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Analysis and Optimization of Transmission
Schedules for Single-Hop WDM Networks

George N. Rouskas, Member, IEEE, and Mostafa H. Ammar, Member, [EEE

Abstract— We consider single-hop lightwave networks with
stations interconnected using wave division multiplexing. The
stations are equipped with tunable transmitters and/or receivers.
A predefined, wavelength-time oriented schedule specifies the
slots and the wavelengths on which communication between
any two pairs of stations is allowed to take place. We define
a wide variety of schedules and develop a general framework
for analyzing their throughput performance for any number of
available wavelengths, any tunability characteristics, and general
(potentially nonuniform) traffic patterns. We¢ then consider. the
optimization of schedules given the traffic requirements and
present optimization heuristics that give near-pptimal results, We
also investigate how the number of available wavelengths (chan-
nels) affects the system throughput, and we develop technigues
to efficiently share the available channels among the network
stations. As a result, we obtain systems that are easy to s¢ale
while having very good performance.

I. INTRODUCTION

AVE DIVISION MULTIPLEXING (WDM) is emerg-

ing as a promising technology for the next generation
of multiuser high-speed communication networks. WDM di-
vides the low-loss spectrum of the optical fiber into nonover-
lapping channels, each operating at a data rate accessible by the
transmitting stations. The multiple channels introduce trans-
mission concurrency and provide a means to overcome the so
called electronic bottleneck [13]. As a result, WDM networks
have the potential of delivering an aggregate throughput that
can grow with the number of wavelengths deployed, and can
be in the order of Tb/s.

In single-hop WDM networks, packet transmissions are
possible only when there is a direct communication path
established between the source and the destination. Single
hop systems require tunable transceivers with a large tuning
range X tuning speed product in order to fully utilize the
capabilities of WDM. The state of the art in tunable laser
and filter technology is discussed in {4]. Although commercial
products are not yet available, recent advances in lightwave
technology are promising.

Research in the area of single-hop systems has focused
on the problem of how to efficiently allocate the bandwidth
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among the network stations (see [17] for an overview:of the
various proposed schemes). In general, the schemes differ in
whether they require coordination between the transmitter and
receiver prior to the actual packet transmission, or not. In
the former case, one [12], [16], [51, [6] or more [14] ¢ontrol
channels are reserved for the arbitration of the transmission
requests. Schemes with no pretransmission coordinatidn em-
ploy either random access protocols [10] or a wavelength-time
assignment of the optical bandwidth [7]. i

The wavelength-time assignment technique is the extension
of TDMA over a multichannel environment. A schedule
specifies the slots within each frame and the channel on
which packet transmissions are permitted between any source-
destination pair. Our work deals with analysis and optimization
of a wide variety of schedules for any number of wave-
lengths, any transceiver tunability characteristics, and general
(potentially nonuniform) traffic patterns. Similar optimization
problems, although in a different context, are addressed in
[15], [1], [2]. In [8], [7], [3] several schedules are studied,
and models are developed to analyze their performance. These
works, in contrast to ours, do not deal with schedule optimiza-
tion, and the analysis is restricted to uniform traffic. In [9] a
method to schedule transmissions to minimize the tuning time
is presented, without considering the effects on throughput.

This paper is organized as follows. In Section II we describe
our system model, and in Section III we obtain throughput
expressions for the various schedules. Section IV investigates
the problem of obtaining an optimal schedule and presents
several heuristics which yield very good results. In Section V
a more general heuristic is developed. Section VI ptesents
some numerical examples, and Section VII contains some
concluding remarks.

II. SYSTEM MODEL

We consider a network of IV stations, each equipped with
one receiver and one transmitter, interconnected through an
optical broadcast medium that can support C wavelengths,
A1, A2,++,Ac. In general, C < N.! Depending on the tun-
ability characteristics (tunable or fixed transmitters/receivers)
we refer to the three resulting systems as TT-FR, FT-TR, or
TT-TR. If the receivers (transmitters) are fixed, wavelength
A(2) € {A1,--+, Ac} is assigned to the receiver (transmitter)
of station 7, = 1, -- -, N. The tunable transmitters (receivers),

| With one transceiver per station, at most N transmissions are possible at
any given time, thus we do not consider the case C > N.
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on the other hand, consist of lasers (filters) tunable over all
wavelengths A;,c = 1,---,C.

The network operates in a slotted mode, with a slot time
equal to the packet transmission time plus the tuning time.
All stations are synchronized to the slot boundaries [19]. We
define o; as the probability that a new packet arrives at station 4
during a slot time, p;; as the probability that a packet arriving
at station ¢ is destined to station j, and 3. p;; = 1. Each
station has N — 1 single-packet buffers, one for packets to
each possible destination; packets arriving to a full buffer are
lost. This is an extension of the single-channel network model
developed in [15]. The case of L-packet buffers, L > 1, is
treated in [18].

It should be emphasized that this is a model of the media
access control (MAC) layer. Packets that cannot be buffered
at the MAC layer are not really lost, but are typically buffered
at a higher layer. Thus, o;p;; characterizes the: arrival;process
from the higher layer to the single-packet buffer for station j
when that buffer is empty.

Time slots are grouped in frames of M slots. Within a
frame, a;; slots are assigned for packet transmissions between
the source-destination pair (¢,5). A schedule indicates, for
all 7 and j, which slots during a frame can be used for
transmissions from < to j, and can be described by the variables
6()t_12 -, M, defined as

tj ?
1, if station ¢ has permission to

transmit to station 7 in slot ¢
0, otherwise

(t)
58 = )

Obviously, a;; = Zt—l 51(;) To ensure fairness, all schedules
we consider have the property that, if the traffic originating at
¢ and terminating at j is nonzero, then at least one slot per
frame is assigned for transmissions from : to j. Formally,

Vi, j + if oypi; > 0 then a;; > 1(Fairness Condition) . (2)

