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Abstract—We present an analytical model for computing
call-blocking probabilities in a low earth orbit (LEO) satellite
network that carries voice calls. Both satellite- and earth-fixed
constellations with interorbit links and handoffs are considered.
In this model, we assume a single beam per satellite. Also, we
assume that call arrivals are Poisson with a fixed arrival rate that
is independent of the geographic area. The model is analyzed ap-
proximately by decomposing it into subsystems. Each subsystem
is solved in isolation exactly using a Markov process and the indi-
vidual results are combined together through an iterative method.
Numerical results demonstrate that our method is accurate for a
wide range of traffic patterns. We also derive an upper and lower
bound for the link-blocking probabilities that can be computed
efficiently. These bounds can be used for constellations of realistic
size where each satellite has multiple beams.

Index Terms—Call blocking; handoffs; low earth orbit (LEO)
satellite constellations.

I. INTRODUCTION

RECENT advances in satellite communications make it
possible to use satellites as an alternative to wireless

telephones and networks. The 20th century witnessed the
development of satellite communication systems aimed at
providing mobile telephony and data-transmission services.
These services are globally available and are independent from
terrestrial networks. Satellite systems are location insensitive
and can be used to extend the reach of networks and applica-
tions to anywhere on the earth with a fixed constellation cost.

A low earth orbit (LEO) or medium earth orbit (MEO)
satellite system is a set of identical satellites that are launched
in several orbital planes, with the orbits having the same altitude.
The satellites move in a synchronized manner in trajectories
relative to the earth. Such a set of satellites is referred to as
a constellation. The position of all the satellites in relation
to the earth at some instance of time repeats itself after a
predetermined period, called asystem period, which is usually
several days. A satellite within an orbit also comes to the
same point on the sky relative to the earth after a certain time,
called theorbit period, which is approximately 100 minutes
for LEO systems. If satellites are equipped with advanced
onboard processing, they can communicate directly with each
other by line of sight using intersatellite links (ISL). If the ISL
is between satellites on the same orbit, it is called intraplane
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ISL and if it is between satellites in adjacent planes it is
called interplane ISL. The use of ISLs gives the chance of
routing in the sky and, therefore, increases the flexibility of
the system. Although ISLs require complex call-management
functions due to the dynamic nature of the constellation, they
move the burden of the network from ground to space since
they permit two users in different footprints to communicate
without the need for a terrestrial system.

Depending on the antenna technology used, satellite constel-
lations can provide one of two types of coverage. If the satel-
lite antenna is fixed as the satellite moves along its orbit, then
the coverage is calledsatellite fixed. In this case, the footprint
area moves along with the satellite. Inearth-fixed coverage, the
earth’s surface is divided into cells as in a terrestrial cellular
system and a cell is serviced continuously by the same beam
during the entire time that the cell is within the footprint area
of the satellite. This type of coverage requires an antenna that
tracks the cell area.

In a LEO/MEO satellite network, the frequency of handoffs
depends on the beam size, call duration, footprint size, and satel-
lite speed. A handoff may be from one beam to another (beam
handoff) or from one satellite to another (satellite handoff). In
an earth-fixed system, both satellite and beam handoffs occur at
periodic intervals, when a beam or satellite is assigned to a new
cell. During the handoff, all beams are reassigned to their re-
spective cells in the adjacent footprint area. However, in a satel-
lite-fixed system, a handoff may occur at any point in time. Since
a call handed over to another beam may be dropped if there is
not enough bandwidth on that beam to carry the call, handoffs
in satellite-fixed systems must be carefully handled to prevent a
degradation in the quality of service. Finally, we note that LEO
satellites rotate around the earth much faster than any object on
the surface of the earth. Therefore, the movement of objects can
be considered negligible and we assume that handoffs occur due
only to the movement of satellites.

Existing and planned LEO/MEO satellite systems for world-
wide mobile telephony include Globalstar, Iridium, ICO, El-
lipso, Constellation, Courier, and Gonets. (A survey of LEO
systems can be found in [3].) These systems differ in many
aspects, including the number of orbits and of satellites per
orbit, the number of beams per satellite, their capacity, the band
they operate (S-Band, L-Band, etc.), and the access method
employed (FDMA, TDMA, or CDMA). Also, these systems
provide different services and may or may not have onboard
switching capabilities. For instance, Iridium has onboard dig-
ital processing and switching, while other systems, such as
the Globalstar, act as a bent pipe. Despite these differences,
from the point of view of providing telephony-based services,
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the principles of operation are very similar and, thus, the an-
alytical techniques to be developed in the proposed work are
applicable to any LEO/MEO satellite system that offers such
services.

The performance of satellite systems has been studied by sev-
eral authors. In general, most studies rely on simple queueing
models to evaluate call-blocking probabilities and focus on de-
vising methods for improving the performance of calls during
handoffs (e.g., by assigning higher priority to handoff calls,
using guard channels, or making reservations ahead of a handoff
instant). In [2], Ganzet al. expressed the system performance
in terms of thedistribution of the number of handoffsoccurring
during a single transaction time and theaveragecall-drop prob-
ability. In their work, each cell is modeled as anM/M/K/K queue
whereK denotes the number of channels per cell, assuming that
the number of handoff calls entering a cell is equal to the number
of handoff calls leaving the cell. Del Reet al.in [7] and [6], pro-
posed an analytical model to analyze handoff queueing strate-
gies under fixed channel allocation. Their method is designed
for satellite-fixed cell coverage. In [5], Pennoni and Ferroni de-
scribed an algorithm to improve the performance of handoffs
in LEO systems. They defined two queues for each cell, one
for new calls and one for handoff calls. The calls are held in
these two queues for a maximum allowed waiting time. The
handoff queue has higher priority than the new-calls queue. In
[1], Dosiereet al.used the same model to calculate the handoff
traffic rate over a street of coverage. Once the handoff arrival
rate has been calculated as in [5], the total arrival rate is com-
puted as the summation of the new-call and handoff arrival rates.
In [9], Ruizet al.used a technique similar to the one used in [5].
However, this time they used some guard channels for handoff
calls and they distinguished between the new-arrival rate and
handoff-attempt rates. In [8], Respero and Maral defined a guar-
anteed handoff mechanism for LEO satellite systems with satel-
lite-fixed cell configuration. In this method, channel reservation
is performed according to the location of the user. The advantage
of this method is that the reservation is done only on the next
satellite, rather than on the whole call path. With this approach,
the amount of redundant circuitry is minimized and the handoff
success rate is as high as the static reservation technique. In [10],
Wanet al.defined a channel-reservation algorithm for handoff
calls. In this algorithm, they keep three queues: one for handoff
requests, one for new call requests, and one for available chan-
nels. Each request comes with the information indicating the
position of the user within the footprint area. The position in-
formation is then used to calculate the time of the next handoff.
The aim of the algorithm is to match the available channels with
the handoff and new-call request queues according to the time
criteria. A similar approach is proposed by Obradovic and Cigoj
in [4]. They proposed a dynamic channel-reservation scheme.
Handoff management is performed with two queues: one for
handoff requests and one for new call requests. Available chan-
nels are also divided into two subgroups: reserved and nonre-
served ones. Reserved channels have priority over nonreserved
channels during the assignment.

