, the matrix , the tuning slots

, and a deadline , is there a schedule that meets
the deadline?

2Actually, a tuning period of� slots is still needed the very first time the
schedule is used, but it can be ignored, especially if the schedule repeats for
a relatively large number of times.
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OSTL is a generalization of the nonpreemptive open-shop
scheduling (OS) problem in [9]; it reduces to the latter when
we let . Problem is -complete when the number
of wavelengths [9]. But for , OS admits a
polynomial-time solution [9]. The following theorem confirms
our intuition thatOSTL is in a sense more difficult thanOS.
The proof of the theorem is omitted, but can be found in [18].

Theorem 1: OSTL is -complete for any fixed .

A. Lower Bounds for PSTL and OSTL

The length of any schedule cannot be smaller than the
number of slots required to satisfy all transmissions on any
given channel, yielding thebandwidth bound(see also [2],
[4], [9])

(4)

The term in the brackets depends on the assignment of receive
wavelengths to the nodes, but the rightmost term depends only
on thetotal traffic demand, , and is a lower bound onPSTL
independently of the elements of matrix D. Expression
(4) implies that, given the number of wavelengths (which
determines the amount of bandwidth available), the bandwidth
bound is minimized when the traffic load is perfectly balanced
across the channels.

We obtain a different bound by adopting a transmitter’s
point of view. Each transmitterneeds a number of slots equal
to the number of packets it has to transmit plus the number
of slots required to tune to each of channels. We call this
the tuning bound[2], [4], [9]:

(5)

The tuning bound is independent of the assignment of wave-
lengths to receivers, and only depends on parameters ,
and the total demand ; it is minimized when each source
contributes equally to the total traffic demand. We now obtain
the overall lower bound as . The
latter is minimized when

(6)

Quantity , which we will call the critical length,
is independent of the demand matrix, and characterizes the
network under consideration. Relationship (6) between the
minimum bandwidth bound, , and the critical length
is a fundamental one, and represents the point at which
wavelength concurrency balances the tuning latency. If a
schedule has length equal to the critical length, it is such that
exactly (respectively, ) nodes are in the transmitting
(respectively, tuning) state within each slot. Consequently, all

tuning slots are overlapped with packet transmissions,
and vice versa. Such a schedule is highly desirable, as it has

three important properties: a) it completely masks the tuning
latency, b) it is the shortest schedule for transmitting a total
demand of packets, and c) it achieves 100% utilization
of the available bandwidth, as no channel is ever idle. The
significance of the actual schedule length relative to the critical
length is explored next.

B. Bandwidth Limited Versus Tuning Limited Networks

To get further insight on (6), let us consider the case of
uniform traffic, whereby each source has packets for
each possible destination: . Then, ,
and substituting this value into (6) we get

(7)

In [2] and [15], (7) was solved (with ) to obtain
the value of that minimizes the lower bound for all-to-
all schedules. Typically, however, , and are given
parameters. We can then solve (7) to obtain the optimal value
for .

Suppose now that we choose ; for simplicity, also
let , so that the traffic demand can be perfectly
balanced across the channels. Then, the tuning bound

becomes greater than the bandwidth bound , and
the length of the schedule is determined by the transmitter
tuning requirements. Since the total traffic demand is
and , the throughput achievable under such a schedule
is . The throughput increases with; once

becomes greater than , the bandwidth bound becomes
dominant and the throughput becomes equal to its maximum
value, .

Increasing the value of , however, has the effect of
increasing the length of the schedule. But this length is a
measure of packet delay, and it cannot be increased beyond
a certain level perceived as acceptable by the various higher
layer applications. The demand matrix corresponding to the
value achieves a perfect balance between delay
and throughput, as it provides for the smallest schedule length
that results in a 100% channel utilization. Satisfying the delay
requirements, however, might mean choosing . It is
in these situations that advances in optical device technology
would make a difference. Note that the value of, and
consequently, the value of the critical length, is proportional
to . Employing faster tunable transceivers would then bring

closer to the acceptable (in terms of delay) operating value
of , and improve the throughput.

