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Congestion Minimization for Service Chain Routing
Problems With Path Length Considerations
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Abstract— Network function virtualization (NFV), with its per-
ceived potential to accelerate service deployment and to introduce
flexibility in service provisioning, has drawn a growing interest
from industry and academia alike over the past few years. One of
the key challenges in realizing NFV is the service chain routing
problem, whereby traffic must be routed so as to traverse the
various components of a network service that have been mapped
onto the underlying network. In this work, we consider the online
service chain routing problem. We route the service chain with
the goal of jointly minimizing the maximum network congestion
and the number of hops from the source to the destination. To this
end, we present a simple yet effective online algorithm in which
the routing decision is irrevocably made without prior knowledge
of future requests. We prove that our algorithm is O(log m)-
competitive in terms of congestion minimization, where m is the
number of edges of the underlying network topology, and we
show that this ratio is asymptotically optimal.

Index Terms— Network function virtualization, virtual
network functions, NFV orchestration, online algorithm,
resource allocation.

I. INTRODUCTION

NETWORK function virtualization (NFV) [1] is an emerg-
ing networking paradigm that promises to ease the com-

plexity of deploying new services into today’s network. With
the help of virtualization techniques, NFV relies on com-
mercial off-the-shelf hardware to replace existing networking
devices [2], thus separating the network functionality from
the underlying network equipment and decoupling the service
entity from the service location. Such a paradigm opens
the door for network operators to implement both existing
and future networking functions as software modules and
consolidate them on general-purpose commodity servers based
on demand. This approach simplifies the deployment process
and introduces flexibility in service provisioning.

A virtual network function (VNF) represents a single func-
tional block in an NFV environment. Each network service is
composed of one or more VNFs, which is an implementation
of a network function (NF). VNFs are realized (instantiated) by
deploying them on virtual resources, such as virtual machines.
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The NFV management and orchestration (NFV-MANO) unit
is responsible for the management of the VNFs [3], and main-
tains a database with data models and information for the NFs,
virtual resources, and network services. The NFV-MANO unit
utilizes this information to configure, orchestrate, and manage
the life-cycle of the VNFs [4].

One key aspect in the management of requests for network
services is the “service chain routing problem” in which the
objective is to route user traffic along a path that starts at
the source node, passes through the network locations where
VNFs are implemented, and finally reaches the destination
node. This problem becomes challenging when there are
multiple VNFs for the same function available at distinct
network nodes, and it is important to select one that aligns
with the routing objectives. In an offline scenario, where all
service requests are known in advance, service chain routing is
NP-hard; this result follows from the fact that the unsplittable
flow problem, which was proven to be NP-hard in [5], is a
special case of the service chain routing problem. In practice,
service chain routing is an online problem: service requests
may arrive at arbitrary times and they must be placed onto the
network without prior knowledge of future requests. These
conditions pose additional challenges in developing effective
and efficient algorithms for the online problem.

In this work, we focus on algorithm design for service
chain routing in an online scenario, and we develop an
algorithm to find a feasible routing of the service chain with
respect to the service ordering constraints. The major objective
is to improve the network performance by minimizing the
maximum congestion. Different from our works in [6], we also
consider minimizing the number of hops needed to route a
service request, an important goal for reducing the end-to-end
delay of a network service. We solve this problem using an
efficient algorithm, based on the shortest path tour problem
(SPTP) [7], [8], with a customized length function. Under a
reasonable assumption that is satisfied in practice, i.e., that
congestion does not result from a single request, we prove
that this algorithm is O(log m)-competitive, where m is the
number of edges in the network graph. We further show that
this competitive ratio is asymptotically optimal.

Following the introduction, in Section II we review the
literature in this field. In Section III, we present the model
for the network and service requests, and formally define the
service chain routing problem we consider. In Section IV,
we develop an online algorithm to minimize the maximum
congestion and derive its competitive ratio, and we evaluate
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its performance in Section V. We conclude the paper in
Section VI.

II. RELATED WORK

In recent years, research efforts have been directed towards
the service chain embedding problem, and a survey of resource
allocation problems in NFV was presented in [9]. A major-
ity of these works addressed an offline problem, where the
aggregated requests need to be mapped onto the underlying
network in one shot, under various embedding objectives
and scenarios, as in [10]–[16]. In [10], [11], the authors
considered the throughput maximization problem and pro-
posed a randomized algorithm with performance guarantees,
with applications to inter-datacenter networks and cellular
networks. In [12], the authors considered the placement of
VNFs and routing the traffic with a heuristic algorithm so as to
minimize the expensive optical/electrical/optical conversions
in datacenters. In [13], a heuristic algorithm based on game
theory was proposed to place the virtual network functions
and route the traffic to minimize operational cost. In [14],
Barcelo et al. investigate the cloud service distribution prob-
lem that jointly determines the VNF placement and content
distribution on a cloud platform. Their formulation as an inte-
ger linear programming problem aims at minimizing overall
network operation cost while simultaneously satisfying user
demand and capacity constraints. In [15], Feng et al. study a
similar cloud service distribution problem and propose a fully
polynomial time approximation scheme. In [16], the authors
consider maximizing the total amount of VNF processed traffic
under the computational capacity and budget constraints, and
propose an algorithm with performance guarantees.

Apart from the works that addressed the offline service
chain routing problem, there also exist several studies that
consider the online case. In [17], a service chain orchestration
routing strategy was proposed to route the traffic so as to
satisfy the service ordering constraints. However, the under-
lying link load and capacity were not taken into account in
that work. The work in [18] studied the mechanism design
problem in the NFV market, and designed an online stochastic
auction for on-demand NFV provisioning and pricing over
a geo-distributed resource pool. References [19]–[22] focus
on operational cost minimization for service provisioning.
A forecast assisted provision scheme is proposed in [19] to
predict future VNF requirements so as to pre-allocate VNFs
at service maintenance time for a lower-provisioning cost. The
work by Jia et al. [20] considers the need to dynamically
scale the VNFs among geo-distributed datacenters to adapt
to time-varying traffic volumes. They proposed an online
algorithm based on regularization and dependent rounding to
determine the total number and the placement of the running
VNF instances to minimize total operational cost. In [21],
the authors further extend the cloud service distribution prob-
lem in [14] to a dynamic environment and present a control
algorithm for flow scheduling and resource allocation to adapt
to changes in network conditions and service demands, with
system throughput and cost optimality guarantees, while [22]
further incorporates the impact of wireless channel into flow
scheduling and resource allocations.

In [23], the authors propose algorithms to establish a
multicast connection on a NFV-enabled networks aiming at
minimizing the connection cost, and develop heuristic algo-
rithms to handle the case where multicast endpoints dynami-
cally join and leave the multicast session. In [24], the authors
presented a multipath routing algorithm for online service
provisioning, which was obtained by solving a linear pro-
gramming problem, while in [25], the authors proposed an
admission control scheme to admit and route online requests;
the work of [26] studies the generalized flow problem with
a mixture of unicast and multicast traffic, and provides a
throughput-optimal algorithm, In this work, on the other hand,
we consider the online problem of routing unicast traffic along
a single path.