In [11], the authors proposed an approximation method for
calculating call-blocking probabilities in a group of LEO/MEO
satellites arranged in a single orbit. Both satellite- and earth-

fixed types of coverage with handoffs were considered. In the
model, it was assumed that each satellite has a single beam and
that the arrival process is Poisson with a rate independent of the
geographic area. The model was analyzed using decomposition.
Specifically, the entire orbit is decomposed into subsystems,
each consisting of a small number of satellites. Each subsystem
is analyzed exactly, by observing that its steady-state probability
distribution has a product-form solution. An efficient algorithm
was proposed to calculate the normalizing constant associated
with this product-form solution. The results obtained from each
subsystem are combined together in an iterative manner in order
to solve the entire orbit.

In this paper, we generalize the above algorithm to an entire
constellation of LEO/MEO satellites involving multiple orbits.
We consider both satellite- and earth-fixed constellations with
interorbit links and handoffs. We assume that each satellite
employs a single beam and that calls arrive in a Poisson fashion
with a fixed arrival rate independent of the geographical area.
We present an approximate decomposition algorithm for the
calculation of the call-blocking probabilities in a LEO/MEO
satellite constellation. Specifically, the entire constellation is
decomposed into subsystems and each subsystem is analyzed
exactly as a Markov process by using the solution technique
presented in [11]. This approach leads to an iterative scheme
where the individual subsystems are solved successively until
a convergence criterion is satisfied. We also derive upper and
lower bounds on the link-blocking probabilities. These bounds
are computed efficiently and can be useful for large satellite
constellations when each satellite employs multiple beams.

The paper is organized as follows. In Section II, we present
briefly an exact Markov process model under the assumption
that satellites are fixed in the sky (i.e., no handoffs take place)
and in Section III we present an approximate decomposition
algorithm for a constellation of satellites. In Section IV, we
extend our approach to model handoffs for both earth- and
satellite-fixed coverage and in Section V we derive efficient
upper and lower bounds on the call-blocking probabilities. We
present numerical results in Section VI and in Section VII
we conclude the paper.

II. A N EXACT MODEL FOR THENO-HANDOFFSCASE

In this section, we briefly review the single-orbit model pro-
posed in [11]. This model is used in the decomposition algo-
rithm described in the following section.

Let us consider a single orbit of a constellation and let us
assume that the position of the satellites is fixed in the sky, as
in the case of geostationary satellites. The analysis of such a
system is simpler since no calls are lost due to handoffs from
one satellite to another, as when the satellites move with respect
to the users on the earth. This model is used in Section IV to
model both earth- and satellite-fixed systems with handoffs.

Each up-and-down link (UDL) of a satellite has the capacity
to support up to bidirectional calls, while each ISL has the
capacity equal to bidirectional calls. We assume that call
requests arrive at each satellite according to a Poisson process
and that call-holding times are exponentially distributed. We
now show how to compute blocking probabilities for the three
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Fig. 1. Three satellites in a single orbit.

satellites in the single orbit of Fig. 1. The analysis can be gener-
alized to analyze satellites in a single orbit. For simplicity,
we consider only shortest-path routing, although the analysis
can be applied to any fixed routing scheme whereby the path
taken by a call is fixed and known in advance of the arrival of
the call request.

Let be a random variable representing the number of ac-
tive bidirectional calls between satelliteand satellite

regardless of whether the calls originated at satellite
or . As an example, if , then there is one call using a
one-way ISL channel from satellite 1 to satellite 2 and a one-way
ISL channel from satellite 2 to satellite 1. If , then there
is a call between a customer under satellite 1 and a customer
also under satellite 1 and two bidirectional UDL channels are
used. Let (respectively, ) denote the arrival rate (re-
spectively, mean holding time) of calls between satellitesand
. Then, the three-satellite system in Fig. 1 can be described by

the six-dimensional Markov process as

(1)

Also, let denote a vector with zeros for all random variables
except random variable , which is 1. The state transition rates
for this Markov process are given by

(2)

(3)

The transition in (2) is due to the arrival of a call between satel-
lites and , while the transition in (3) is due to the termination
of a call between satellitesand .

Let denote the state space for this Markov process. Due to
the fact that some of the calls share common UDL and inter-
satellite links, the following constraints are imposed on:

(4)

(5)

(6)

(7)

(8)

(9)

Constraint (4) ensures that the number of calls originating
(equivalently, terminating) at satellite 1 is at most equal to the
capacity of the UDL of that satellite. Note that a call that origi-
nates and terminates within the footprint of satellite 1 captures
two channels; thus, the term in constraint (4). Constraints
(5) and (6) are similar to (4), but correspond to satellites 2
and 3, respectively. Finally, constraints (7)–(9) ensure that the
number of calls using the link between two satellites is at most
equal to the capacity of that link. Note that, because of (4)–(6),
constraints (7)–(9) become redundant when . In
other words, there is no blocking at the intersatellite links when
the capacity of the links is at least equal to the capacity of the
UDL at each satellite.1

It is straightforward to verify that the Markov process for the
three-satellite system shown in Fig. 1 has a closed-form solution
that is given by

(10)

where is the normalizing constant and ,
is the offered load of calls from satelliteto satellite .

As we can see, the solution is the product of six terms of the
form , , each corresponding to one of
the six different source/destination pair of calls. Therefore, it is
easily generalizable to a-satellite system, .

An alternative way is to regard this Markov process as
describing a network of sixM/M/K/K queues, one for each
source/destination pair of calls between the three satellites.
Since the satellites do not move, there are no handoffs and
as a consequence customers do not move from one queue
to another (we will see in Section IV-B that handoffs may
be modeled by allowing customers to move between the
queues). Now, the probability that there are customers
in an M/M/K/K queue is given by the familiar expression

and, therefore, the probability that

there are customers in the six
queues is given by (10). Unlike previous studies reported in
the literature, our model takes into account the fact that the
six M/M/K/K queues are not independent, since the number
of customers accepted in eachM/M/K/K queue depends on
the number of customers in other queues, as described by the
constraints (4)–(9).