The above observations are of general nature, applying to
nonuniform demand matrices as well. Similar to [2], we will
say that a network is

• tuning limited, if the tuning bound dominates, i.e.,
, or

• bandwidth limited, if the bandwidth bound is dominant;
then, .

To see why this distinction is important, note that any
near-optimal scheduling algorithm, including the ones to be
presented shortly, will construct schedules of length very close
to the lower bound. If the network is tuning limited, the length
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Fig. 2. Schedule for a bandwidth limited network.

of the schedule is determined by the tuning bound in (5),
which in turn is directly affected by the tuning latency. The
schedule length of a bandwidth limited network, on the other
hand, depends only on the traffic requirements of the dominant
channel, i.e., the channel such that .

Based on this discussion, it is desirable to operate the
network at the bandwidth limited region, as doing so would
eliminate the effects of tuning latency. For uniform traffic this
can be accomplished by selecting since that would
make the bandwidth bound greater than the critical length in
(7). In the general case (nonuniform matrixD) we would like
to make the bandwidth bound in (6) greater than the critical
length, . Given a value for , and some information
about the delay requirements of higher layer applications, this
expression may be satisfied by carefully dimensioning the
network (i.e., initially choosing appropriate values forand

) so that it operates in the bandwidth limited region. Since,
however, delay constraints and/or constraints on the values of

and may make it impossible to satisfy this expression
for a given system, we have developed scheduling algorithms
and heuristics for both regions of network operation.

V. A CLASS OF SCHEDULES FOROSTL

Let A be a collapsed traffic matrix, and a schedule of
length satisfying the hardware and no-collision constraints
(2) and (3), respectively. Consider now the order in which
the various transmitters are assigned slots within, say, channel

, starting with some transmitter . We will say that
is the transmitter sequenceon channel if

is the first node after to transmit on is the second
such node, and so on. Since we have assumed that schedule
repeats over time, after node has transmitted its packets on

, the sequence of transmissions implied bystarts anew.
Similarly, we will say that is the
channel sequencefor node 1, if this is the order in which node
1 is assigned to transmit on the various channels, starting with
channel . Given , the transmitter sequences with as
the first node, are completely specified for all channels.
In general, these sequences can be different for the various
channels. However, in what follows we concentrate on a class
of schedules such that the transmitter sequences (withas

the first node) are the same for all channels:

(8)

The class of schedules defined in (8) is equivalent to the class
of schedules such that the channel sequences (withas the
first channel) are the same for all nodes:

(9)

This class of schedules greatly simplifies the analysis, allowing
us to formulate theOSTL problem in a way that provides
insight into the properties of good scheduling algorithms.

We now proceed to derive sufficient conditions for optimal-
ity and optimal algorithms for the class of schedules defined in
(8) and (9). Since we have found [18] that bandwidth limited
and tuning limited networks are dual of each other, in this
paper we only present results for bandwidth limited networks.
Very similar conditions for optimality and algorithms have
been derived for tuning limited networks, and can be found
in [18].

A. Bandwidth Limited Networks

We present a formulation of problemOSTL applicable to
bandwidth limited schedules within the class (8). Letbe a
schedule of length for such a network, and let
be the transmitter sequence on all channels. For each channel,
consider the frame which begins with the first slot assigned
to transmitter 1. Let the start of the frame on channelbe
our reference point, and let denote the distance between
the start of a frame on channel and the start of the frame
on the first channel, as in Fig. 2. Obviously, . We also
let denote the number of slots that channelremains idle
between the end of transmissions by nodeand the start of
transmissions by node ; we will refer to quantities as
the gapswithin the channels.

The problem of finding an optimum schedule such that a) the
schedule is in the class defined in (8) and b) the transmitter
sequence is , can be formulated as an integer
programming problem, to be referred to asbandwidth limited
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OSTL (BW-OSTL):

(10)

subject to

(11)

(12)

integers

(13)

Constraint (11) ensures that following its packet trans-
missions on channel , the laser at node has enough
time to switch to wavelength . Constraint (12) ensures that
transmitter has enough time to tune from channel (the last
channel) to channel to transmit in the next frame. These
two constraints correspond to the hardware constraints (2).
The no-collision constraints (3) are accounted for in the above
description by the constraint ; by definition of