The studies most related to our work are [27]–[29]. The
objective of these works are to map incoming network service
requests to the physical network with finite capacity, and
jointly consider the service chain embedding problem with
admission control. In [27], the authors proposed an online
algorithm that maximizes the number of admitted requests,
under node capacity constraints, and has an O(log K) com-
petitive ratio, where K is the number of network functions in
the service chain. A “standby” mode was introduced in [28] to
defer the acceptance of a request when sufficient resources are
not available. Under this architecture, the authors proposed an
online algorithm for the service chain embedding problem with
the objective of maximizing the revenue with link capacity
considerations. In [29], Jia et al. proposed an online algorithm
to maximize the admitted number of requests, under a finite
link capacity constraint. In our work, we tackle the problem
from a different perspective, i.e., we assume that all services
are admitted and our objective is to embed the service chain
in a way that minimizes the maximum congestion.

III. NETWORK MODEL AND PROBLEM FORMULATIONS

A. Network Model

We model the network as an undirected graph G = (V, E),
with n = |V | number of vertices, and m = |E| number
of edges. Both the nodes and edges are capacitated, with
cu denoting the capacity of the node u ∈ V and cu,v

denoting the capacity of edge (u, v) ∈ E. For the ease of
presentation, when the two endpoints of an edge are irrelevant,
we denote the edge as e ∈ E, and its capacity as c(e).1

The network supports a set of K distinct network functions,
NF = {NF1, NF2, . . . , NFK}, and each network function
NFk is deployed (instantiated) at a subset of the network
nodes. In addition, each network node may support an arbitrary
number of NFs. We assume that the placement of NFs on
network nodes is provided as input to the problem.

B. Service Chain Request

In an online scenario, service chain requests arrive
in real time, whereby NFV-MANO has no information

1For ease of presentation, we assume an undirected graph with symmetric
link capacity. Traffic in both directions share the capacity of the same link.
However, the model may be extended to the asymmetric case by creating two
directed links in the two directions such that traffic only consumes resources
on the corresponding link.
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TABLE I

NOTATION TABLE

about future requests when it makes the routing decision.
We model a single service chain request Ci as a tuple of
Ci = (srci, dsti,Fi, d

n
i (k)|k=1,...,ki , d

e
i (k)|k=0,...,ki), where

srci and dsti are the source and destination nodes for the
service chain; Fi =

{
F1

i ,F2
i , . . . ,Fki

i

}
represents ki NFs

that Ci requests, where Fk
i ∈ NF , is a specific NF type

that the traffic of Ci must traverse in the given order; dn
i (k)

specifies the resource requirement for the k-th NF (namely,
Fk

i ) on substrate node n; while de
i (k) represents the amount

of traffic between Fk
i and Fk+1

i (when k = 0, it presents
the traffic from srci to F1

i , and when k = ki it represents
the traffic from Fki

i to dsti). Similar to the work in [30],
we assume that some network functions (e.g., an encoder or
WAN optimizer) may have traffic changing effects, such that
the amount of traffic coming out of the network function may
be different than the amount of traffic that goes in. As a result,
the value of de

i (k) can be different with respect to k. We define
a segment as the sub-path a packet traverses to reach one VNF,
which includes the sub-paths from srci to F1

i , F j
i to F j+1

i ,
and Fki

i to dsti. We respectively denote these sub-paths as
the 0-th segment, j-th segment, and ki-th segment. And we
use V (Fk

i ) to denote the set of substrate nodes that host Fk
i .

In this work, we assume that requests are permanent,
i.e., once a request arrives it will never terminate; extending
the algorithm to the scenario whereby requests have a certain
holding time after which they release resources and leave the
network is the subject of ongoing research.

Fig. 1. Network traffic in the original network graph G (left) and the new
graph G′ with artificial nodes (right).

C. Unification of Node and Link Resources

To simplify the presentation and modeling process, we omit
the physical node capacity and the VNF node processing
requirements as they can be incorporated into the link capac-
ities and traffic requirements, respectively. Such a transfor-
mation is carried out via the notion of augmenting graphs,
whose appliance can be found in [14], [15], [22], [31], [32],
by extending the original graph G with artificial nodes and
links, and incorporate the computational resources to such
links.

To demonstrate, consider Fig. 1. Given a substrate node
v ∈ V with node capacity cv hosting a NFV NF , one can
create an artificial node v′ attached to v and move the NF
to the artificial node v′, as shown in the left part of Fig. 1.
Notionally, the introduction of this artificial node separates the
packet forwarding ability of the substrate node from the NFV
processing power. When node v only forwards a packet, this
packet will go through v, while a packet only reaches v′ when
it needs to be processed by NF . The link capacity of the link
between the artificial node and the substrate node is cvv′ =
2 × cv , as a packet needs to traverse the edge (v, v′) twice.
We denote the graph with artificial nodes as G′ = (V ′, E′).

The above process unifies resource capacities and demands
for network links and nodes. For ease of presentation, in the
subsequent paragraphs, we use di(k) to uniformly denote
the node and link demands and we use c(e) to denote the
capacities. Notice that this does not necessarily mean that the
demand and capacity for the nodes are proportional to the
traffic demand. Instead, such a difference is encoded within
e: when e ∈ E, the demand and capacity stand for the
traffic demand and link capacity, otherwise, for e ∈ E′ \ E,
the demand and capacity are for node demand and capacity,
and we use network congestion to uniformly denote the
maximum congestion on most congested links or nodes.

D. Problem Formulation

Service requests are routed in an online fashion, such
that each request is routed without any information about
the arrival time, traffic volume, or network functions of
the future requests. The service chain will be routed in
a way that each packet passes through the VNFs in a
predefined order. We define the decision variable f i,k

u,v to
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represent if the kth segment of Ci is routed on the edge
(u, v). The objective is to route a new request Ci so as to
minimize the maximum network congestion. We define the
congestion metric after we route the request Ci as Ui =
max(u,v)∈E′

∑i
j=0

∑k=kj

k=0 (f j,k
u,v + f j,k

v,u)dj(k)/cu,v .
For the first i requests, based on the above definitions,

we formulate the offline version of the congestion minimiza-
tion problem as the following integer linear programming
(ILP) problem.

minimize Ui (1)

s.t.
∑

u∈δ(src)

f j,0
srcj,u −

∑
u∈δ(srcj)

f j,0
u,srcj

= 1, j ≤ i (2)

∑
u∈δ(dstj)

f
j,kj

u,dstj
−

∑
u∈δ(dstj)

f
j,kj

dst,u = 1, j ≤ i (3)

∑
v∈V (Fk

j )