Of course, the main concern in any product-form solution is
the computation of the normalizing constant

(11)

where the sum is taken over all vectorsthat satisfy constraints
(4) through (9). A procedure to compute the normalizing con-
stant in an efficient manner is presented in [11].

1When there are more than three satellites in an orbit, calls between a number
of satellite pairs may share a given intersatellite link. Consequently, the con-
straints of ak-satellite orbit,k > 3, corresponding to (7)–(9), will be similar
to constraints (4)–(6) in that the left-hand side will involve a summation over a
number of calls. In this case, blocking on intersatellite links may occur even if
C � C .
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Fig. 2. Sixteen-satellite constellation.

Once the value of the normalizing constant is obtained, we
can compute blocking probabilities by summing up all the ap-
propriate blocking states. Consider the three-satellite orbit of
Fig. 1. The probability that a call that either originates or termi-
nates at satellite 1 will be blocked on the UDL of that satellite
is given by

(12)

while the probability that a call originating at satellite(or satel-
lite ) and terminating at satellite(or ) will be blocked by the
intersatellite link is

otherwise. (13)

Once the blocking probabilities on all UDL and intersatellite
links have been obtained using expressions similar to (12) and
(13), the blocking probability of calls between any two satellites
can be obtained easily.

Let be the number of satellites in a single orbit andbe the
number of random variables in the state description of the cor-
responding Markov process . Using the method
described in [11], we can compute the normalizing constant
in time as opposed to time needed by a brute
force enumeration of all states. Although theimprovementin the
running time provided by our method for computingincreases
with , the value of will dominate for large values of. Nu-
merical experiments with the above algorithm indicate that this
method is limited to satellites. That is, it takes an amount
of time in the order of a few minutes to compute the normalizing

constant for five satellites. Thus, a different method is needed
for analyzing realistic constellations of LEO satellites.

III. A D ECOMPOSITIONALGORITHM FOR LEO SATELLITE

CONSTELLATIONS

We now present a decomposition method for calculating
call-blocking probabilities in a constellation of satellites. The
constellation is decomposed into a series of subsystems, each
consisting of at most three satellites. Each subsystem is analyzed
separately using the exact solution described in the previous
section. The results obtained from the subsystems are then
combined together using an iterative scheme in order to obtain
a solution to the constellation as a whole. This decomposition
algorithm is a nontrivial extension of the one presented in
[11] for satellites arranged in a single orbit, where there are
no interorbit links.

As in the previous section, we will assume for the moment
that the constellation of satellites is fixed over the earth, as in the
case of geostationary satellites. That is, calls are not handed off
from one satellite to another and the call-blocking probability
due to handoffs is zero. Therefore, the decomposition algorithm
presented in this section can only calculate the call-blocking
probabilities of new calls. In the following section, we extend
the algorithm to also calculate the call-blocking probabilities
due to handoffs.

In order to explain how the decomposition algorithm works,
let us consider a 16-satellite constellation with 4 orbits and 4
satellites per orbit, as shown in Fig. 2. In the configuration of
satellites that we study, we do not take into account the pres-
ence of the seam or the fact that satellites near the north and
south pole have some of their links shut down. These two cases
can be taken into account by simply changing the routing paths
between pairs of satellites that are affected by the lack of links
over the seam and near the poles.

The constellation is fixed over the earth and we assume that
each satellite in the first row has an intraplane ISL to the satel-
lite on the same orbit located in the bottom row. For instance,
satellite 1 communicates with satellite 4 via an intraplane ISL.
Likewise, satellites 5 and 8 are connected by an intraplane ISL
and so on. Also, each satellite in the first column communicates
via an interplane ISL with the satellite on the fourth column that
is located on the same row. For instance, satellite 1 has an inter-
plane link to satellite 13 and so on.

For the purposes of our decomposition algorithm, each orbit
is divided into two subsystems (shown in Fig. 3). For instance,
orbit 1 is divided into subsystem 1, consisting of satellites 1
and 2, and subsystem 2, consisting of satellites 3 and 4. Orbit
2 is divided into subsystem 3, consisting of satellites 5 and 6,
and subsystem 4, consisting of satellites 7 and 8; likewise for
orbits 3 and 4. Similarly, each row of four satellites in Fig. 2 is
divided into two subsystems. The 16-satellite constellation is,
thus, divided into 16 subsystems as shown in Fig. 3.

In order to analyze subsystem 1 in isolation, we need to have
some information from other subsystems. Specifically, we need
to know the probability that a call originating at a satellite in
subsystem 1 and terminating at a satellite in subsystem, where

, will be blocked due to lack of capacity in a link of
any subsystem that it has to traverse, including subsystem.
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Fig. 3. Augmented subsystems for constellation of Fig. 2.

Also, we need to know the number of calls that originate at other
subsystems and terminate in subsystem 1. Similar information
is needed in order to analyze any other subsystem.

In view of this, each subsystem within an orbit is augmented
to include two fictitious satellites, referred to asand . These
two satellites are used to represent the aggregate traffic gener-
ated by other satellites, which flows into (or out of) the sub-
system along links north or south of the subsystem, respectively.
For instance, subsystem 1, shown in Fig. 3, is augmented with
fictitious satellites and . A call originating at satellite
, and terminating at satellite, are rep-

resented in our subsystem by a call from satelliteto one of
the fictitious satellites or . Depending upon and , this
call may be routed differently. In our augmented subsystem,
a call will be routed to if the shortest-path route passes
through satellites south of the subsystem. A call will be routed
to if the shortest-path route goes toward the north.2 In other
words, satellite (respectively, ) in the augmented sub-
system is the destination satellite for all calls that originate in
satellite of subsystem 1 and are routed to satellite, located
outside that subsystem in the clockwise (respectively, counter-
clockwise) direction.

2We note again that the algorithm can handle any fixed-routing scheme in
addition to the shortest-path scheme.