, this guarantees that the slots assigned to node on
channel will be scheduled after the slots assigned to node

in the same channel.
Finding an optimal schedule within the class (8) for problem

OSTL, involves solving BW-OSTLproblems, one for each
possible transmitter sequence, and choosing the schedule of
smallest frame size. Solving problemBW-OSTL is itself a
hard task since it is an integer programming problem. Recall,
however, that we are considering bandwidth limited networks,
and the bandwidth bound (4) dominates. In other words, there
exists at least one channel such that . If
a schedule of length exists, then at least one channel,
say, channel , will never be idle; this schedule is such that

. We will show that fixing the values of for
one channel makes it possible to solve problemBW-OSTLin
polynomial time. But first, we answer a fundamental question
related to the existence of schedules of length within the
class (8).

1) A Sufficient Condition for Optimality:Let A be the ma-
trix of a bandwidth limited network, be the lower bound,
and define theaverage slot requirementas . If

, then an optimum length schedule is easy to
construct; all of (11)–(13) will be satisfied by letting

; ; and . The
question that naturally arises then, is whether we can guarantee
a schedule of slots when we allow nonuniform traffic.
The answer is provided by the following lemma whose proof
can be found in Appendix A. Note that in the lemma is
greater than zero only when ; this is consistent
with our hypothesis of a bandwidth limited network.

Lemma 1: Let A be a collapsed traffic matrix such that
the lower bound (bandwidth limited
network). Then, a schedule of length equal to exists
within the class (8) for any transmitter sequence, if the
elements ofA satisfy the following condition:

(14)

with given by

(15)

Lemma 1 provides an upper bound on the ‘‘degree of
nonuniformity’’ of matrix A in order to guarantee a schedule
of length equal to the lower bound. Its proof, however, is
based on a worst case scenario; in general, we expect such
an optimal schedule to exist for significantly higher degrees
of nonuniformity.

2) Scheduling Algorithm:We develop an algorithm which,
under the conditions of Lemma 1, produces schedules of
length . In fact, the algorithm is optimal under looser
conditions that do not impose any bound on the variation of

around . The key idea is to schedule transmissions on
so that this channel is always busy, except, maybe after all

nodes have been given a chance to transmit; we expect this
strategy to work well when channel is dominant, that is,

.
Algorithm Make_Bandwidth_Limited_Schedule (MBLS),

described in detail in Fig. 3, operates as follows. All gaps
in channel are initialized to zero; then, during Pass 1,
transmissions in channels through are scheduled at
the earliest possible time that satisfies constraints (11). Doing
so, however, may introduce large gaps into these channels,
resulting in a sub-optimal schedule (refer to (10)). During
the second pass, the algorithm attempts to compact the gaps
within each channel by shifting the slots to the right or left, but
only as far as constraints (11) and (12) allow. That algorithm
MBLS is correct follows from the fact that it constructs a
schedule which satisfies constraints (11)–(13). It is also easy
to verify that its running-time complexity is . We
now state the optimality properties of algorithmMBLS; the
proof of Theorem 2 can be found in Appendix B.

Theorem 2: Algorithm constructs a schedule of
minimum length among the schedules that: a) are within the
class (8) and the sequence of transmitters is ;
b) channel is a dominant channel; and c) channel is
never idle, except, possibly, at the very end of the frame (i.e.,

).
Corollary 1 [Optimality of Algorithm MBLS]: Let be a

channel such that , and arbitrarily label
the transmitters 1 through . Then, under the conditions of
Lemma 1, algorithm MBLS constructs an optimum length
schedule.

Proof: According to Lemma 1, there exists a schedule
of length within the class defined by (8), such that the
transmitter sequence is . Since is the dominant
channel, any schedule of length is such that channel is
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Fig. 3. Scheduling algorithm for bandwidth limited networks.

never idle. Therefore, because of Theorem 2, algorithm MBLS
will construct such a schedule.

B. Tuning and Bandwidth Balanced Networks

We now study the operation of the network when the tuning
and bandwidth bounds are equal, .
Theorem 3 states that, in this case, even arbitrarily small
nonuniformities in the traffic pattern may result inevery
admissible schedule having lengthgreater than the lower
bound. Note that neither the theorem nor its proof refer to
the class of schedules defined by (8) and (9), therefore, this
result holds for arbitrary schedules.