∑
u∈δ(v)

f j,k
u,v −

∑
v∈V (Fk

j )

∑
u∈δ(v)

f j,k
v,u = 1,

j ≤ i, 1 ≤ k ≤ kj (4)∑
u∈δ(v)

f j,k
u,v−

∑
u∈δ(v)

f j,k
v,u =

∑
u∈δ(v)

f j,k+1
v,u −

∑
u∈δ(v)

f j,k+1
u,v ,

j ≤ i, 0 ≤ k < kj , v ∈ V (Fk
j ) (5)∑

u∈δ(v)

f j,k
u,v −

∑
u∈δ(u)

f j,k
v,u = 0, v /∈ V (Fk

j ),

j ≤ i, 1 ≤ k < kj (6)
i∑

j=0

kj∑
k=0

(f j,k
u,v + f j,k

v,u)dj(k) ≤ Uicu,v,

j ≤ i, (u, v) ∈ E′ (7)

f j,k
u,v = {0, 1} ∀j ≤ i, (u, v) ∈ E′, k ≤ ki (8)

Expression (1) represents the objective of minimizing the
maximum congestion at the time request Ci is routed. As we
are solving an online problem, the same objective must have
been applied to all earlier requests Cj , j ≤ i.

Constraints (2) - (6) are the flow conservation constraints:
Constraint (2) and Constraint (3), respectively, guarantee that
the traffic originates from the source node and directs towards
the destination node. Constraint (4) ensures that, for the kth

segment of the service chain, the traffic will be routed towards
one of the VNFs in Fk. Constraint (5) ensures that the flow
in and out of a single VNF is consistent. Because the traffic
will be processed by one of the VNFs in Fk, when the traffic
comes out of this VNF, it will switch to the next segment.
In another words, the destination VNF in the previous segment
needs to be the source of the next segment. Constraints (4)
and (5) together ensure that the traffic will pass through the
VNFs in a predefined order. Constraint (6) guarantees that
the net flow in and out of a substrate node that does not
host VNF remains zero. The flow conservation constraints,
combined with Constraints (8) that enforce a binary value for
the decision variable, ensure that all the traffic of one request
will be routed along a single walk.

Lastly, Constraint (7) specifies that the total amount of
traffic carried by any edge will not exceed the product of the
edge capacity times Ui. Notice from the above discussion,
when (u, v) ∈ E, di(k) stands for the traffic requirement for

k-th segment of request i whereas cu,v stands for link capac-
ities, and the constraints here stand for resource constraints
on network links; whereas (u, v) ∈ E \ E′, di(k) and cu,v,
respectively, stand for the node demand and capacity, and
Constraints (8) are bounds on node resource requirement and
capacity. Consequently, by minimizing Ui in the objective
function we minimize the maximum resource utilization.

For an online problem, the difference to the offline problem
we consider is that information is revealed incrementally, and
the decision is non-revertible. In other words, when routing
service request Ci, there is no information provided for future
requests with Cj , j > i, while all the decision variables are
fixed for f j,k

u,v, j ≤ i−1. In addition, the value for i is arbitrary,
meaning that we intend to minimize the congestion at any
point in time for all the incoming service chain requests.

IV. ONLINE ROUTING ALGORITHM

In this section, we propose an online service chain routing
algorithm. We design the algorithm under two different con-
siderations: first, minimizing the maximum link utilization,
in which it achieves an asymptotically optimal competitive
ratio of O(log m)2; second, reducing the number of hops for
routing so as to lower the delay and packet loss rate. The algo-
rithm is inspired by the virtual circuit routing problem [33] and
routes each incoming request along the shortest walk under a
customized length function. In the following, we first define
a set of concepts used in developing the algorithm, and then
provide the algorithm details and evaluate its performance.

A. Definitions

Valid Walk: Observe that when a service chain Ci is routed
on a physical network, each segment of the traffic is routed
along a path. This renders the routing of Ci as a walk on
the graph G. We use Wi to denote the set of all valid walks
for request Ci, i.e., the walks that start at node srci, traverse
the required set of network functions in the given order, and
terminate at node dsti. We denote the walk selected by the
routing algorithm for service request Ci as wi ∈ Wi. If the
request is routed along the walk wi, then the amount of
traffic along each edge e of the walk may be determined
from quantities di(k) of the request tuple. This is illustrated
in Figure 2, where the service request shown at the top of
the figure requires one unit of traffic from node A to the
network function NF and from NF to node D. The dotted
line on the bottom of Figure 2 shows a walk that represents a
valid embedding of this service chain on the network topology,
assuming that the network function is located at node E. From
this walk, we determine that one unit of traffic goes through
the edges (A, B) and (B, D), while two units of traffic are

2Competitive ratio measures the outcomes of an online algorithm by
comparing to its optimal solution in hindsight. In our work, an O(log m)-
competitive ratio refers to the congestion achieved by our proposed algorithm
versus the optimal offline congestion L∗. Notice that it is possible for the
achieved congestion Ui > 1, implying a violating to the capacity constraints.
Thus, one can interpret the O(log m) bound as either a) the congestion
achieved by the proposed algorithm is at most O(log m)L∗; or b) one
needs to augment the existing resource by an O(log m) factor to match the
performance in an offline scenario.
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Fig. 2. A service chain request (top) and corresponding walk on the topology
graph (bottom).

placed on edge (D, E). We use tri(e, w) to denote the amount
of traffic from request Ci that travels along edge e of walk w.

Penalty Function: The penalty function serves as an indica-
tor for the congestion of an edge e. For each edge e, we define
the penalty function after we route request Ci as3

pi(e) = γ
li(e)

c(e)L∗ , (9)

where γ ≥ 1 is a constant value, and L∗ is the optimal
maximum congestion of the network in hindsight, i.e. L∗ is the
optimal solution to Ui in an offline scenario where information
for all the requests are known in advance, and li(e) is the
load on edge e after we route the first i requests, namely,
li(e) =

∑i
j=0 trj(e, wj).

Potential Function: We use the potential function φ(i),
defined as the sum of the edge penalty functions after we
route the request Ci,

φ(i) =
∑
e∈E′

pi(e), (10)

to capture the overall cost of placing the first i requests.
Shortest Path Tour: The shortest path tour problem

(SPTP) [7], [8] has been studied extensively in the literature
in various contexts. The input to the problem is a weighted
graph G, source src and destination dst nodes, and multiple
subsets of nodes {T1, T2, . . . , TK}. An algorithm for SPTP
finds a walk (i.e., one or more edges may be traversed multiple
times as part of the walk) from src to dst that visits at least
one of the nodes in each set Tk, 1 ≤ k ≤ K , sequentially.
Additionally, the algorithm must construct a walk whose
weighted length is shortest among all valid walks.