This augmented subsystem captures the traffic outside the
subsystem that travels on the same orbit, i.e., on intraplane ISLs.
In addition, we also have to consider traffic that uses interplane
ISLs. For instance, let us consider again subsystem 1. A call
originating at satellite 1 and terminating at satellite 6 will use
the intraplane ISL to satellite 2 and then the interplane ISL be-
tween satellites 2 and 6. In order to account for traffic-traversing
interplane ISLs, we also decompose each row of satellites into
two subsystems, each consisting of two satellites. For instance,
the first row of satellites is divided into subsystem 9, consisting
of satellites 1 and 5, and subsystem 10, consisting of satellites 9
and 13. The 16-satellite constellation is, thus, divided into an ad-
ditional eight subsystems, as shown in Fig. 3. Each subsystem
is augmented to include two fictitious satellites, referred to as

and . As before, the fictitious and satellites are used
to represent the aggregate traffic generated by other satellites,
which flows into (or out of) the subsystem along links east or
west of the subsystem, respectively. For instance, a call origi-
nating at, say, satellite, and terminating at satellite,

will be represented in our subsystem 9 as a call from
to either or , depending upon the shortest-path route of

the call. As another example, consider a call between satellites
5 and 11. Using shortest-path routing, this call is routed through
satellites 9 and 10. Within the augmented subsystem 9, this par-
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ticular is represented as a call between satellite 5 and fictitious
satellite .

In order to analyze the augmented subsystems in Fig. 3, we in-
troduce theeffectivearrival rates , including rates ,
(or , ) within each subsystem. The effective rate
captures the rate of calls between satelliteand satellite , as
seen from within this subsystem. In particular, the effective rate

(or any other rate involving any of the other fictitious satel-
lites , , or ) captures the rate of calls originating at satellite

and leaving the subsystem over an ISL that goes through the
fictitious satellite .

Based on this decomposition, computing the blocking prob-
ability of a call depends on whether or not the originating and
terminating satellites of the call are within the same subsystem.
In the former case, the blocking probability is computed directly
as a byproduct of solving the subsystem in isolation. In the latter
case, the blocking probability is computed by taking into ac-
count all the subsystems in the call’s path. Returning to Fig. 3,
a call originating at satellite 1 and terminating at satellite 6 will
be analyzed in two steps. At the first step, it is a call within sub-
system 1 between satellites 1 and 2. This call then leaves this
subsystem from satellite 2 and is analyzed using subsystem 11.
From the point of view of subsystem 11, this is a call between
satellites 2 and 6. As another example, analyzing a call between
satellite 1 and satellite 8 involves three subsystems. Within sub-
system 1, it is viewed as a call between satellite 1 and (fictitious)
satellite . In subsystem 2, it is considered a call between (fic-
titious) satellite and satellite 4. Finally, in subsystem 15, it
is a call between satellites 4 and 8.

For a step-by-step precise description of the iterative algo-
rithm, including pseudocode, the reader is referred to [12]. We
now illustrate the decomposition algorithm using the 16-satel-
lite constellation shown in Fig. 3. Initially, we solve subsystem
1 in isolation. This system in isolation is described by the
following Markov process:

(14)

We solve subsystem 1 exactly by using the approach described
in the previous section. The arrival rates used in the solution are
the effective arrival rates obtained using expressions (15)–(21).
We now explain expression (15) for effective rate in
more detail. Expressions (16)–(21), as well as expressions for
the other subsystems not shown here, are obtained in a similar
fashion. Note that, in these expressions, quantitiesrepresent
the probability that a call between two satellites traveling
through the path segment in another subsystem will be
blocked due to the lack of capacity in that segment.

Consider expression (15) for effective rate , which
represents the rate of calls originating at satellite 1 and leaving
the subsystem over ISL 1-4 in Fig. 2. Because of the shortest-path
routing we consider here, these are calls terminating at satellites
4, 8, 12, and 16. Consequently, the right-hand side of (15)
consists of four terms, one for calls terminating at each of
these four satellites. The first term in (15), ,
represents the effective arrival rate of calls between satellites
1 and 4, as seen by subsystem 1. This effective rate represents
the fraction of calls between satellites 1 and 4 not blocked in

subsystem 2 between satellites 4 andand is given by the
product of the arrival rate of new calls between satellites
1 and 4 times the probability that a call is not blocked between
satellite 4 and (fictitious) satellite ) in subsystem 2. The
second term is obtained similarly by accounting for all the
subsystems in the shortest path between satellites 1 and 8.
A call between satellites 1 and 8 may be blocked either in
subsystem 2, between satellites 4 and, or in subsystem 15,
between satellites 4 and 8. Therefore, the effective arrival rate
for a call between satellites 1 and 8 as seen by subsystem
1 is . This expression gives us the
proportion of calls that are not blocked in subsystems 2 and
15. The third term, ,
provides the effective arrival rate between satellites 1 and 12.
This expression gives us the proportion of the traffic that is
not blocked between satellites 4 and, 4 and 8, and and
12. The last term of is similar to the previous term
except that it accounts for the subsystems along the shortest
path to satellite 16

(15)

(16)

(17)

(18)

(19)

(20)

(21)



628 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 52, NO. 3, MAY 2003

Equations (15)–(21) are used to solve subsystem 1. Similar
equations, not shown here, are used to solve the other subsys-
tems in isolation. The values of quantities are updated at
each iteration and represent our best estimate for the value of the
corresponding blocking probability at the beginning of the itera-
tion. For the first iteration, we use for all and . During
the th iteration, each subsystem is solved in isolation using the
blocking probabilities computed during the previous it-
eration. As a result of the solution to the subsystem, a new set
of values for the blocking probabilities are obtained, which
are used in the next iteration. This iterative procedure continues
until the blocking probabilities converge.

Once the iterative procedure terminates, the blocking prob-
ability between any two satellites can be computed as follows.
If both satellites are in the same subsystem, the corresponding
blocking probability is readily available as part of the last solu-
tion to the subsystem. For example, the blocking probability be-
tween satellite 1 and satellite 2, both of which are in subsystem
1, is given by the value of , obtained by the solution to this
subsystem. However, the blocking probability from satellite 1
to satellite 12 in subsystem 6 is given by

(22)

In the above expression, the overall blocking probability is ob-
tained by simply multiplying the blocking probabilities at each
subsystem along the path between satellites 1 and 12. The first
and last terms, ( ) and ( ), respectively, represent
the blocking probability at UDL. The remaining terms represent
the blocking probability at intersatellite links.

Any constellation with a large number of satellites can be de-
composed in a similar manner, into a number of subsystems,
each consisting of three or fewer satellites. The decomposition
method is similar to the one above in that for subsystem, the
remaining satellites are aggregated to two fictitious satellites.
Each subsystem is analyzed in succession as described above.
We note that when employing the decomposition algorithm, the
selection of the subsystem size will depend on the number of
satellites in the original orbit and how efficiently we can cal-
culate the exact solution of the Markov process associated with
each subsystem. It is well known in decomposition algorithms
that the larger the individual subsystems that have to be analyzed
in isolation, the better the accuracy of the decomposition algo-
rithm. Thus, as we mentioned above, we have decided to decom-
pose a constellation into subsystems of the largest size (three of
the original satellites plus two fictitious ones) for which we can
efficiently analyze the Markov process.