For k = 1,2,---,a;;, we let dg.“) denote the distanoe,
in slots, between the beginning of the kth slot that ¢ has
permission to transmit to j, and the beginning of the next
such slot, in the same or the next frame (see Fig. 1). We also
define w(t) € {A1,-++,Ac} as the wavelength on which 1 will
transmit a packet to j in slot ¢. For a TT-FR (FT-TR) system
we have that wf;-) = A(F)Vi,t (ws) = A(¢)V4,t). Whenever
C < N, in a TT-FR (FT-TR) system a number of receivers
(transmitters) have to be assigned the same wavelength, and
share a single channel A.,,c = 1,---,C. We let R, and
X, subsets of {1,---, N}, denote the set of receivers and
transmitters, respectively, sharing channel ),

Re={j12() = A} Vi Xo={i | A()) = A} Ve. 3

A. Transmission Modes

We define the transmitting set, I,-(t),t = 1,2,---, M, of
station ¢ in the tth slot in a frame as the set of stations to
which 7 is permitted to transmit. The receiving set, th),t =
1,2,---, M, of station j in the ¢th slot in a frame is the set of
stations that have permission to transmit to j. In terms of 5

ij
0= 16 =1} vi,t; I = (i85 =1} Vit . @
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(i,j) denotes that i has permission to transmit to j in this slot

Fig. 1. Definition of df}’ for k = 1,--,a;;.

Sets I ) and J; () , together with the tunability characterls-
tics, specxfy whether collisions, destination conflicts, or ‘both
are possible under a given schedule. Collisions occur when
two or more transmitters access the same channel during a
slot, i.e., when there exist a slot ¢, transmitters ¢ and /' # 1,
and receivers j and §/, such that j € I, 5 € I, and w(')

(t) . On the other hand, systems with tunable receivers
may experience destination conflicts if multiple stations are
permitted to transmit to the same destination on diﬂ’erent
channels, or when there exist a slot ¢, transmitters ¢ and i* # 4,
and a receiver 7, such that i,i' € J; ® , and 'w(;) # w(t)

There is, however, a certain class of schedules that allow
neither collisions nor destination conflicts. These schedules
give exactly C permissions to different source-destination
pairs, one per channel, in each slot; in the case of fixed
transmitters we can write

N N N

S5 s0=N 11" |=c,

i=1 j=1 i=1

S IE 1= 1,961 I < 1, V5,8 5)
€X, )

denoting that exactly one of the transmitters that share channel
Ac is given permission to transmit in a given slot, and each
receiver can receive a packet from at most one source. A
similar expression can be derived in the case of fixed receivers.

We now distinguish two transmission modes:

* one-to-one transmission mode, if no collisions or desti-

nation conflicts are possible;

* many-to-many transmission mode, otherwise.

The many-to-many mode is the most general mode as
the, transmitting and receiving sets can be any subset of
{1,---,N}. Thus, any schedule that can be described by
giving appropriate - values to variables 6 ® and w,y), is
a many-to-many schedule. The one-to-one mode can be
considered as a special case with constraints (5) imposed
on the transmitting/receiving sets.

Fig. 2 demonstrates the two different transmission modes for
aFT-TR network with V = 4 stations and C' = 2 wavelengths.
Channel \; is shared by the fixed transmitters of stations
1 and 3 (X; = {1,3}), while channel )\, is shared by the
transmitters of stations 2 and 4 (X, = {2,4}). A one-to-one
schedule is such that in Fig. 2(a), only one of the transmitters
in X.,c = 1,2, has permission to transmit in any given slot,
and in Fig. 2(b) each station may receive from at most one
source in a given slot. If any of these conditions is violated,
the resulting schedule is many-to-many.
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|(1.2) [ (3'1)1 (1.3)] (3.2)| (1.2)1 34 l(L‘) I ll

| (23)1(4,2) | (2.4)| (Z.I)] (4,1)1(43) |(2.1) | A,

One-to-one schedule
()

y—— potential collision on channel A ,

4 A
a2 | (3.1)| (1.3)[ (3.2)[ 12 | G4 ](1.4) 1

@3 |62 | G| @b |62 |63 @) A,

T

destination conflict at station 2

Many-to-many schedule

(i) denotes that i has permission to transmit to j in this slot
(b)

Fig. 2. (a) One-to-one and (b) many-to-many schedulés for a FT-TR network
with N = 4 stations and C' = 2 wavelengths, X1 = {1,3}, X2 = {2,4}.

B. Selection Policies for Many-to-Many Schedules

With many-to-many schedules, whenever | I,.(t) |> 1 for
some %, ¢, transmitter 7 has the freedom to select the destination
to which it will transmit a packet in slot ¢. Similarly, if
| J;’) |> 1 for some j,t and the receivers are tunable,
receiver j may select one of many possible sources to which
it can tune in slot ¢t. The criteria used to select one of the
stations in the transmitting and receiving sets define a selection
policy. In order to be suitable for a high-speed environment
a policy should be simple, very fast to execute, and should
not require coordination between stations as that would cause
severe degradation of the overall throughput. Two policies that
share these characteristics are now described.

1) Random Policy (RP): At the beginning of a slot, ¢, trans-
mitter % randomly and uniformly selects a destination j € I, ®
and transmits a packet, if it has one for 5, on wavelength wg).
Similarly, if the receivers are tunable, receiver j' will select
a station ' € J](,t ) and will tune to wavelength wz(f}, waiting
for a transmission from 7’

2) Round-Robin Policy (RRP): In slot ¢, ¢ considers one
destination in Iit for a packet transmission. By remembering
the destination it considered in the previous frame, i considers
all stations in Ii(t) in a round-robin order. A tunable receiver
operates in a similar fashion.

When both a transmitter ¢ and a receiver j implement
a selection policy for a slot t, a necessary condition for a
successful packet transmission from ¢ to j in this slot is that
both the policy at 7 select j for transmission and the policy at j
select wavelength ’”1(;) to listen to.2 In particular, the decisions

2This condition is not sufficient as some other packet transmission on the
same wavelength will result in a collision.

of the round-robin policy at transmitter i (resp., receiver )
repeat after | Ift) | (resp., | J](t) |) frames. It is easy to see that
the policies at z and j will be synchronized (i.e., the policy at %
will select j, and the policy at j will select i) once every least
common multiple (| Ii(t) I J]@ |) frames. For this reason,
whenever both the transmitters and receivers implement the
round-robin policy, a transmitter ; should transmit to a receiver
7 only in slots in which their policies are synchronized.’