We note that, assuming subset Tk represents the set of
substrate nodes hosting Fk

i , namely, V (Fk
i ), then an (online)

algorithm for SPTP will find a walk for routing the incoming
service chain request Ci. Therefore, our goal is to define a
length function len(e) for each edge such that the online SPTP
algorithm will have a low competitive ratio with respect to
congestion minimization. To this end, we first examine how
congestion minimization is related to the potential function,
and in turn how it translates into an appropriate length function
len(e) for SPTP.

3Here, e ∈ E′. Notice that the penalty function is link specific, c(e) and
l(e) can either stand for link capacity and load when e ∈ E or node capacity
and load for e ∈ E′ \E. The same applies to the subsequent length function.

Our first observation is that the log value of the potential
function, log(φ(i)), is an upper bound for the competitive
ratio. Specifically, the potential function is the sum of all
penalties, and therefore greater than any single penalty value.
More formally:

φ(i) =
∑
e∈E

pi(e) ≥ max
e

pi(e) (11)

= max
e

γ
�i

j=0 trj(e,wj)/c(e)L∗
. (12)

By taking the logarithm of both sides, and given the earlier
definitions of L∗, it follows that the competitive ratio is
bounded by log γ(φ(i)).

Furthermore, notice that the value of φ(i − 1) is constant
since the routing of all previous service requests is given
(i.e., it is fixed and may not change). Therefore, minimizing
the increment of the potential function, φ(i) − φ(i − 1),
is inherently equivalent to minimizing the potential function
φ(i) for this online problem. Now, we also observe that when
service request Ci is routed along the walk wi, only the penalty
function for the edges e ∈ wi will change. Thus, the increment
to the potential function can be rewritten as:

φ(i)− φ(i− 1) =
∑
e∈wi

(pi(e)− pi−1(e))

=
∑
e∈wi

γ
li−1(e)
c(e)L∗ (γ

tri(e,wi)
c(e)L∗ − 1) (13)

We conclude that minimization of the potential function
reduces to finding the shortest valid walk on G whose length
is defined by (13).

However, the penalty associated with walk w depends on
both the number of times and the order in which w traverses
an edge e. This is a crucial difference with SPTP, as the traffic

is in the exponent of the second factor in (13), i.e., γ
tri(e,w)
c(e)L∗ .

In other words, if w traverses e multiple times, we cannot
simply add the cost to obtain the penalty of the walk. This
raises the question of what value to assign to each edge if we
are to use an algorithm for SPTP to find the walk. In particular,
we face a crucial dilemma: apparently, tri(e, w), the amount
of traffic we put on e, depends on the actual walk w, but we
do not have knowledge of the walk until we find out the route.

Length Function: To address the above issue, we must
define the length function so that it is independent of the walk
selected for a service request. Specifically, we define the length
function for edge e that is part of the walk for request Ci as:

leni(e, k) = γ
li−1(e)
c(e)L∗ (γ

di(k)
c(e)L∗ − 1) (14)

With this definition, the length function depends on the
number k of segments of the walk (a value that is provided as
input to the problem), as the amount of the traffic will change
on different segments, but not on the specific walk selected.

Nevertheless, the length function (14) introduces another
challenge. Specifically, a solution to SPTP (i.e., the shortest
walk) using (14) as the length function may not be optimal
under the function (13), since the length of the walk is
inherently different. An example is shown in Figure 3, where
we assume the new request is for one unit of traffic to be
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Fig. 3. Walks under the two length functions for the example of Section IV-A.

routed from source A to destination D after passing a network
function located at node C and the capacity of each edge is
as shown on Fig. 3. For this example, the utilization li−1(e)

c(e)L∗
is assumed the same for all edges e prior to routing this new
request, and also we assume L∗ = 1. In this case, the solution
to SPTP under length function (14) is the walk shown with
a dotted line on the left side, while the optimal walk that
minimizes the increase in potential function of (13) is different
and shown in the right side.

Let us now assume that the maximum congestion cannot
be the result of any one request, i.e.,

�
k di(k)

c(e) ≤ L∗, ∀i, e.
This is a reasonable assumption that is satisfied in practice in
the common scenario that the capacity of each edge is large
compared to the traffic demand of any single request. Under
this assumption, we can state the following result regarding the
walk selected by an SPTP algorithm with length function (14):

Lemma 1: For a request Ci, the shortest path tour wi under
the length function (14) is a γ-approximation to the optimal
walk which minimizes (13).

Proof: The proof to this lemma is in the Appendix. �

B. Online Algorithm

We first describe below how to select a walk with fewer
hops. We recognize that a non-zero constant term in a length
function would encourage the selection of a walk with fewer
number of hops. If we switch the length function from (14) to

len′
i(e, k) = leni(e, k) + α ∗ ρ

= γ
li−1(e)
c(e)L∗ (γ

di(k)
c(e)L∗ − 1) + α ∗ ρ, (15)

where α and ρ are two positive constants (we shall discuss how
to determine their values shortly) and run the SPTP algorithm,
then we can expect a shorter walk than the one under (14).
For the sake of brevity, we call the first term, leni(e, k),
the congestion term, and the second, α ∗ ρ, the constant term.
The reason we can expect a shorter walk is as follows. Suppose
we have two different walks wi and w′

i, with the number
of hops being h(wi) and h(w′

i), while h(wi) > h(w′
i). The

constant terms in the length functions respectively contribute
h(wi) ∗ α ∗ ρ and h(w′

i) ∗ α ∗ ρ to the total length of the two
walks. This would discourage the selection of the walk wi so
long as the difference in the congestion term is not significant
enough.

It remains to be a problem on how to select the constant
term for each edge. We assign the value in the following way:

first, given a service request, we route the service chain along
an SPTP under the length function (14). This results in a
walk w′

i. The weighted length of w′
i is ω, and the number of

hops is h(w′
i). We select ρ = ω/h(w′

i) and have the following
observation:

Lemma 2: The shortest path tour under the length func-
tion (15) is (1 + α)γ-approximation to the optimal walk that
minimizes (13).

Proof: We denote the Shortest Path Tour under the length
function (14) as w′, and under length function (15) as w.

First, it is easy to verify that the weighted length of w
under (15) is at most (1+α)ω. This is because the walk w′ has
the length of ω under the length function (14) and (1 + α)ω
under (15). As w′ is not necessarily the Shortest Path Tour,
and we are running a Shortest Path Tour algorithm, the shortest
walk we find under (15), namely, w, has a weighted length of
at most (1 + α)ω.