IV. M ODELING HANDOFFS

So far, we have assumed that the constellation is fixed over the
earth. In this section, we remove this assumption and we let the
satellites travel along their orbits. Below, we first consider the
relatively straightforward case of the earth-fixed coverage. We
then examine the more involved case of satellite-fixed coverage.

A. Earth-Fixed Coverage

Let us now turn to the problem of determining blocking prob-
abilities in a LEO satellite constellation with earth-fixed cov-
erage. Let denote the number of orbits andthe number of
satellites in each orbit. In this case, we assume that the earth is
divided into fixed cells (footprints) along streets of cov-
erage and that time is divided in intervals of lengthsuch that,
during a given interval, each satellite serves a certain cell by con-
tinuously redirecting its beams. At the end of each interval, i.e.,
every time units, all satellites simultaneously redirect their
beams to serve the next footprint along their orbit. They also
hand off currently served calls to the next satellite in the orbit.

We make the following observations about this system.
Handoff events are periodic with a period oftime units and
handoffs take place in bulk at the end of each period. Also,
there is no call blocking due to handoffs since, at each handoff
event, a satellite passes its calls to the one following it and
simply inherits the calls of the satellite ahead of it. Finally,
within each period , the system can be modeled as one with no
handoffs, such as described in the previous subsection. Given
that the period is equal to the orbit period (approximately
100 minutes) divided by the number of satellites at each orbit,
we can assume that the system reaches steady state within the
period and, thus, the initial conditions (i.e., the number of calls
inherited by each satellite at the beginning of the period) do not
affect its behavior.

Now, since every unit of time each satellite assumes the
traffic carried by the satellite ahead, from the point of view of
an observer on the earth, this system appears to be as if the
satellites are permanently fixed over their footprints. Hence, we
can use the decomposition algorithm presented above to analyze
this system.

B. Satellite-Fixed Coverage

Consider now satellite fixed-cell coverage. As a satellite
moves, its footprint on the earth (the cell served by the satellite)
also moves with it. As customers move out of the footprint area
of a satellite, their calls are handed off to the satellite following
it from behind. In order to model handoffs in this case, we
make the assumption that potential customers are uniformly
distributed over the part of the earth served by the satellites in
the orbit. This assumption has the following two consequences.

• The arrival rate of new calls to each satellite remains con-
stant as it moves around the earth. Then, the arrival rate of calls
between satellite and satellite is given by where

is the probability that a call originating by a customer served
by satellite is for a customer served by satellite.

• The active customers served by a satellite can be assumed
to be uniformly distributed over the satellite’s footprint. As a
result, the rate of handoffs from satelliteto satellite , which
is following from behind, is proportional to the number of calls
at satellite .

Clearly, the assumption that customers are uniformly dis-
tributed (even within an orbit) is an approximation.

Let denote the area of a satellite’s footprint anddenote
a satellite’s speed. As a satellite moves around the earth within
a time interval of length , its footprint will move a distance
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Fig. 4. Calculation of the handoff probability.

of , as shown in Fig. 4. Calls involving customers located
in the part of the original footprint of area (the handoff
area), which is no longer served by the satellite, are handed off to
the satellite following it. Let , where depends
on the shape of the footprint. Because of the assumption that
active customers are uniformly distributed over the satellite’s
footprint, the probability that a customer will be handed off to
the next satellite along the sky within a time interval of length

is

(23)

Define . Then, when there arecustomers served by a
satellite, therateof handoffs to the satellite following it will be

.
1) Single Subsystem:Let us first return to the three-satellite

orbit (see Fig. 1) and introduce handoffs. This system can be
described by a continuous-time Markov process with the same
number of random variables as the no-handoffs model of Sec-
tion II (i.e., ), the same transition rates (2) and
(3), but with a number of additional transition rates to account
for handoffs. We will now derive the transition rates due to
handoffs.

Consider calls between a customer served by satellite 1
and a customer served by satellite 2. There aresuch calls
serving customers: customers on the footprint of
satellite 1 and on the footprint of satellite 2. Consider a
call between customer A and customer B, served by satellites 1
and 2, respectively. The probability that customer A will be in
the handoff area of satellite 1 but B will not be in the handoff
area of satellite 2 is . From (23), we have
that , so the rate at which these calls
experience a handoff from satellite 1 to satellite 3 that follows
it is . Based on the above discussion, we have

(24)

Similarly, the probability that customer B will be in the handoff
area of satellite 2 but A will not be in the handoff area of satellite
1 is . Thus, the rate at which these calls

experience a handoff from satellite 2 to satellite 1 that follows
it is again

(25)

On the other hand, the probability that both customers A and B
are in the handoff area of their respective satellites is, which,
from (23), is and, thus, simultaneous handoffs are not
allowed.

Now consider calls between customers that are both served
by the same satellite, say, satellite 1. There aresuch calls
serving customers. The probability that exactly one of
the customers of a call is in the handoff area of satellite 1 is

, so the rate at which these calls experience handoffs
(involving a single customer) to satellite 3 is

(26)

As before, the probability that both customers of the call are in
the handoff area of satellite 1 is and, again, no simultaneous
handoffs are allowed.

The transition rates involving the other four random variables
in the state description (1) can be derived using similar argu-
ments. For completeness, these transition rates are provided in
(27)–(32)

(27)

(28)

(29)

(30)

(31)

(32)

From the queueing point of view, this system is a queueing
network ofM/M/K/K queues as described in Section II, where
customers are allowed to move between queues according to
(24)–(32). (Recall that in the queueing model of Section II,
customers are not allowed to move from node to node.) This
queueing network has a product–form solution similar to (10).
Let denote the total arrival rate of calls between satellites
and , including new calls (arriving at a rate of ) and handoff
calls (arriving at an appropriate rate). The values ofcan be
obtained by solving the traffic equations for the queueing net-
work. Let also be the departure rate when there areof
these calls, including call termination (at a rate of ) and
call handoff (at a rate of ). Also, define .
Then, the solution for this queueing network is given by

(33)

which is identical to (10) except that has been replaced by
. Therefore, the exact solution we presented in Section II is

directly applicable to this new queueing network as well.
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2) Constellation of Satellites:To analyze a constellation
of satellites with handoffs, we use the same decomposition
algorithm presented in Section III. The main difference is that
instead of using the arrival and departure rates for new calls

and , respectively, we use the rates and , which
account for both new and handoff calls. The latter are obtained
by solving the traffic equations for the queueing networks.
Therefore, our analysis of a satellite constellation is shown
in the following steps.