In situations where the policies above are implemented by
a transmitter, further improvement is possible: when making
a selection (random or round-robin), the transmitter ignores
destinations for which it has no packets in its buffers. Note
that such improvement is not possible in the selection policies
implemented at the receivers. This is because a receiver has
no way of knowing whether a particular source will have a
packet for it or not. Therefore, when both the transmitters and
receivers implement the round-robin policy, we do not propose
implementing the improved version at the transmitters, as that
might cause the policies at the transmitters and receivers to
become completely unsynchronized. ’

In order to simplify our model we do not consider such
improvement in the transmitter selection policies in the anal-
ysis to follow. Simulation results showing the degree of
improvement possible in the case of the random policy are
discussed in Section VI-C.

III. THROUGHPUT ANALYSIS

A schedule can be characterized by three parameters:
« the transceiver tunability characteristics (TT-FR, FT-TR,
or TT-TR),
* the transmission mode (one-to-one or many-to-many), and
* the policies used by the transmitters and receivers (ran-
dom or round-robin).
In the following section we derive expressions for the through-
put of the most general schedule, namely, a TT-TR system
and a many-to-many transmission mode. We also show how to
modify these expressions to apply to other tunability character-
istics and the one-to-one mode. The throughput of a schedule
S will be given by

N N
T(P)=3" Ty(P)

i=1 j=1

(6)

where T;;(P) is the throughput of the source-destination pair
(4,7), ie., the number of successful packet transmissions
per slot between ¢ and j, and P is the policy used by the
transmitting and receiving stations. ;

A. Systems with Tunable Transmitters—-Tunable Receivers

1) Many-to-Many Schedules with Random Policy: Consider
the source-destination pair (3, j), and let tgjl.), cee t,(;"') , be the
a;; slots within a frame in which j is in the transmitting set of

i. Without loss of generality, let 1 < () < --- < t{%) < M.

3In order to implement this, a transmitter only needs to know the value of
| JJ(-t) | which can be immediately derived from the schedule, and the first
frame in which the policy at j will select i. -
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As frames repeat over time, the /th slot in which j is in the
transmitting set of 4, [ = 1,2,3,--, is one of tS), ,tg'" ),
within some frame m, and we can wnte l = ma;; + k, where

m, m =0,1,2,---, is the frame, and 1 < k < a;;. We now

define
hij() =[(I - 1) mod a;] +11=1,2,3, - @)
Fiy =t W 1=123, ... ®)
Function f;;(!) maps the Ith slot onto one of tfjl), . ,tf;"’)
Obviously,
hij(mai; + k)m = hi;(k)
and
fij(mag; + k) = fi;(k)=0,1,2,---,k=1,---,a55. (9)

We observe the system at the instants just before the
beginning of slots in which j is in the transmitting set of
1. Consider the /th such slot. We define q,(;) as the probability
that < has a packet for j at the beginning of the lth slot. q(')
is equal to 1 if ¢ had a packet for j at the beginning of the
(! — 1)th slot and j was not selected by the random policy
at that slot. Otherwise, qg-) is equal to the probability that at

least one packet for j arrived at ¢ during the d(h" =1 glots
between the (! — 1)th and the Ith slots. The probablhty that
j is selected by the random policy in the Ith slot is E(%m;—

|
We can now express q,(J)

M _ (-1 1
4 = 4 1- —=
7 1 ( |I1-(f”(l 1)) I)

-4 _ ____1____
+(1 - q,] (1 |I-(fiJ(I_1)) |)]
d(h,»j(x—l))
X [1 — (1 —aipi;)™ }
1=2,3,- (10)
¢\’ = 0 (nitial Condition). (1

The initial condition (11) is obtained by assuming that the
frame starts at a slot in which ¢ can transmit to j. After some
algebraic manipulation of (10), we get

¢ = A VgV 4 BYY 122,34, (12)
where
oo (-1 )
AY = (1 O I)( -BY) (13)
o afhs @
Bij =1-(1- azpu) i (14)
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Because' of (9) we have that B(m“'”'k)
Ag;"a”+k) - A,(';),k =1,--,a5,m = 0,1,--
easy to show using induction that

ij+1 (a:;+1
gt = gff )ZDW

= BY¥ and

It is now

HA( ,m=0,1,-

(15)

The sum in (15) will always converge as m — oo since

0 < Dij < 1. Define 7{¥) as the limiting probability that

has a packet for j in the kth slot within a frame that j is in
the transmitting set of ¢,

r®) = lim P M k=1, (16)

Qgj-
oo Ty by

(k)

We can now obtain i

(15) and (12)):

using the following recursion (see

G4

RCONINIS SERCHS ™ T 4
i l_Du & ’ l_D ZB r—l—nIHAij
a7n
ri) = ALY L B k=2, e (18)

In order to compute the throughput of pair (¢,j) we note
that a packet will be successfully transmitted from : to j in the
kth slot in a frame if (a) ¢ has a packet for j at the beginning
of the slot, (b) the random policy at ¢ picks j to transmit to,
and the random policy at j plcks wavelength w( ) to listen
to, and (c) if another station, ¢/, is also allowed to transmit
in the same slot and on the same wavelength, it does not do
so. As m — 00,

1 @i (k)
T;j(RP) =
o M Z | I(fca(k)) I J(fu(k)) |
T,Elk)l
I1 L-gmr ) (- @
vt g Ty s | I [

1 ]
Expressions for all other schedules can be derived from
(19) by imposing appropriate restrictions. For example, if the

receivers are not tunable (TT-FR system), the factor I—(—imrl

= A(5")-
Also, in the spec1al case of one-to-one schedules | I; {f "(k?) |=

goes away and we have w(f”(k)) = A(j), w; ('f"(k))

| J(f"(k)) |= A(k) 0 for k y+ -+, a;;. Then,
ff) = B(k 1) =1-(1- a,p,]) G , there is no ¢ #£ 1
such that w(f”(k)) E,fj‘,’(k)), for some j’, and we get the

following expression, valid for any tunability characteristics.

< o)
— 0;pi;)" (One — to — one schedules).