Second, notice that the constant term in length function (15)
is positive, meaning that the length of w under (14) is strictly
smaller than its length under (15). This implies that the length
of w′ is at most (1+α)ω under length function (14). Following
the result from Lemma 1, where ω is a γ-approximation
solution to the weighted length, we can conclude the weighted
length of w is at most (1 + α)γ-approximation to the optimal
solution. �

We now explain how to circumvent the fact that the value
of L∗, the optimal congestion in hindsight, is unknown. This
follows from the doubling techniques in [33]: since we do not
have any prior knowledge, we use λ as an estimate for L∗.
Initially, we set λ set to be the minimum possible congestion
for the first request, and we use this value in the length
function (instead of the unknown L∗). For request Ci, after
we map it using the initial value of λ, we examine all the
edges. If there exists an edge e such that

tri(e, wi) + li−1(e) ≥ logγ(μm)λ, ∀e ∈ wi (16)

where m = |E| and μ = 1
1−(1+α)γ(γ−1) is a constant number4

determined by α and γ, then we double the value of λ
and remap the request Ci. This approach does not affect the
asymptotic competitive ratio. The proof to the correctness of
this approach is in [33].

With the proper concepts defined, our online algorithm is
presented as Algorithm 1 below; we refer to this algorithm as

4Please refer to end of the Appendix for the definition of σ.
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Algorithm 1 The OL-CompCL Algorithm for Online Service
Chain Routing
Input:

li−1(e): existing load on edge e
Ci: new service chain to be routed.
λ: estimation for the optimal congestion in hindsight.

Output:
wi: selected route for service chain i

1: Construct a weighted undirected graph G with edge length

leni(e, k) = γ
li−1(e)

c(e)λ (γ
di(k)
c(e)λ − 1)

2: Compute the shortest path tour w′
i w.r.t leni(e, k) with

length ω and the number of hops h(w′
i) of w′

i.
3: Re-compute the shortest path tour wi under length function,

len′
i(e, k) = γ

li−1(e)
c(e)λ (γ

di(k)
c(e)L∗ − 1) + α ∗ ω

h(w′
i)

4: if ∃e ∈ wi, li−1(e) + tri(e, wi) ≥ λ logγ(μm) then
5: λ← 2λ, goto Step 1
6: end if
7: Update the load on each link.

“online-competitive-congestion-length” (OL-CompCL) algo-
rithm. We first build a graph using the length function (14),
based on the link load from previous requests, the demand of
the new request, and the estimate for the optimal congestion λ.
Then, we route the request using a shortest path tour algorithm
to find the walk w′

i based on this graph. We obtain the
weighted length for this Shortest Path Tour ω, and the number
of hops for this tour h(w′

i). Using these two values, we re-
compute the Shortest Path Tour under the length function (15),
and obtain the tour w′

i. For all edges e ∈ wi along this walk,
we examine if the inequality (16) holds. If so, this suggests
that our estimate of L∗ is low; in this case, we double the
value of the estimate λ, recompute the length function, and
reroute the request Ci. Otherwise, we route the request along
walk wi and update the load of the corresponding edges.

C. Performance Analysis

1) Time Complexity: Building a weighted graph can be
completed in O(m) time, hence the time complexity of
Algorithm 1 is dominated by finding the shortest path
tour, which can be completed in (Km log n) time [17],
where K is the number of network functions in the request
(i.e., the number of segments of the walk).

Due to the potential underestimation of L∗, the SPTP
algorithm may have to be run multiple times for a single
request. For each request, this will happen at most log2(KDC)
times, where D is a ratio of the maximum to minimum traffic
demand, and C is the ratio of the maximum to minimum
edge capacity. This follows from the fact that the minimum
value that λ takes is λ = mini,k di(k)

maxe c(e) , while a maximum value

in (16) is maxi

�
k di(k)

mine c(e) . As the estimate doubles each time,
the number of estimates is upper bounded by O(log(KDC)).

Thus, the overall time complexity of this online algorithm
is in O(Km log n log(KDC)).

2) Competitive Ratio: We now prove that our algorithm
achieves a competitive ratio that is asymptotically optimal.

First, we prove that the growth of the potential function φ(i)
is bounded.

Lemma 3: The potential function can be upper-bounded by
φ(i) ≤ μm, ∀i, where m is the number of edges of the network
graph and μ a constant number, with a proper choice of α
and γ.

Proof: The proof to this lemma is in the Appendix. �
Theorem 4: The competitive ratio of Algorithm 1 is

O(log m), which is asymptotically optimal for congestion
minimization.

Proof: First, we show that O(log m) is a lower bound
on the competitive ratio. Observe that in the special case
of K = 0, i.e., when the service does not request any
network function between the source and destination nodes,
the service chain routing problem reduces to the virtual circuit
routing problem in [33], the optimal competitive ratio of which
is O(log m). This suggests that O(log m) is the asymptotically
optimal competitive ratio for Algorithm 1.

Next, we show that the competitive ratio achieved by
our algorithm is O(log m). Combining inequality (12) and
Lemma 2 and taking the logarithm on both sides, we obtain

maxe∈E
li(e)

c(e)L∗ ≤ logγ(μm) (17)

which shows that the algorithm is log m-competitive. �

V. NUMERICAL RESULTS

In this section, we present the numerical result to evaluate
the performance of the online service chain routing algorithm.

A. Baseline Algorithms

We compare our OL-CompCL algorithm to the following
four beaseline algorithms:

• Offline-LP (OFF-LP): The first approach is via solving
the LP problem in hindsight. In an offline scenario,
we have all the information on the service chain requests
in advance. We relax the integral constraint (8) for the ILP
in Section III, and solve the corresponding LP-problem.
The solution to this LP-problem represents a lower bound
for the maximal utilization minimization problem. As we
have more information than an online scenario and the
solution to the LP problem may be fractional, it would
mean that this Offline-LP will only provide a better
load balancing than any online algorithm who steers the
traffic along a single-walk. Thus, the gap between our
proposed algorithm, OL-CompCL, and offline-LP serves
as an indicator of how well the algorithm performs
against any possible online algorithms.

• Online-SPTP (OL-SPTP): The second baseline algorithm
we use is another online algorithm via the SPTP. It routes
the service chain on a Shortest Path Tour, with a load
dependent length function. The length function we use is
a piece-wise linear function proposed by [34] for OSPF
routing that is crafted to minimize the network congestion
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while discouraging a long detour, i.e.,

len(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 u(e) ∈ [0,
1
3
)

3 u(e) ∈ [
1
3
,
2
3
)

10 u(e) ∈ [
2
3
,

9
10

)

70 u(e) ∈ [
9
10

, 1)

500 u(e) ∈ [1,
11
10

)

5000 u(e) ∈ [
11
10

, +∞),

where u(e) is the link utilization at the time of routing
the service chain requests. Upon arrival of each service
chain request, we compute the length function based on
the current load of each edge, and we route along the
Shortest Path Tour accordingly.

• Fewest-hop (FH): This is identical to online-SPTP except
for the length function. For all edges, we assign their
length as 1. By computing the Shortest Path Tour under
this value, we obtain a service chain routing which
solely minimizes the number of hops from the source
to the destination. This baseline algorithm serves as a
lower-bound in terms of the hop number.