Theorem 3: Let A be a matrix such that
, and such that each transmitter and each channel are

tight (i.e., the slot requirement on each channel and the slot-
plus-tuning requirement of each transmitter are equal to ).
Then, the optimal schedule has length strictly greater than

, even for any arbitrarily small nonuniformity among the
elements ofA.

Proof: Consider a system of nodes, channels, and
tuning slots, and suppose that is an integer.

Letting , we obtain a uniform matrix satisfying
the conditions of the theorem, i.e., such that

, and such that all transmitters and channels
are tight. Let us now modify some of the elements of this
matrix to construct a nonuniform matrixA that continues to
satisfy the conditions of the theorem. At least four elements
have to be modified to achieve this result. For if for some

, we let , we have to increase ,
to make transmitter tight again. And to make channels
and tight again, the least number of elements that need
to be changed are the two elements and , for some
transmitter . We now let the matrixA be such that

, , and for all other . It
is easy to verify that , and that
all channels and transmitters are tight. This traffic matrix is as
close to the uniform matrix as possible, while still satisfying
the conditions of the theorem. Suppose now that a schedule
of length exists. Then neither any channel
nor any transmitter can be idle at any time in such a schedule.
Assuming that the schedule starts at time 0, all transmissions
on through begin and end at times which are multiples
of ; similarly for transmissions by stations 3 through.
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Fig. 4. Scheduling heuristic.

Without loss of generality, assume that node 1 is before node
2 in the transmitter sequence of channel in this schedule,
and let be the transmitter immediately before node 1 in
this sequence. Let be the time ’s transmission on ends;
then must be a multiple of . Since channel is never idle,
the transmission by node 1 on starts at time , and ends at
time . At that (nonmultiple of ) time, node 2 is the
only candidate for immediate transmission on, so node 2
must start transmitting on at time . Node 1, on
the other hand, after a tuning period of slots, is ready for
its next transmission at time ; since this is not a
multiple of , and since node 1 can never be idle, it can only
start transmission on channel . Using similar arguments,
node 2’s transmission must have just ended on channel.
We have established that, under this schedule, on channel
node 1 transmits from time to time , and node 2
from time to time , and on channel node 2
transmits from time to time , and node 1
from time to time . But, regardless
of the values of and , this sequence of transmissions is
impossible,3 contradicting our hypothesis that an admissible
schedule of length equal to the lower bound
exists.

VI. OPTIMIZATION HEURISTICS

We now develop a scheduling heuristic for bandwidth
limited networks that performs well when applied to arbitrary
instances ofOSTL that may not satisfy the optimality condi-
tions of the previous section. Using a very similar reasoning,
it is relatively straightforward to obtain a heuristic for tuning
limited networks.

Recall that for bandwidth limited networks, finding a sched-
ule within the class (8) that solves theOSTLproblem involves
solving BW-OSTLproblems, one for each possible trans-
mitter sequence. On the other hand, we have no efficient
algorithm for solving the most general version ofBW-OSTL,

3For instance, if� < a�1, we havet+� < t+a�1 < t+�+a�1 <

t + 2a, and the transmissions of node 2 on channels�1 and �2 overlap;
similarly for � > a� 1.

but we have developedMBLS, to solve BW-OSTL for a
given transmitter sequence under the additional constraint that
any idling of the first channel occurs after all nodes have
transmitted on that channel. Thus, our approach to obtaining
near-optimal schedules forOSTL is based on making two
compromises.

Suppose that an optimal transmitter sequence for a network
of nodes has been determined, and that a new node is
added to the network. Instead of checking all possible
transmitter sequences, our first approximation is to assume
that, in the optimal sequence for the -node network,
the relative positions of nodesthrough are the same as in
the sequence for the-node network; thus, we only need to
determine where in the latter sequence node has to be
inserted. This can be accomplished by solving BW-OSTL
problems on a -node network, one for each possible
placement of node within the sequence of nodes.
Now let be the dominant channel. Our second compromise
is to use algorithmMBLS to solve the version ofBW-OSTL
which requires that is never idle except at the end of the
frame. From Theorem 2, if a schedule of length equal to
exists for the given transmitter sequence,MBLSwill find such
a schedule. But if the optimal schedule has length greater than

, MBLS may fail to produce an optimal solution as the
idling in the first channel may be anywhere within the frame,
not necessarily at the end.