1.3 = M Zl
(20

2) Many-to-Many Schedules with Round-Robin Policy: We
again consider the pair (, 7). Let z(t) I,(t)(ZJ(t) € J](t)) be
the decision of the round-robin pollcy at transmitter ¢ (resp.,
receiver j) in slot t,¢t = 1,---, M, i.e., the station 7 (resp.,
7) will transmit (resp., listen) to. The decisions of the round-
robin policy repeat, for all i,j, after F' = [, I T, , J{"

it
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frames; in other words, zi(t) = zEHMF)Vz',t, and ZJ@) =
Z; (t+MF )Vj t. We can now restrict our attention to a window
of F consecutive frames. Let b;; be the number of slots ¢
within a window such that zf ) = j and Z; ) — . Using the
same arguments leading to (19) we get

bij

R (=
II

i i i, w(") _,w(‘ﬂ)

T;;(RRP) =

(k)
(1 —_ O'ilpi/jl)di’i' } (21)

IV. OPTIMIZATION OF ONE-TO-ONE SCHEDULES

We now turn our attention to the problem of obtaining
schedules that maximize the system throughput. As a first step,
one has to determine the transmission mode and, if applicable,
the type of policy to use. Let Q;; = 1 — (1 — a;p;;)™ be
the probability that at least one packet with destination j
will arrive at station ¢ during a number of slots equal to the
frame length, M. When Q;; is close to one for all source-
destination pairs (3, j), one-to-one schedules are favored over
many-to-many schedules, as no packets are wasted due to
collisions or destination conflicts. But in one-to-one schedules,
slots are assigned for the exclusive use of a certain source-
destination pair. If the above condition is not true, some slots
may be unused for most of the time. Our approach is to first
consider determining an optimal one-to-one schedule. Next we
consider how we may obtain many-to-many schedules with
good performance in situations where Q;; is very low for
some pairs of stations.

Before proceeding to the general case, we will first consider
the special problem of C' = N, i.e., a number of available
wavelengths equal to the number of stations. The solution
method developed will provide the intuition for approaching
the general problem with C < N, while some of the heuristics
will be directly applicable to the general case.

A. Schedules for C = N

Our goal is to determine a one-to-one schedule S such
that the overall throughput, as given by expressions (6) and
(20), is maximized. Expression (20) is valid for all three
types of systems. Without loss of generality, in the following
discussion we only consider TT-FR and FT-TR systems, in
which transmissions to, or from, a certain station take place on
the same channel. The optimization problem can be formulated
as

N N a4
1 e
Pr:max T=— 1-(1-opij) (22)
1 65;),M M;; & P z])
subject to
M
ai; =83 Vi (23)
t=1
k+1) = fiy(k), k=1, a;—1
d(k {f]( ij IRRREY 7] 24
M+ fi5(0) = Fi(B), k= ai @y

fij(k) as in (8)

aij

Z d¥) = M Vi, j (25)
N N
i=1 j=1

25(0 =1Vj,¢ le(t) =1Vi,t @7
j=1

581) =0,1Vi,j,t, M integer. (28)

Constraints (26) specify that each station is permitted to
receive and transmit in exactly M slots, while constraints (27),
a special case of (5) with | X, |= 1,¢ =1,---, N, guarantee
that the resulting schedule is a one-to-one schedule.

As formulated, P; is a hard allocation problem. We now
present a heuristic to obtain near-optimal one-to-one schedules.
The heuristic is based on a decomposition of ’P1 into three
manageable subproblems.

1) Obtain a;; that satisfy (26). This is described in Appen-
dix A and is based on a decomposition of the problem
using theory developed in [15], [1], [2].

2) Construct a schedule by considering each channel in-
dependently of others. This may result in allocations
that violate either of the conditions in (27); considering
channels independently may cause a transmitter (resp.,
receiver) in a TT-FR (resp., FT-TR) system to be as-
signed to transmit to (resp., receive from) two or more
receivers (resp., transmitters) in the same slot.

3) Rearrange the schedule resulting from 2) above to re-
move the violations, converting it into a one-to-one
schedule.

The following steps describe the heuristic for a TT-FR system
(a FT-TR system is handled in a similar way). Our approach is
based on the golden ratio policy developed in [15], where only
frame lengths equal to the Fibonacci numbers are considered.
This policy places the permissions of a source-destination pair
in approximately equal distances within a frame (see Appendix
A).

Heuristic 1 (Optimized One-to-One Schedules for TT-FR
Systems and C = N):

1) Select the smallest Fibonacci number M > N — 1 and
obtain a;; as in Appendix A. If the a;; do not satisfy
fairness condition (2), repeat with the next Fibenacci
number.

2) Consider receiver j = 1 and use the golden ratio policy
[15] to allocate a;1,7z = 1,---, N, slots in a frame for
transmissions on channel A(7). Repeat for j = 2,---, N.

3) Run algorithm REARRANGE, described below, to con-
vert the schedule produced by Step 2 to a one-to-one
schedule, and compute its throughput from (6), (20).
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Algorithm REARRANGE

for d = 1 to N (* consider one destination at a time %)
begin
list « empty;
for t = 1 to M (* consider all transmissions to d *)
if & is such that 65) =1 and it violates )::,4=l 65? <1 then
6(.:)¢—0; add s to the list;
while the list is nonempty

begin
8+ the first item of the list; violation « false; /[~ d
repeat
find a ¢; such that 65;’) =0Vj=1,...,d
& 15
if there exists a m such that 6} =1 then
begin

find t; such that 6 =0 Vi=1,...,N; 6% «1; 6% —0;
if there is a n < d such that §(3) =1 then
violation « true; se—m; [+ mn;
end
until violation = false
end
end

Fig. 3. Algorithm to construct a one-to-one schedule for a TT-FR system.
A slight variation of the algorithm can be used for a FT-TR system.

4) Repeat Steps 1 through 3 for the next Fibonacci number,
up to an upper limit, M,,,. Select the frame length, and
schedule, that yields the largest throughput.