• Online-competitive (OL-Comp): This is the algorithm we
presented in our work [6]. The difference between OL-
CompCL and OL-Comp is that while both algorithms
achieve an O(logm)-competitive ratio in congestion min-
imization, OL-competitive does not aim at reducing the
number of hops.

B. Simulation Setup

We set up a set of simulations to evaluate the effectiveness
of our proposed algorithm on two types of topology. First,
we generate a graph following the Waxman model, which
captures the topology of intra-domain networks [35]. Then
we evaluate the performance of the proposed algorithm on a
Fat-Tree [36], a topology that represents the design of data-
center networks.

The topology generated by Waxman model consists
of 50 nodes, and the capacity of each edge follows a uniform
distribution in the range of [50, 100]. We define a total number
of six different types of services supported by the physical
networks. For each service, we randomly select ten physical
network nodes, representing the locations where the VNFs are
instantiated.

We use randomly generated service requests. For each
service chain request i, we randomly select ki, 1 ≤ ki ≤ K
virtual functions, and these VNFs are concatenated in a ran-
dom order. The traffic demand between each network function
follows a uniform distribution of [1, 5].

For the Fat-Tree topology [36] we use a 16-ary fat-tree
consisting of 1024 hosts and 320 switches. Each link provides
10Gbps connectivity. In this case, we define 10 types of
virtual network functions, with each type of service sup-
ported by 10 to 20 randomly instantiated hosts. The traffic

Fig. 4. Congestion vs. number of requests with K = 4.

Fig. 5. Number of hops vs. number of requests with K = 4.

distribution of the service chain follows a uniform distribution
of [40Mbps, 200Mbps].

The metrics we evaluate include: 1) the maximum link uti-
lization after we route the service requests; 2) the average and
the maximal number of hops for the service chain to reach the
destination; and 3) the running time for the routing algorithm.
For each scenario, we run the simulation for 30 times to
obtain the average value and the corresponding 95-percent
confidence interval on those metrics. Because the offline-LP
and the fewest-hop are algorithms baselines for the maximum
congestion and the number of hops respectively, we omit
their performance on other metrics. For our online routing
algorithm, we set γ = 1.4, α = 0.5, and μ = 6.25.

1) Waxman Topology: Fig. 4 to Fig. 9 plot the results for
the Waxman topology. Fig. 4 plots the maximal congestion
versus the total number of requests being routed on the
substrate network, with the maximal length of the chain being
K = 4. Compared to offline-LP, the lower-bound on the
maximal congestion, the relative gap between the two is in
the range of (9.4%, 23.3%). Notice that while offline-LP is a
lower-bound to the service chain routing problem, the bound is
not tight. The reason is that offline-LP may return a fractional
routing for the service chain, meaning the congestion will be
even lower than the optimal value in hindsight. This implies
that the gap between online-competitive algorithm and the
optimal solution in hindsight is potentially smaller than the
one indicated in Fig. 4. Compared to online-SPTP algorithm,
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Fig. 6. Congestion vs. maximal chain length with N = 100.

Fig. 7. Number of hops vs. maximal chain length with N = 100.

OL-CompCL delivers a better performance and minimizes the
network congestion a ratio from 0% to 30%. On the other
hand, compared to OL-Comp, this algorithm offers a similar
performance, with the difference of the algorithm is within
±2.5% in all cases.

Fig. 5 plots the number of hops from the source to the
destination. The dotted bars represent the maximal number
of hops, while the solid ones represent the average value.
For the average number of hops, in all cases, the proposed
algorithm, OL-CompCL, routes the service chain with less
than 1.6 additional hops (up to 30% in increase) against
the lower-bound, i.e., fewest-hop. While compared to online-
SPTP, we can make the following observations: the number
of hops is affected by the number of service requests routed,
which relates to the load on the substrate network. For online-
SPTP, the number of hops increases with the load, while the
other two online algorithms, see a drop in its value.

When the substrate network is under-utilized, OL-CompCL
routes the service chain with as much as 1.16 (or 20.7%) extra
number of hops on average; otherwise, it selects the route with
0.69 (or 9.9%) fewer hops. Compared to competitive-online,
it minimizes the average number of hops between 0.5 to 0.6.

For the maximum number of hops, compared against
OL-SPTP, OL-CompCL routes the request on a longer walk,
with up to 3.0 extra hops on average when the load on the
network is low, while it routes the request with 5.7 fewer
hops when the load is heavy; compared against OL-Comp,

Fig. 8. Congestion vs. maximal chain length with N = 200.

Fig. 9. Number of hops vs. maximal chain length with N = 200.

the maximum number of hops sees an improvement of 1.3 to
2.7 hops.

Fig. 11 plots how the value α impacts the tradeoff between
the number of hops and the maximal congestion. In Fig. 11,
the number of hops monotonically decreases with increasing
α, from 7.8 hops when α = 0 to 7.1 hops when α = 0.5.
Congestion, on the other hand, stays nearly the same, with
utilization increasing less than 1% at α = 0.5 than α = 0.

We present the running time of the three online algorithms,
namely, OL-Comp, OL-CompCL, and OL-SPTP in Fig. 10.
We can conclude that OL-SPTP runs up to 30% faster than
OL-Comp, due to a simpler length function, while
OL-CompCL takes significantly more time than the two other
algorithms. The increase in the running time comes from the
need to compute the SPTP twice, which doubles the running
time to route the service request.

Next, we look at how the maximal length of the service
chain affects the performance. From the previous simulation
results, we see that the load has a strong impact on the number
of hops. Hence, we evaluate the performance of our algorithms
under two different conditions: 1) a relatively low load, with
N = 100 requests and 2) a relatively high load, with N = 200
requests.

Fig. 6 and Fig. 8 plot the congestion versus maximal service
chain length, with a total number of N = 100 and N = 200
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Fig. 10. Running time vs. maximal chain length K on Waxman topology.

Fig. 11. Congestion and maximal chain length vs. value of α on Waxman
topology with N = 150 and K = 4.

requests, respectively. In terms of the maximal congestion,
the ratio between offline-LP and OL-CompCL is in a range
of 1.17 to 1.27 when N = 100, and 1.06 to 1.21 when
N = 200. Compared to online-SPTP, the OL-CompCL mini-
mizes the congestion by 9% to 11% when N = 100 and by
3% to 15% with N = 200.

Fig. 7 and Fig. 9 plot the number of hops with respect to the
maximal service chain length. We can observe that the load
has the same impact on the number of hops on OL-CompCL
algorithm as we see in Fig 5: it routes the service chain on the
network with more number of hops when the load is lower.
Compared to FH, OL-CompCL needs 1.1 to 1.7 extra hops on
average (or 23% to 29% more hops) to route the service chain,
when N = 100. Likewise, it needs 0.82 to 1.49 extra hops (or
18% to 25% more hops) when there are 200 hundred requests.
Compared to online-SPTP, we see that our algorithm needs
up to 0.57 additional hops with N = 100. With 200 service
requests, it generally routes service requests with fewer hops.
The number of hops levels up with online-SPTP when K = 2,
while it can route with 0.7 fewer hops when K = 6.