For bandwidth limited networks, our heuristic is described
in Fig. 4. Regarding the complexity of the heuristic, note
that Step 2 will dominate. During theth iteration of Step 2,
algorithm is called times on a network of nodes.
Since the complexity of on a network of nodes is

, the overall complexity of the heuristic is .

VII. N UMERICAL RESULTS

We consider four algorithms for theOSTL problem: 1)
algorithm MBLS, described in Fig. 3; the algorithm is ap-
plied after the channels have been labeled through
in decreasing order of , and the transmitters have
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Fig. 5. Algorithm comparison forC = 10 channels and� = 1 tuning slots.

been labeled 1 through in decreasing order of ;
2) algorithmMTLS, with the same labeling of channels and
transmitters;MTLShas not been described, but is very similar
to MBLS, only targeted to tuning limited networks; 3) heuristic
BLSH, described in Fig. 4; 4) heuristicTLSHfor tuning limited
networks; this heuristic has not been described, but is very
similar to BLSH.

Let be the actual length of a schedule for matrix
A produced by some scheduling algorithm. Figs. 5–7 plot
quantity against the number of nodes,, for the
four algorithms described above; 95% confidence intervals are
also shown in the figures. The elements of each matrixA were
chosen, with equal probability, among the integers 1 through
20. We show results only for ; very similar results for
other values of , as well as for matricesA generated using
other distributions, can be found in [18]. We have used three
different values for , namely , while varies
from 10 to 80.

Our first observation from Figs. 5–7 is that the two heuris-
tics, BLSH and TLSH, always perform as good as, or better
than the corresponding algorithms,MBLSandMTLS, respec-
tively, as expected. The results also confirm our intuition
regarding the two regions of network operation, and justify
the need for algorithms specially designed for each region.
Let us, for the moment, refer to Fig. 7 which shows results
for . For these values of and , and the
way the traffic matrices are constructed, a network is in the
bandwidth limited region if , and in the tuning limited
region, otherwise. It is not surprising then that algorithms
MBLS and BLSH outperform their counterparts,MTLS and
TLSH, respectively, when , while the opposite is true
for .

Consider the performance ofMBLSandBLSH in the band-
width limitedregion; similar conclusions can be drawn for the
performance ofMTLSandTLSH in the tuning limitedregion.
In general, the length of schedules produced byMBLS and
BLSH are very close to the lower bound, and, for networks
well within the bandwidth limited region (i.e., for sufficiently
large ), BLSHandMBLSconstruct schedules of lengthequal
to the lower bound. This is an important result, as it establishes
that the lower bound accurately characterizes the scheduling
efficiency. Since the lower bound is independent of the tuning
latency in this region, this result also implies that it is possible
to appropriately dimension the network to minimize the effects
of even large values of . In the boundary of the tuning and
bandwidth limited regions where the tuning and bandwidth
bounds are close to each other, the algorithms do not perform
as close to the lower bound (although they are never more than
15% away from it). When several channels and nodes have
similar slot requirements, the algorithms have less flexibility
in placing the slots to obtain schedules of length close to the
lower bound. Theorem 3, however, suggests that this behavior
is not due to inefficiency inherent to the algorithms, but is
rather due to the fact that the optimal schedules in this region
have length greater than the lower bound.

We conclude thatBLSH and TLSH achieve the best per-
formance within the bandwidth and tuning limited regions,
respectively. AlgorithmsMBLSandMTLScan achieve almost
similar performance, but they are more efficient in terms of
running time.

VIII. C ONCLUDING REMARKS

We considered the problem of designing TDM schedules for
broadcast optical networks. Based on a new formulation of the
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Fig. 6. Algorithm comparison forC = 10 channels and� = 4 tuning slots.