The algorithm REARRANGE used in the heuristic for TT-
FR systems is shown in Fig. 3. The algorithm opeérates as
follows. Suppose that in the initial schedule transmitter  has
been given permission to transmit to two receivers in the same
slot, ¢. Then, because of the condition Z;-v:l a;; = M, there
must be a slot ¢’ in which ¢ is not assigned to transmit to any
receiver. The algorithm will move one of ¢’s permissions from
slot ¢ to slot ¢/, and will move another transmitter’s permission
from ¢’ to t. By repeating the process, a one-to-one schedule
is constructed. The proof of correctness of the algorithm is
given in Appendix B, where it is also shown that its worst
case complexity is O( N2 M?). Note that the correctness of the
algorithm implies that if all a;; satisfy (26) then a one-to-one
schedule always exists.

B. Schedules for C < N

Systems with a number of wavelengths, C, equal to the
number of stations, N, do not scale well, for two reasons.
First, the number of wavelengths that can be supported within
a fiber is limited by the optical technology. Second, there ‘is
a tradeoff between tuning range and tuning speed in state
of the art agile optical transceivers; even when an adequate
number of wavelengths is available, the transceivers that can
tune over the entire range of wavelengths may not meet the
speed requirements for single-hop networks.

We now concentrate on the problem of obtaining near-
optimal one-to-one schedules when C < N. As in Section
IV-A, we only consider TT-FR and FT-TR systems, in which
a single channel may be shared by a number of receivers or
transmitters. The new optimization problems are harder than
P, as the maximization is over all partitions of {1,---, N}
into sets R, or X, the sets of receivers and transmitters,
respectively, sharing channel A.. In [3] it is assumed that
N = mC, and that m receivers (transmitters) share each
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channel. Although this assumption is acceptable under the
uniform traffic conditions considered there, in the general case
one would like to select the receivers or transmitters that share
each channel so that the utilization of all channels be kept at
almost the same level. In the following, we first assume that
the sets are given and present heuristics to obtain near-optimal
one-to-one schedules, and then discuss how to construct these
sets, for any values of N and C.

1) Systems with Fixed Transmitters—Tunable Receivers:
Given sets X. of transmitters sharing channel A.,c =
1,---,C, our optimization procedure is described by Heuristic
2. Note that we have decomposed the optimization problem
into two subproblems: (a) how the bandwidth of channel
Ac should be allocated to stations in X, and (b) how the
bandwidth each station in X receives should be allocated for
transmissions to each destination.

Heuristic 2 (Optimized One-to-One Schedules for FT-TR
Systems and C < N):

1) For each channel A, obtain the percentage of time, ;.

that ¢ € X, should transmit on A.. This can be done
by solving problem P; (see Appendix A). Allocate a;.
slots to station ¢ so that | Mz;.] < a;c < [M=;.] and
Eiexc 2 = M.

2) For each station 4 obtain z;;, the percentage of time
that 7 should transmit to j. This can be done by solving
problem Py (see Appendix A). Allocate a;; slots to
pair (4,7), such that I_a,ica:ijj < a; < [a,'cx,'j] and

ja,’j = Gjec-

3) Use the golden ratio policy [15] to place the a;; slots,
1 € Xe,j=1,---,N, on A

2) Systems with Tunable Transmitters—Fixed Receivers:
When receivers are fixed, we can use a technique similar
to Heuristic 2 to allocate slots for transmissions on a certain
channel. Observe, though, that in a TT-FR system, a station
transmitting on channel A, can reach any of the stations in
R.. Define s;. as the probability that the destination of 4 new
packet generated at i has its receiver tuned to channel X,

Sic = Zpu C=1,"',O
JER.

(29)

If we define a “destination” as a set of stations, R, rather
than a single station, each station can have C, instead of
N — 1, packet buffers, one for the receivers in R,. By using
sic instead of p;;, all the results of Section IV-A are now
directly applicable. The new model keeps information about
sets of receivers, rather than individual ones, and, thus, is an
approximation of our original model. Nevertheless, it allows
us to use Heuristic 1 with the only difference that C, rather
than N “destinations” have to be considered.

3) Construction of Sets X, and R.: We now address the
problem of how to select the transmitters or receivers that
share a certain channel so that some load balancing is achieved.
We now formulate this problem in a more general context, as
follows. We are given a set of N elements, and v; is the weight

4 At the end of Step 2, a check should be made to ensure that there is no 7
such that 37 a;; > M. If there is one, the excess slots should be allocated
to other source-destination pairs.
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associated with element e;. Our objective is to partition this
set into C,C < N, subsets Y,,c =1,---,C, such that the
following quantity is minimized

el 2ow- 3wl

e €Yy e; €Yl

(30)

For C = 2, the problem reduces to partitioning the set of
elements into two subsets, ¥, and Y3 such that | 37, oy, vi —
Yc.cy, Vi | is minimized. But the problem of whether there
exists a partition of the set of NV elements into two subsets
Y: and Yz such that 3, v, v = 3, cy, i, is N P-complete
[11, p. 223], and thus the minimization preblem for C = 2
is expected to be hard. We now propose the following greedy
procedure to construct the C' subsets.

1) Sort elements e; in decreasing order of v;. Initialize
Y. = {e.},e = 1,---,C, and k — C + 1. Note that
sets Y, are also sorted in decreasing order of EeieYc ;.

2) Set Yo «— YcolJ{ex} and £ — k + 1. Sort Y,,c =
1,---,C, in decreasing order of ZieYc v;. Repeat Step
2 while £ < N.

For obtaining the sets of transmitters, X, we used v; = o,

the probability that a new packet will arrive at station ¢ in a
slot. For the sets of receivers, R., we set v; = Zf_’__l OiPij-

V. OPTIMIZATION OF MANY-TO-MANY SCHEDULES

Whenever Q;; = 1—(1—0;p;;)™ <« 1 for some pairs (3, j),

one-to-one schedules may result in low throughput because of
the requirement that at least one slot be assigned to any pair of
stations, regardless of how low its traffic requirements are (see
(2)). In these cases, we can take advantage of the low traffic by
using more general, many-to-many schedules that may yield a
better throughput. The idea is that, instead of assigning one slot
per pair of stations, it might be better, in terms of throughput,
to assign a single slot for transmissions from a station, i; to
a group of stations, provided that the probability of a packet
for any of the stations in the group arriving at  during a time
period equal to the frame length, is very small. Heuristic 3,
described below, is based on this idea, and assumes that the
frame length is given.