In terms of the maximum number of hops, OL-CompCL
can route the request with up to 2 fewer hops compared to
OL-Comp, while compared to online-SPTP, this number
ranges from 2 extra hops to 5 fewer hops depends on the
maximal length of the service chain, and the load on the
substrate networks.

Fig. 12. Congestion vs. number of requests on Fat-Tree topology
with K = 4.

Fig. 13. Number of hops vs. number of requests on Fat-Tree topology with
K = 4.

2) Fat-Tree Topology: Fig. 12 plots the maximal congestion
against the number of requests with maximal chain length
K = 4. The maximal (denoted in dotted line) and average (in
solid line) number of hops versus number of requests is plotted
in Fig. 13. In terms of congestion, OL-Comp consistently
delivers a better performance among all algorithms except for
OFF-LP, where the congestion increase between OL-Comp
and OFF-LP is less than 5.8%. OL-CompCL, on the other
hand, sees a gap of 2.2% to 7.8% when compared to OFF-LP,
with less than 1.8% increase when it compares to OL-Comp.
Compared with OL-SPTP, OL-CompCL decreases maximal
congestion between 3.7% and 32%. In terms of the number
of hops, compared to OL-Comp, OL-CompCL requires 1.0 to
1.4 fewer hops (6.3% to 8.9%) on average, while it requires
an additional 0.4 to 1.4 hops (i.e., 3.1% to 13%) and 1.8 to
2.2 (i.e., 12% to 15%) when compared to OL-SPTP and FH
respectively. It also decreases the maximal hop number by
0.4 to 0.6 hops versus OL-Comp, while it needs 0.9 to 4.8 extra
hops compared to OL-SPTP and 5.2 to 6.0 additional hops
compared to FH.

Fig. 14 and Fig. 15, respectively, plot the maximal con-
gestion and the average, maximal number of hops versus the
maximal service chain length with N = 800. For maxi-
mal congestion, the gap between OL-CompCL and OFF-LP
is within 6.3%, while it increases congestion by less than
1.1% when compared to OL-Comp. Compared to OL-SPTP,
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Fig. 14. Congestion vs. maximal chain length on Fat-Tree topology with
N = 800.

Fig. 15. Number of hops vs. maximal chain length on Fat-Tree topology
with N = 800.

OL-Comp consistently improves congestion by 9.3% to 28%.
For the number of hops to route a service chain, OL-CompCL
reduces the average number of hops by 0.5 to 1.9 hops
(4.6% to 8.7%) on top of OL-Comp, while it needs an extra
0.9-1.1 hops and 1.2-2.7 hops when compared to OL-SPTP
and FH, respectively. Also, OL-CompCL reduces the maximal
number of hops by 0.4 to 2.6 hops (1.7% to 6.3%) from
OL-Comp, while the maximal number of hops increases by
0.86 to 2.0 hops (3.5% to 7.2%) from OL-OSPF and 2.0 to
8.4 hops (12% to 27%) from FH.

Fig. 16 shows how the factor α impacts the trade off
between the maximal congestion and the average number of
hops with N = 800 and K = 6. When α increases from
0 to 0.5, the average number of hops needed to route the
service chain monotonically decreases, from 22.1 down to
20.2 hops; congestion, on the other hand, stays nearly the same
(with ±1.2% variation), with a slight trend to increase along
with α.

Fig. 17 plots the running time comparison of the three online
algorithms as the value of K varies. Similar to the running
time comparison on the Waxman topology, OL-Comp takes
up to 30% percent additional time to route a service chain
on average than OL-SPTP, while OL-CompCL needs twice as
much time to run compared to OL-Comp.

To evaluate the ability of our proposed algorithm to scale
to large datacenter networks, we measure the running time

Fig. 16. Congestion and maximal chain length vs. value of α on Fat-Tree
topology with N = 800 and K = 4.

Fig. 17. Running time vs. maximal chain length K on Fat-Tree model.

Fig. 18. Running time vs. size of Fat-Tree.

on Fat-Tree topologies of varying size. Namely, we evaluate
the running time on a 8-ary, 16-ary, 24-ary and 32-ary Fat-
Tree, with 128 (80), 1024 (320), 3456 (720), 8192 (1376)
hosts (switches) and present the results in Fig. 18. Consistent
with earlier results, OL-CompCL takes twice as much time to
route a service chain compared to OL-CompCl, which in turn,
takes up to 32% additional time than OL-SPTP. Importantly,
however, on the large 32-ary Fat-Tree, OL-CompCL takes less
than 1.4s on average to route a single request, indicating that
our algorithm scales well to commercial datacenter networks.

From this set of simulation results, we conclude that our
proposed algorithm is near-optimal in terms of minimizing
the congestion, s demonstrated by the fact that OL-CompCL
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results in less than 27% (respectively, 7.8%) higher congestion
against an offline lower-bound on Waxman (respectively, Fat-
Tree) topologies, while it consistently delivers a better con-
gestion than the baseline SPTP-online algorithm. As for the
number of hops, the proposed algorithm generally incurs a
small increase in the length of the route of a service chain,
which results from the need to circumvent over-loaded links.
Indeed, compared to fewest-hop, we can see that on average,
with either the Waxman or the Fat-Tree topology, our proposed
algorithm needs less than 30% percent additional hops to route
a service chain. However, the minimization of the number
of hops involves computing the SPTP twice. This generally
indicates that the running time is twice as high compared to
the two other algorithms.

VI. CONCLUDING REMARKS

We have developed an efficient online algorithm for the ser-
vice chain routing in a NFV environment. The algorithm aims
at jointly minimizing the network congestion and the number
of hops. It achieves an optimal competitive ratio in minimizing
the maximum utilization. Our work demonstrates that virtual
networks may be operated effectively by routing online service
chain requests along walks of near-optimal length (as shown in
Lemma 1) that achieve near-optimal congestion (as Theorem 4
indicates). The focus of our current research efforts is to extend
this algorithm to the case when (a) requests have a finite
holding time after which they release resources and depart,
and (b) the service chain is not necessarily a path.