1) The constellation is modeled as a queueing network of
M/M/K/K queues, where each queue represents the number of
calls between a pair of satellites (no handoffs case). A
number of constraints, similar to (4)–(9), are imposed in the
state space to account for the fact that some calls share common
links.

2) Based the discussion in the previous section, in order
to model handoffs, we introduce additional transitions of
customers moving from one queue to another.

3) We solve exactly the traffic equations of the queueing net-
work resulting from Step 2) to obtain the new arrival rates.

4) We apply the decomposition algorithm described in Sec-
tion III by using the arrival rates from Step 3.

Unfortunately, solving the traffic equations for the constel-
lation as a whole is computationally expensive, since it takes
time , where is the number of states in the Markov
process for the whole constellation. The numberof states, in
turn, is exponential in the number of satellites in the constel-
lation. In order to decrease the complexity of the process, in the
next section we develop an approximate solution for the traffic
equations.

3) A Distributed Solution for Traffic Equations:Instead of
defining the traffic equations for the whole system, we use a
distributed approach. That is, we treat each subsystem defined in
Section III separately and we solve the traffic equations for each
subsystem in isolation. Transitions between subsystems are also
taken into account.

In order to explain the distributed algorithm, we refer to
Fig. 3. Let us consider subsystem 1 in isolation. Recall that
this subsystem is described by the Markov process defined
in (14). Consider random variable . This random variable
may represent a call originating at satellite 1 and terminating
at satellite 2, a call that originates at satellite 1 (or satellite
2) and uses the ISL 1-2 but does not terminate at satellite 2
(respectively, satellite 1) or a call that simply uses ISL 1-2
but does not originate or terminate at either satellite 1 or
satellite 2. Based on this observation, the transitions between
states of the Markov process due to handoffs depend on the
source/destination pair of a call.

First consider the case where a call originates at satellite 1
and terminates at satellite 2. If the customer under satellite 1
makes a handoff to satellite 2, this call becomes a call handled by
satellite 2 alone (i.e., it both originates and terminates at satellite
2). Thus, we have the following transition:

(34)

Another possibility is for the customer under satellite 2 to make
a handoff to satellite 3 (see Fig. 2). In this case, from the point of

view of subsystem 1, this call becomes a call between satellite
1 and satellite S1. Therefore, the transition is

(35)

On the other hand, consider a customer in satellite 1 with a
connection to satellite 10. The call is routed through satellites 2
and 6 to satellite 10. Therefore, in subsystem 1, this is a call be-
tween satellites 1 and 2. If the customer under satellite 1 makes a
handoff, the call leaves subsystem 1 and is treated by subsystem
11 after the handoff. This transition is shown in (36) as

(36)

The transition rates involving the other random variables in
the state description (14) can be derived by using similar argu-
ments. For completeness, these transition rates are provided in
(37)–(47) as

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

Once the transition rates are known, the traffic equations for
each queue can be written easily as shown in (48)–(54) as

(48)

(49)

(50)

(51)

(52)

(53)

(54)

The solution to the traffic equations above gives us the new
At each iteration, after calculating the newef-

fectivearrival rates , we compute new using ex-
pressions (48)–(54) and from these we obtain new .
This procedure repeats for each subsystem until the blocking
probabilities converge. Since each subsystem has a small, fixed
number of satellites, solving the traffic equations (48)–(54) for
a single subsystem takes constant time. At each iteration, the
time needed to solve the traffic equations is proportional to the
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number of subsystems, which, in turn, is linear in the number
of satellites in the constellation. Consequently, this distributed
approach to solving the traffic equations results in substantial
savings in terms of computation compared to directly solving
the traffic equations for the whole constellation, which takes
time exponential in .

V. BOUNDS ON THELINK BLOCKING PROBABILITIES

We now show how to obtain lower and upper bounds on the
call-blocking probabilities of a satellite constellation. Because
the bounds can be computed quite efficiently, taking time that
is polynomial in the number of satellites and the number of
channels (capacity) of each link, they can be useful for satellite
constellations of realistic size employing multiple beams per
satellite. The decomposition algorithm of Section III can be
applied in such systems by considering each beam as a single
“satellite” serving its own (smaller) cell. In this case, however,
the number of “satellites” becomes very large, in the order of
thousands. In turn, the number of calls (which is quadratic in the
number of satellites) and the number of subsystems in which
the constellation is decomposed also increases accordingly.
As a result, the decomposition algorithm may take hours to
complete. On the other hand, the method developed in this
section can provide bounds on the call-blocking probabilities
in a very short time, in the order of minutes.

For clarity of presentation, we derive the bounds for the three-
satellite orbit (i.e., a single subsystem) shown in Fig. 1 and an-
alyzed in Section II. The bounds can be extended in a straight-
forward manner for a whole satellite constellation.

In this section, we develop bounds for the probability that
any call using a given link (UDL or intersatellite) is blocked,
i.e., that all channels of link are busy. Once upper (respec-
tively, lower) bounds have been obtained for all links in the
satellite network, upper (respectively, lower) bounds on the call-
blocking probabilities can be computed by simply multiplying
the upper (respectively, lower) bounds on all the links along each
call’s path. The approach is similar for all links; therefore, we
will illustrate the bounds by considering only one link, the UDL
of satellite 1 (refer to Fig. 1). From (4) we immediately have that
the states for which all the channels of the UDL of satellite 1
are busy such that .

Let us first consider the normalizing constant, given in (11).
Recall that the state spaceincludes all the statesthat satisfy
constraints (4)–(9). An upper bound oncan be obtained as
follows:

(55)

where the second sum is over all states with
, which satisfies constraints (5)–(9). This expression

is obtained by loosening the constraints (4)–(6), which corre-
spond to the three UDL of the constellation. Specifically, we
assume that the random variables corresponding to calls using a

given link must satisfy the constraint on the link’s capacity, but
they also evolve independently of the random variables corre-
sponding to calls using other links. The first term in parentheses
corresponds to link (in this case, the UDL of satellite 1) and in-
volves the three random variables that must obey constraint (4).
The second term corresponds to all other random variables in
the state description, assuming that the random variables in-
volved in link are zero. Since we have removed some of the de-
pendencies among the random variables,is indeed an upper
bound on . Note also that the bound depends on the link

we are considering, which is why in the above expression we
have written as a function of .