Heuristic 3 (Optimized Many-to-Many Schedules for

C < N)

1) For transmitter s = 1,--, N, let G; = {]J Qi; < A}
If | G; |> 1, partition G; in disjoint sets g,-l), e ,gfk")
such that Ejeg(.‘) Qi]' <e< l,l =1, -,k,'.

2) Run the appropriate heuristic (Heuristic 1 or 2) for the
given frame length, M, modified so that for any groups
glw,l =1,---,k;, produced in Step 1, only one slot is
assigned for transmissions from ¢ to the stations in each
group. The resulting schedule, S, is, in general, a many-
to-many schedule. Compute its throughput by means of
the appropriate expressions. Use S if its throughput is
better than that of the one-to-one schedule with the same
frame length.

Parameter A has a small positive value and controls which

destinations will not be assigned a slot of their own for
transmissions from 3. Parameter ¢(> A) controls the number

o fom|ok| ofoso] of ofo
0] o] o Joso] oJosw] of o
0] oo Jox] of o Josx] o
o] ox|onf| oo [o ]| o]os
0] o] o] o] ofJosn]os] o
oJow]| oo Joxo] o] ofos
oo Joso] o]ox] o] oo
0| o o]os] o]ox|aes] o
Fig. 4. Mesh type traffic matrix (Network 1).
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015 | 040 030 | o | 002 | 0o | 002 | 002
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001 | 003 | 004 | 003 fos0| o | 02| o02s
002 | 001 |001 | 003 foso|ors| o |03
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Fig. 5. Disconnected type traffic matrix (Network 2).

of stations that are grouped together. The smaller the values
of A and ¢, the smaller the number of stations in a group. By
adjusting the values of the two parameters we can keep the
probability of collisions and/or destination conflicts within a
slot to an acceptable level. Also, by choosing a small A we
can have G; = @V¥i, producing a one-to-one schedule. ‘Thus,
Heuristic 3 is very general.

VI. NUMERICAL RESULTS

A. Optimized One-to-One Schedules for C = N

We consider the mesh type, disconnected type, ring type
and quasiuniform traffic matrices shown in Figs. 4, 5, 6, and
7, respectively. The mesh type configuration is considered as
it often arises in parallel and distributed computationy. Fig.
6 also shows the optimized one-to-one schedule of frame
length M = 21 produced by Heuristic 1. For these matrices
we computed the throughput of a simple cyclic schedule, the
throughput of the optimized schedule produced by Heuristic 1,
and an upper bound on the throughput of the optimal solution
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Fig. 6. Ring type traffic matrix (Network 3) and optimized one-to-one schedule for M = 21.

0 | 025 | 010 025 | 0.10 | 0.05 | 0.15

0.20 0 005 | 0.15 | 015 | 020

005 | 020 0 | 010 | 015 | 030 | 0.10

0.10 | 005 | 025 0 | 010 005| 0.30

0.05 | 005 | 025 | 0.20 0 |02 010

0.10 | 030 | 0.05 | 005 | 0.15 0 | 020

0.15 | 020 | 0.15 | 020 0.05 | 0.15 0 | 005

030 | 0.10 | 0.10 | 0.15 | 0.25 | 0.05 | 0.05 0

Fig. 7. Quasiuniform type trafﬁc matrix (Network 4).

to problem P;.5 The simple cyclic schedule is a one-to-one
schedule of frame length M = N — 1, and is such that a
station is given permission to transmit to each other station in
exactly one slot per frame [8] (i.e., it is optimal for uniform
traffic). The upper bound was computed as in Appendix A.
The value of M,,,, in Heuristic 1 was 987.

Our results are summarized in Table I. Qur heuristic pro-
duces schedules that are very close to the upper bound.
Similar results have been obtained over a very wide range of
traffic parameters. Our schedules also represent a significant
improvement over the cyclic one, especially when the traffic
is far from uniform (matrices 1, 2, and 3 in the table).

A. Optimized One-to-One Schedules for C < N

We again consider the 8-station networks of the previous
section and investigate how the throughput performance is
affected when we vary the number of available channels.

1) Tunable Transmitters—Fixed Receivers: The sets of re-
ceivers, R, that share channel A\.,c = 1,-- -, C, were obtained
as in Section IV-B3). Each set was considered as a single

SFor a fair comparison, we assume multiple packet buffers per station for

the cyclic schedule, as well as for the -TDMA* schedule in the next section,
exactly like our optimized schedules.

TABLE 1
THROUGHPUT RESULTS FOR NETWORKS WITH N = C = 8 UsING HEURISTIC 1

One-To-One Increase % from

Net Throughput from | Upper | Upper

No | Cyclic | Heuristic clic | Bound Bm%

1 | 3.146 5.076 61. 553‘6’ 4% :

2 | 3.7T14 4.981 34.1% 5.330 6.5%

3 | 3.337 5.317 59.3% | 5.568 | 4.5%

4 4.736 4874 2.9% 5.270 7.5% '

TABLE IT

THROUGHPUT RESULTS FOR TT-FR NETWORKS
witTH N = 8, C = 2,4, Using HEURISTIC 1

Uppee

“destination” (see Section IV-B2)) and we used Heuristic 1 to
construct near-optimal one-to-one schedules. Our results are
shown in Table II for 4 and 2 channels. The interleaved T]f)MA
(I-TDMA¥*) schedule, of which the throughput is also shown,
has NV slots per frame, and is such that each source is allowed
to transmit in exactly C slots during the frame, once to the
receivers sharing each channel [3]. The upper bound in the
table is an upper bound to the optimization problem for these
sets R, (recall that sets R, are not fixed in the optimization
problem, therefore we cannot get an overall upper bound).

The throughput of our schedules is significantly higher than
that of the I-TDMA* schedule, especially for C = 4. Our
schedules, also, are very close to the upper bound. When C =
2, the improvement over I-TDMA¥* is somewhat diminished.
This can be explained by the fact that sets R, are constructed
so that the utilization of each channel is kept at approximately
the same level. Since there are only two channels, by clustering
the receivers, the traffic to each channel loses its original
characteristics and becomes more “uniform”.