APPENDIX

A. Proof to Lemma 1

From (13), we observe that the load on each edge is link-
specific. For the sake of simplicity, we assume, without loss
of generality, that all edges have capacity c(e) = 1. Also,
for ease of presentation, we first denote as lenna(e, wi) the
non-additive length function in (13), and as lenw

na(wi) the
corresponding length of a walk under this non-additive edge
length:

lenna(e, wi) = γ
li−1(e)

L∗ (γ
tri(e,wi)

L∗ − 1) (18)

lenw
na(wi) =

∑
e∈wi

lenna(e, wi). (19)

We also define an additive length for a walk:

lenw
a (wi) =

ki∑
k=0

∑
e∈sk

leni(e, k), (20)

where the leni(e, k) is the length function defined in
Section IV, and sk is the path to route the traffic for segment
sk of Ci. The total contribution of edge e to the walk is given
by: lena(e, wi) =

∑
k:e∈sk

leni(e, k).
In order to prove the Lemma 1, we first prove the following

lemma.
Lemma 5: For any walk wi, the non-additive length of

the walk is (a) bounded below by the additive length, and
(b) bounded above by γ times the additive length, i.e.

lenw
a (wi) ≤ lenw

na(wi) ≤ γlenw
a (wi) (21)

Proof: We have the following observation: for a walk wi,
the ratio of the non-additive cost to the additive cost is bounded
below and above by the minimum and maximum ratio of each
edge, respectively:

min
e∈wi

lenna(e, wi)
lena(e, wi)

≤ lenw
na(wi)

lenw
a (wi)

≤ max
e∈wi

lenna(e, wi)
lena(e, wi)

(22)

The two length function is different when and only when w
traverses e multiple times. As wi stands for the routing of the
request, the traffic placed on edge e is the same, regardless
of the penalty function. Without loss of generality, we assume
that the walk traverses the edge for k times. Then, the ratio
of the two functions is:

lenna(e, wi)
lena(e, wi)

=
γ

li−1(e)
L∗ (γ

tri(e,wi)
L∗ − 1)

∑
k γ

li−1(e)
L∗ (γ

di(k)
L∗ − 1)

=
γ
�

k di(k)
L∗ − 1

∑
k(γ

di(k)
L∗ − 1)

(23)

First, we prove that the non-additive cost is bounded below
by the additive cost. Using the Taylor expansion of the expo-
nential function, one may verify that γ

�
i xi−1 ≥∑

i(γ
xi−1)

for all γ ≥ 1 and xi ≥ 0, leading to the desired result:

lenna(e, wi)
lena(e, wi)

=
γ
�

k di(k)
L∗ − 1

∑
k(γ

di(k)
L∗ − 1)

≥ 1 (24)

Next, we prove that the non-additive cost is bounded above
by γ times the additive cost. The difference between the two
costs on any edge e is:

lenna(e, wi)
lena(e, wi)

=
γ
�

k di(k)
L∗ − 1

∑
k(γ

di(k)
L∗ − 1)

≤ (γ − 1)
�

k di(k)

L∗∑
k(γ

di(k)
L∗ − 1)

(25)

Inequality (25) holds due to two reasons: first, it is our
assumption that a single request may not cause the most
congestion, i.e.,

�
k di(k)

L∗ ≤ 1; second, γx − 1 ≤ (γ − 1)x,
for 0 ≤ x ≤ 1 and γ ≥ 1.

Using the Maclaurin series γx =
∑

m
(lnγ)m

m! xm, one may
verify that γx− 1 ≥ xlnγ for γ ≥ 1, leading to the following
inequality:

lenna(e, wi)
lena(e, wi)

≤ (γ − 1)
�

k di(k)

L∗∑
k(γ

di(k)
L∗ − 1)

≤ (γ − 1)
�

k di(k)

L∗∑
k lnγ di(k)

L∗
(26)

=
γ − 1
lnγ

≤ γ (27)

The inequality (27) follows from the fact that γ−1
lnγ =

γ( γ−1
γlnγ ), while γ−1

γlnγ is a monotonically decreasing function
with respect to γ, and limγ→1

γ−1
γlnγ = 1, meaning γ−1

γlnγ ≤ 1
when γ ≥ 1, and in turn, leads to inequality (27).

Combining (24) with (27) we obtain the stated lower and
upper bounds for the non-additive length of any walk. �

We are now ready to prove Lemma 1.
Proof: Denote the shortest valid walk with respect to

the additive length lenw
a (w) as wa, and the optimal walk

with respect to the non-additive length lenw
na(w) as w∗.
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Applying the lower and upper bounds of Lemma 4, we have
the following two inequalities:

1
γ

lenw
na(w

a) ≤ lenw
a (wa), lenw

a (w∗) ≤ lenw
na(w

∗) (28)

Since wa is the shortest walk under the additive function,
we have that:

lenw
a (wa) ≤ lenw

a (w∗) (29)

Combining the last inequality with the two in (28), we obtain:

lenw
na(w

a) ≤ γ lenw
na(w

∗) (30)

proving Lemma 1. �

B. Proof to the Lemma 3

Proof: Denote the shortest walk under (15) as wi, and the
optimal walk in hindsight as w∗

i .
Following the result of Lemma 2, the increase to the

potential function is:

φ(i)− φ(i− 1) = lenw
na(wi) ≤ (1 + α)γ lenw

na(w
∗
i ) (31)

The sum of the differences above is given by:

φ(i)− φ(0)

=
i∑

j=1

(φ(j) − φ(j − 1)) (32)

≤ (1 + α)γ
i∑

j=0

lenw
na(w

∗
j ) (33)

= (1 + α)γ
i∑

j=0

∑
e∈w∗

j

γ
lj(e)
L∗ (γ

trj (e,w∗
j )

L∗ − 1) (34)

≤ (1 + α)γ
i∑

j=0

∑
e∈w∗

j

γlj(e)(γ − 1)trj(e, w∗
j )/L∗ (35)

= (1 + α)γ(γ − 1)
i∑

j=0

∑
e∈w∗

j

γlj(e)trj(e, w∗
j )/L∗ (36)

≤ (1 + α)γ(γ − 1)
i∑

j=0

∑
e∈w∗

j

γli(e)trj(e, w∗
j )/L∗ (37)

= (1 + α)γ(γ − 1)
∑
e∈E′

γli(e)
∑

j:e∈w∗
j

trj(e, w∗
j )/L∗ (38)

≤ (1 + α)γ(γ − 1)
∑

e∈wi
∗
γli(e) (39)

= (1 + α)γ(γ − 1)φ(i) (40)

Inequality (35) results from the fact that li(e) is
non-decreasing with respect to i, and γx−1 ≤ (γ−1) x. Sim-
ilarly, inequality (37) holds because li(e) is non-decreasing.
Inequality (39) holds as

∑
j:e∈w∗

j
trj(e, w∗

j ) is the link load
on e of the optimal solution in hindsight, while L∗ is the
maximum congestion across all edges hindsight, and therefore,�

j:e∈w∗
j

trj(e,w∗
j )

L∗ ≤ 1, for the first i requests.
From inequality (37), we have φ(i) ≤ φ(0)

1−(1+α)γ(γ−1) .
We denote μ = 1

1−(1+α)γ(γ−1) . For α and μ, one may

select an appropriate value for α ≥ 0 and γ ≥ 1 subject
to (1 + α)γ(γ − 1) < 1, namely μ > 1. �
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