Fig. 7. Algorithm comparison forC = 10 channels and� = 16 tuning slots.

scheduling problem, we presented algorithms which construct
schedules of length very close to, or equal to the lower bound.
We also established that, as long as the network operates within
the bandwidth limited region, even large values of the tuning
latency have no effect on the length of the schedule. The main
conclusion of our work is that through careful design, it is
possible to realize single-hop WDM networks operating at

very high data rates, usingcurrently availableoptical tunable
devices.

APPENDIX

A. Proof of Lemma 1

In proving Lemma 1 we will make use of the following
result.
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Lemma 2: If constraints (14) on the elements ofA hold,
then for any subset of transmitters from such
that , and any channel :

(16)

Proof: If , (16) follows directly from (14). If
, let . The result in (13)

follows from (14) and the fact that the size of is less than
.

We are now ready to prove Lemma 1. Although the proof
refers to the problem formulation in (10)–(13), it does not
depend on the transmitter sequence. As a result, it holds for
any transmitter sequence, not just the sequence
implied in (10)–(13).

Proof of Lemma 1:Let us introduce a new variable
in the formulation of theBW-OSTLproblem in

(10) - (13), Then, inequalities (11) and (12) can be rewritten
as one inequality (references to channel when
refer to the next frame on ):

(17)

For the proof we consider a worst case scenario, under
which the total slot requirement oneachchannel is equal to
the lower bound. A schedule of length under such a
scenario will ensure a schedule of length when the slot
requirement on some channel is less than , as one can
simply introduce slots in which this channel is idle.

Since we are trying to achieve a schedule of length ,
we are seeking a solution to problemBW-OSTLsuch that

. We can then rewrite inequality (17) as

(18)

To satisfy (18) we need to set to the largest
possible value of the right hand side in (18). If is the value
of which maximizes the the right hand side of (18), we set:

(19)

Adding up the above equations for all channels, we get:

(20)

Equation (20) can be expressed in a compact form by intro-
ducing constants :

(21)

We now define the set to be a subset of
such that if and only if ; we also let

. Inequality (21) can then be written
as:

(22)

Let . Then, from Lemma 2 we have that

(23)

(24)

If we subtract (24) from (23) all but one term cancel out
on the right hand side:

(25)

Using this in (22) and using (14) to bound , we have an
upper bound on :

(26)

We can then guarantee that if (15) is satisfied.

B. Proof of Theorem 2

Proof: Let Sched(c)denote the frame of the schedule on
starting with the first slot in which transmittertransmits

on . Sched(C+1)refers to the next frame on . Once
the schedule length and gaps , are
known, gap is uniquely determined, and will be ignored
in the following. Let OPT denote the optimal length under
the assumptions of Theorem 2. We prove thatOPT by
tracing the algorithm and showing thatOPT at every
step. ThatOPT at the end of Step 2 is obvious, since
the optimal can be no smaller than the lower bound. In Pass
1, all transmitters are assigned the earliest possible slots on
each channel, and Step 9 makes sure that the schedule length
is large enough so that each transmitter gets enough time to
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tune back to after its transmission on . ThereforeOPT
at the end of Pass 1.

In Pass 2, channels and transmitters are processed in reverse
order, and the algorithm tries to compact the gapsas much
as possible. We show that once the gaps on a channel
have been compacted by Pass 2, it is not possible to compact
them any further to reduce the length, thus proving thatOPT

. The proof is by a two-level induction—the first on
and the second onwithin the same channel . The induction
proceeds by assuming thatSched(c+1)is optimal (meaning
that the gaps on cannot be compacted any further),
and that transmitters are optimally scheduled on

(i.e., that the gaps cannot be compacted
any further), and then showing that the gap cannot be
compacted any more than what Pass 2 does. There are only
2 ways gap can be compacted—either by moving the
slots to the right, or by moving slots
to the left. But the slots cannot be moved any more to
the right (otherwise Step 12 would have done so), neither can
slots be moved any more to the left (otherwise Step 14
would have done so). Hence gap is as compact as can
be, and is optimal by induction. To complete the induction
proof, note that the inductive hypothesis holds for , since
Sched(C+1)is the same as the schedule on channel, which
is optimal by assumption, as we only consider schedules in
which channel is idle only at the end of the frame.
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