2) Fixed Transmitters—-Tunable Receivers: Table III shows,
for C = 4 and C = 2, the throughput of the one-to-one
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TABLE Il
THROUGHPUT RESULTS FOR FT-TR NETWORKS
witH N = 8, C = 2,4, UsING HEURISTIC 2

One-To-One Throughput Increase from
Net | Optimised Schedule | Cyclic Schedule | Cyclic Schedule
No |C=4| C=2 |[C=4]C=2|C=4]|C=2
1 | 5.422 | 1944 | 1.703 | 0.857 | 100.0% | 126.8%
2 3232 1875 | 2310 1.380 | 30.9% | 35.0%
3 | 3416 | 1943 | 2336 | 1.52¢ | 46.2% | 27.5%
4 | 3215 | 1924 3146 1838 | 42% | 47%

schedules, produced by Heuristic 2, for the same 8-station
networks under the assumption that the transmitters are fixed.
We also compare our results to a cyclic schedule which
allocates exactly one transmission to the (%, j) pair in a frame.
Again, our schedules perform much better than the cyclic one.

B. Optimized Many-to-Many Schedules

We now consider a 20-station FT-TR network with the
following traffic parameters.
Network 5

01P12 = 01P13 = O2P21 = O2P23 = 03p31 = 03P32 = 0.49

opii =02t =1,---,20;0:p;; = 1075 for all other i, j.

For these traffic parameters the upper bound in the through-
put of one-to-one schedules is 2.223, and the throughput of a
cyclic schedule is 0.320. In Table IV we show the throughput
of the many-to-many schedules produced by Heuristic 3 for
this network for various values of the A and e parameters,
for various frame lengths, and for the random policy. We also
show the throughput of the one-to-one schedules produced by
Heuristic 1 for the corresponding frame length.

As we can see, the throughput of the many-to-many sched-
ules is always better than that of the one-to-one schedules with
the same frame length, and, especially for smaller values of
M, the improvement is significant. This is due to the fact that
in a one-to-one schedule, slots assigned to pairs of stations
for which Q;; < 1 are mostly wasted. Heuristic 3 improves
this throughput by assigning only one slot for transmissions
to a group of stations for which there is low traffic (see Fig, 8
for an example). From the table, the best overall performance
is obtained when A = 0.01 and ¢ = 0.2. By experimenting
with different values for the two parameters, Heuristic 3 can
produce a large variety of schedules from which we can choose
the one with the best performance.

As we mentioned in Section II-B, a transmitter may imple-
ment modified versions of the selection palicies, whereby it
will ignore destinations for which it has no packets in its buffer
(recall that this is not possible for the policies implemented at
the receivers). We do not, however, expect that the modified
policies will result in a significant increase in performance, for
the following reasons. First, by construction (see Heuristic 3),
the transmitting sets I; (t ), of source 1, consist of desunauons
for which there is very low traffic and, thus, transmissions
to these destinations have only a slight effect on overall
throughput. Second, Heuristic 3 assigns only one slot per frame
for transmissions to a group of stations; as the frame length

Frame

Izllals Iulmls |l§|7|m|1z|4j17]9|2||4|o|19|uJ:]u|t

One-t0-One Schedule
@)

I’l’l’ [2]2fs |2]3f&f2]3|2]3}3[2]3]2]2]3}2]3
Many-to-Many Schedule (g = {4.5,...20))
®

Fig. 8. Transmissions from station 1 under the one-to-one and many-to-many
schedules (A = 0.01, € = 0.2) of frame length M = 21 slots, for Network 5.

TABLE IV
THROUGHPUT RESULTS FOR NETWORK 5 (N = C = 20) UsING HEURISTIC 3
Throughput
Frame Many-To-Many Schedules
Length | One-to-One [ A = 0.01 | A =0.001 | A = 0.01
Schedules | €=0.2 | ¢=02 | e=0.02
21 0.567 1.843 1.843 1.843
H 1.265 1.990 1.980 1.990
55 1.694 2.022 2.022 2.022
89 1.853 2.083 2.083 2.083
144 1.974 2.089 1.974 2.051
233 2.050 2.107 2.050 2.063
317 2.085 2.118 2.085 2.091
610 2.108 2.123 2.108 2.147
987 2.118 2.128 2.118 2.117

increases, any gain in throughput within that slot decreases
as a percentage of the overall throughput. Finally, although a
transmitter will always pick a receiver (if any) for which'it has
a packet to transmiit, if the receiver also implements a selection
policy, it is not guaranteed that the transmitted packet will in
fact be received.

We used simulation to assess the degree of improvement
from implementing the modified policies at the transmitters.
We considered the many-to-many schedules for Network 5, as
well as for a 4-station, 2-wavelength FT-TR network (Network
6) with traffic parameters o1p;5 = 02P31 = 03P34 = 04P43 =
0.7, oip;; =0,i=1,---,4, and oipij = 0.1 for all other %,7.

The simulation results showed a negligible improvement for
Network 5 (less than 0.5%), which diminished as the frame
length increased. For Network 6, we used high values for
parameters € and A in Heuristic 3 (i.e., A = 0.41, ¢ = 0.82 for
M = 5, and even higher for larger values of M) and the groups
constructed were g; D= = g, m = {3,4}, and g(l) (1)
{1,2}. The highest increase was observed for the smallest
frame length, M = 5, when the throughput increased: from
1.617 (random policy) to 1.690 (improved random policy),
or 4.5%. Note, however, that this increase was possible only
because we grouped destinations for which there is relatively
high traffic (i.e., g{* = {3,4} although Q13 = Q14 > 0.4YM)
and, therefore, the improved random policy will almost always
find a packet in the buffers to transmit. In general, we expect
the increase to be much smaller.
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VII. CONCLUDING REMARKS

In this paper we have considered single-hop lightwave
networks employing WDM and a predefined, wavelength-time
oriented schedule to coordinate packet transmissions. We have
defined a wide variety of transmission schedules based on the
transceiver tunability characteristics, the transmission mode,
and the policy used to select one of possibly many stations to
communicate with. For the random and round-robin policies
we have presented a model for analyzing and optimizing the
throughput performance of schedules for any number of wave-
lengths and general traffic patterns. Our results indicate that a
significant improvement over previously proposed schemes is
possible for the potentially nonuniform traffic patterns that we
expect to encounter in practice.