Let

(56)

is the normalizing constant in a satellite system in which
. An alternative way to view is to

consider a new satellite system that is identical to the original
one except that there are no arrivals for any calls traversing link

(i.e., in this case). Then, is the
normalizing constant for this new satellite system. Similarly, let

(57)

Accordingly, is the normalizing constant for a satellite
system identical to the original one except that there are no ar-
rivals for callsnot traversing link (i.e.,
in this case). From (55) we obtain that

(58)

In the general case of a satellite constellation with
satellites, for a given link can be obtained in a similar
fashion. In particular, for a constellation of any size is
the product of two terms, where the second (respectively, first)
term is the normalizing constant obtained by setting the random
variables of all calls traversing (respectively, not traversing)
link to zero.

Consider now the following set of blocking states for link

(59)

Let denote the sum of probabilities of all blocking states

(60)

Using arguments similar to the ones used in deriving (55), we
have that

(61)
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where is the sum of the blocking states in a new satellite
system where only the random variables involved in linkare
nonzero.

From (58), we can write for a lower bound on the normalizing
constant

(62)

where . Similarly, because of (61) and for some
, we have that:

(63)

Let denote the probability that any call using linkwill
be blocked . From (61) and (62) we obtain

(64)

Similarly, from (63) and (58) we have that

(65)

Let

(66)

Note that represents the blocking probability in the
satellite system where all the random variables not involved in
link are set to zero. We can now rewrite as follows:

(67)

where we made use of the multinomial theorem in going from
the second to the third line. [and, for , ]
can be computed in time using the above expression
and, thus, can be computed very efficiently.

Combining (64), (65), and (66) and letting ,
we obtain

(68)

Expression (68) provides lower and upper bounds on the
blocking probability of link in terms of the blocking
probability of the same link in a satellite system that is
identical to the original one except that there are no arrivals for
calls not using link . In other words, this latter probability is
the blocking probability of link when viewed in isolation and,
thus, it is readily available from (67). While the values ofand

(and, therefore,) are not known, we make the observation
that, as the link capacities ( and ) grow and as the
number of satellites (or the number of beams per satellite)
grows, both and tend to one. To see that this is true, let
us refer to the definition of in (62). In that expression, we
decoupled the random variables involved in linkfrom those
not involved in link . In particular, the term is such that
all random variables involved in link are set to zero. As the
link capacities grow very large, the effect of the decoupling
decreases since the actual values of the random variables that
were assumed to be zero have a decreasing effect on .
Similarly, as the number of satellites grows large, the
number of calls traversing a given link grows as , while
the total number of calls grows as . Again, therefore, the
effect of the decoupling decreases asincreases and tends
to one. Similar observations can be made about. Note that

and (and, consequently,) tend to one in precisely those
situations (i.e., constellations with very large link capacities
and/or very large number of satellite beams) in which one
would have to resort to bounds. Thus, the bounds in expression
(68) are tightest in exactly those cases in which they would be
most useful. Overall, numerical results with constellations of
moderate sizes and a range of several traffic patterns indicate
that taking give reasonably good bounds for the
link-blocking probability.

VI. NUMERICAL RESULTS

In this section, we verify the accuracy of the decomposition
algorithm with and without handoffs by comparing the results
obtained from the decomposition algorithm to simulation re-
sults. In the figures presented, the simulation results are plotted
with 95% confidence intervals estimated by the method of repli-
cations. (The confidence intervals are so narrow that they are
barely visible.) The number of replications is 30, with each sim-
ulation run lasting until each source/destination pair of call has
at least 15 000 arrivals. For the approximate results, the itera-
tive decomposition algorithm terminates when all call-blocking
probability values have converged within .

We obtained results using three different traffic patterns. Let
denote the probability that a call originating by a customer

served by satellite is for a customer served by satellite. The
first pattern is theuniform traffic pattern, that is

(69)

where is the number of satellites. The second traffic pattern
is based on the notion oftraffic locality. Specifically, it assumes
that most calls originating at a satelliteof orbit are to users in
satellites , , and of orbit or to users in satellitesof
orbits and . Let denote the probability that a call
originating by a customer served by satelliteof orbit is for a
customer served by satelliteof orbit . This locality pattern is
such that

(70)
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Fig. 5. Call-blocking probabilities for 16 satellites� = 5, C = 10,
uniform pattern.

where addition and subtraction is modulo-for satellites per
orbit. The third traffic pattern is ahot-spotpattern in which one
of the satellites, satellite , carries most of the traffic. If we let

represent calls originating from satelliteand terminating
at satellite , then this pattern is such that

(71)

A. The Decomposition Algorithm without Handoffs

We now verify the accuracy of the decomposition algorithm
developed in Section III by comparing the blocking probabilities
obtained from the algorithm to simulation results. We consider
a constellation of 16 satellites with 4 orbits and 4r satellites per
orbit as shown in Fig. 2. Each satellite has four ISLs; two within
the same orbit and two with neighboring orbits. In this first set
of tests, we assume no handoffs. In all cases studied, we have
found that the algorithm converges in only a few (less than 10)
iterations, taking a few minutes to terminate. On the other hand,
the simulation runs of the 16-satellite system are quite expensive
in terms of computation time, taking several hours to complete.

Fig. 5 plots the blocking probability against the capacity
of UDLs when the arrival rate and the capacity

of intersatellite links for the uniform traffic
pattern. Five sets of calls are shown, one for local calls (i.e.,
calls originating and terminating at the same satellite) and
four for nonlocal calls. Each set consists of two plots, one
corresponding to blocking probability values obtained by
running the decomposition algorithm of Section III and one
corresponding to simulation results. Each nonlocal call for
which results are shown travels over a different number of
intersatellite links, varying from one to four ISLs. Note that
the 16-satellite constellation is such that, under shortest-path
routing, the maximum number of ISLs in the path of call
between any two satellites is four.

From the figure, we observe a very good agreement between
the analytical results and the simulation. (Note that theaxis

Fig. 6. Call-blocking probabilities for 16 satellites� = 2, C = 10,
uniform pattern.

Fig. 7. Call-blocking probabilities for 16 satellites� = 5, C = 10,
locality pattern.

Fig. 8. Call-blocking probabilities for 16 satellites� = 5, C = 10,
hot-spot pattern.
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Fig. 9. Call-blocking probabilities for 16 satellites with handoff, uniform
pattern.

Fig. 10. Call-blocking probabilities for 16 satellites with handoff, locality
pattern.