APPENDIX

A. Heuristic To Obtain a;;

As a first step, we will try to get an upper bound to problem
P;. It can be shown [15] that

N N ai; e
TSZZV[I—U-WP&)“”]

i=1 j=1

(3D

Let z;; = a;;/M. z;; indicates the percentage of time that
station ¢ should transmit to station j. (31) implies that the
Mz;; slots assigned for transmissions from ¢ to j should
be equally spaced, separated by a number of 1/z;; slots.
However, this is not possible in general. First, 1/z;;’s may
not be integers, and second, even if they are, scheduling the
transmissions between all sources and destinations in equally
spaced slots may violate constraints (27). If we relax (27),
maximizing the upper bound in (31) can be formulated as

N N
1
Py n;:—tx N - Zinj(l — Oipij) i (32)

i=1 j=1

subject to

N N
Sy =1V Y =1V, 2, 20Yi,5.  (33)

i=1 i=1

The solution to P, is independent of the frame length M.

Given M, we can get a;; from

|Mzi;] < aij < [Mzi5] (34)
and so that constraints (26) are satisfied. Unfortunately, prob-
lem P, does not yield an analytical solution. We now develop
a heuristic for obtaining a;;, by decomposing P, into 2N
easy to solve problems.

As a first step, we relax the N constraints Eﬁ__l zi; = 1V,
of Py, to obtain a new problem, P3. Obviously, an optimal
solution to P3 is an upper bound for the optimal solution to
‘P, and, consequently, an upper. bound for P; . Furthermore, by
removing the dependencies among j, P; naturally decomposes
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into N subproblems, P3;,5 = 1,---, N, whereby a given
destination j appears only in one of the subproblems

N
1/x;;
Pa,j 1 max 1 - > 31— opis)

i=1

(35)

N
subject to Z.’Eij =1, z;; >0 V.

i=1

(36)

Note that the sum of the objective functions of the N problems
P3,; for the different j, is equal to the objective functions of
P3 (and P3). For a fixed j, Ps ; is the single channel problem
in [15], and the solution is

(1.) _ ln(l - aipi,-)
7 Tmmi (= ompiej)

,i=1,---,N. (3D

Using the same reasoning, the solution to another problem,
Pa, obtained by relaxing the N constraints Y | ;;Vj, of
P, provides an upper bound for P;. Py, in turn, can be
decomposed into N subproblems, Py ;,i = 1,---, N, which
can be formulated in a way very similar to P; ;. For a given
source, i, the solution is

23 = In(1 — oipi;) j=1,---

Y 22;1 In(1 - o:pin) '

If z7; are a solution to both P3 and P, for all ¢, , they also
constitute a solution to P,. By equating the right hand sides
of (37) and (38), we can obtain the conditions under which
a solution to either P3 or P, will also solve Ps. One special
case is uniform traffic, i.e., OiDij = ai:p,-:jr\ﬁ,j, 'i’,jl.

Given the frame length, M, we use the following steps to
obtain the number of slots, a;;.

1) Solve Py ;, for all j, and obtain &} Solve Py, for all
i, yielding mff) ;

2) From z{}) (z) obtain the a}’ (a)) that satisfy
(34) and constraints (26). For all 4,7, set a; =
min{a,g-), ag)}.

3) If the a;; satisfy constraints (26), stop. Otherwise, ‘con-
sider all pairs (7,j) such that o;p;; # 0, and add'1 to
a;;, if doing so does not violate these constraints. Répeat
until the constraints are satisfied or until for all (¢, j) with
o;pij # 0, adding 1 to a;; would violate them. If the
latter is true, repeat adding 1 to all other a;; until the

~ constraints are satisfied.’

The upper bound shown in Tables I and II is obtained a$ the

minimum of the optimal solutions to problems P5 and P, (i.c.,

the sum of the objective functions at the optimal solutions to

the N problems P; ; and P, ;, respectively.) '

,N. (38)

S1n this case, slots are assigned although they will never be used. However,
we have found that the number of such slots is always very small and, in the
vast majority of schedules, zero.
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B. Proof of Correctness of Algorithm Rearrange

We now show that algorithm REARRANGE can be used
to rearrange a schedule S satisfying constraints (25), (26) and
the first of (27), so that the second of (27) is finally satisfied.

Proof. By induction on the number k of the destinations
considered. For k = 1 it is obvious that the schedule produced
is one-to-one. Suppose that for & = d—1 a one-to-one schedule
is produced, and consider destination d. Since S satisfies the
first of (27), there will be at most one s such that §, t) 1,

for some t. Let s and ¢ be such that 65 d) =1, v1olal1ng

Zé“) <1

Violation of (39) means that there exists a d; < d such
that 6(0 = 1. Combined with the second of (26) we have

DN 1 Et 8% < M, and there exists a slot ¢, such that
s is not assngned to transmit to any destination in ¢;. Thus,
6:; =0,7=1,---,d, and s can transmit in slot ¢; without
violating (39). If no source transmits to d in slot £;, we make
s transmit to d in that slot, and we are done. Otherwise, let
m (again, it can be at most one) be the station assigned to
transmit to d in slot ¢;. By considering the first of (26) we
get that Z:—l Zt 1 ut,) < M. Then, there exists a slot t
such that 61-,1 =0,i=1, -+, N, which means that no station
transmits to d in slot 2. We can now make s transmit in #;
and ' transmit in ¢5. By doing this, none of ¢, ¢ violates
the first of (27). ¢ also satisfies (39), but £, may violate it, if
m has been assigned to transmit to some station n < d in this
slot. In the latter case, we execute the repeat:loop once more,
for destination n. The loop will be executed at most d timeés,
after which both t; and ¢, will satisfy the second of (27). O

By maintaining appropriate data structures the check for
violation of (39) takes constant time. Also, the time needéd
for the execution of the repeat loop, is, in the worst case,
proportional to the number of slots, M. Each time, d, the
outer for loop is executed the list will have at most M items.
For each item the repeat loop will be executed at most d
times. Thus, the complexity of the while loop is proportional
to dM?. The outer loop is executed for d = 1,-- -, N, and the
worst case complexity of the algorithm is O(N2M?).

(39
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