Fig. 11. Call-blocking probabilities for 16 satellites with handoff, hot-spot
pattern.

uses a logarithmic scale.) The behavior of the curves can be ex-
plained by noting that, when the capacity of UDLs is less
than 20, these links represent a bottleneck. Thus, increasing the
UDL capacity results in a significant drop in the blocking proba-
bility for all calls. When , however, the intersatellite
links become the bottleneck and nonlocal calls do not benefit
from further increases in the UDL capacity. We also observe
that the larger the number of intersatellite links over which a
nonlocal call must travel, the higher its blocking probability, as
expected. The blocking probability of local calls, on the other
hand, drops to zero for since they do not have to
compete for intersatellite links. The curves in this figure were
obtained assuming that , which results in a utilization
of an ISL of around 65%. Therefore, the blocking probabilities
are fairly high. In order to see the effect of a lower utilization,
in Fig. 6 we plot the blocking probabilities for the same traffic
pattern and the same calls when the arrival rate or ISL
utilization of 30%.

Fig. 7 is similar to Fig. 5 but shows results for the locality
traffic pattern. For the results presented we used and

and we varied the value of . We observe that
the behavior of the various curves is similar to that in Fig. 5.

Finally, in Fig. 8, we observe a drastically different behavior.
This scenario is the hot-spot traffic in which all satellites send
most of their traffic to satellite 3. We observe that when the UDL
capacity increases, the blocking probability on calls using 2 ISL
hops decreases. This is due to the fact that these calls are be-
tween satellites 1 and 3. Therefore, increasing the UDL capacity
on satellite 3 decreases the blocking probability of calls between
satellite 1 and 3. On the other hand, the blocking probability of
calls with 1, 3, and 4 ISL hops increases with increasing UDL
capacity. This is due to the fact that these calls are such that
their paths include one of satellite 3’s ISLs. As the UDL ca-
pacity of satellite 3 increases, more calls from/to the satellite
can be accepted increasing the loading on its ISLs. As a conse-
quence, the blocking probability of calls using these ISLs also
increases. Local call-blocking probabilities decrease to zero as
in the previous figures.

Overall, the results in Figs. 5–8 indicate that the analytical
results are in good agreement with simulation over a wide
range of traffic patterns and system parameters. Thus, our
decomposition algorithm can be used to study the interplay
between various system parameters (e.g., , , traffic
pattern, etc.) and their effect on the call-blocking probabilities
in an efficient manner.

B. The Decomposition Algorithm with Handoffs

In this section, we verify the accuracy of the decomposition
algorithm assuming handoffs. We consider the same constella-
tion with 16 satellites. We solved the traffic equations with hand-
offs using the distributed approach explained in Section IV-B3.
We also included handoffs in our simulation in order to test the
accuracy of the algorithm.

Figs. 9–11 are similar to Figs. 5, 7, and 8, but they correspond
to satellite systems with handoff calls. Specifically, the figures
plot the call-blocking probability against the capacity
of UDLs when the arrival rate and the capacity of
intersatellite links for the three traffic patterns we
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Fig. 12. Bounds, uniform pattern,C = 100, � = 50, � = 0:8 for bounds
� = 0:82.

considered. As can be seen, the behavior of these plots is
similar to those in the previous section. We also note that there
is a good agreement between the analytical results and the
simulation, although not as good as when there are no handoffs.
This is expected because the calculation of the arrival rates
using the distributed solution for the traffic equations introduces
an additional approximation. Overall, however, the analytical
curves track the simulation curves accurately, indicating that
the iterative decomposition algorithm can be used to predict
the call-blocking performance of a LEO satellite constellation
accurately and efficiently.

C. The Upper and Lower Bounds

Figs. 12–14 demonstrate the tightness of the upper and lower
bounds in expression (68) for the link-blocking probabilities
derived in Section V. Each figure corresponds to one of the
three traffic patterns introduced above and presents results for
a 16-satellite constellation. We can rewrite (68) as follows:

(72)

Figs. 12–14 plot the following four quantities for some link
against the link capacity:

1) , the link-blocking probability obtained through
simulation;

2) , the link-blocking probability when all random
variables not involved in link are set to zero; this quantity is
obtained analytically in an efficient manner, as explained in Sec-
tion V;

3) the lower bound , for ; and
4) the upper bound , also for .
For each figure, we also provide the minimumfor which

expression (72) holds for all points plotted, which was found to
be always greater than 0.8.

From the figures, we observe that using in expres-
sion (72) provides a good approximation to the link-blocking
probability . Most importantly, ignoring the random vari-
ables not involved with a given link results in a very efficient

Fig. 13. Bounds, locality pattern,C = 100, � = 50, � = 0:8 for bounds
� = 0:84.

Fig. 14. Bounds, hot-spot pattern,C = 100,� = 50, � = 0:8 for bounds
� = 0:85.

algorithm for computing the link-blocking probability ,
as we showed in Section V. Therefore, the bounds shown in the
figures are reasonably close to the “real” link-blocking prob-
ability while requiring little computational effort to obtain. As
we discussed in Section V, we expect the tightness of the bounds
to increase (i.e., tends to one) as the link capacity and/or the
number of satellites (or satellite beams) increase. In other words,
the bounds become more useful in systems in which it is compu-
tationally expensive to run the decomposition algorithm or the
simulation.

VII. CONCLUDING REMARKS AND POSSIBLEEXTENSIONS

We have presented an analytical model for computing call-
blocking probabilities in LEO satellite networks. We have de-
veloped an algorithm for decomposing the constellation into
smaller subsystems, each of which is solved in isolation using
an exact method. The individual solutions are combined using
an iterative scheme. We have also shown how our approach
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can capture blocking due to handoffs for both satellite- and
earth-fixed coverage. We have demonstrated through numerical
examples that the analytical results are in good agreement with
simulation. We have also derived lower and upper bounds on
link-blocking probabilities that can be computed efficiently.

The analytical model we presented in this paper can be ex-
tended in several directions, some of which are the subject of
current research. While in this work we have considered a fixed
routing scheme, alternate routing schemes can be modeled using
the techniques we developed in [13, Section IV-B]. It is also
possible to improve the performance of handoff calls by re-
serving a set of channels on each link for the exclusive use of
these calls. Channel reservation can be modeled by a modified
Markov process for the single subsystem studied in Section II;
we believe that a closed-form solution for the modified process
can be obtained. Also, the analytical model can be extended to
give priority to handoffs over new arrivals. Finally, it is possible
to extend our approach to analyze the case of heterogeneous
traffic (i.e., when customers are not uniformly distributed over
the earth, an assumption we made in Section IV). One approach
to account for different geographic arrival rates is to segment the
band of earth covered by the satellites into fixed regions, each
with a different arrival rate of new calls. This approach gives rise
to a periodic Markov process model whose special structure can
be exploited to solve it efficiently.
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