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Abstract—We simplify the periodic tasks scheduling problem by making a trade off between processor load and computational

complexity. A set N of periodic tasks, each characterized by its density �i, contains n possibly unique values of �i. We transform N

through a process called quantization, in which each �i 2 N is mapped onto a service level sj 2 L, where Lj j ¼ l� n and �i � sj (this

second condition differentiates this problem from the p-median problem on the real line). We define the Periodic Task Quantization

problem with Deterministic input (PTQ-D) and present an optimal polynomial time dynamic programming solution. We also introduce

the problem PTQ-S (with Stochastic input) and present an optimal solution. We examine, in a simulation study, the trade off penalty of

excess processor load needed to service the set of quantized tasks over the original set, and find that, through quantization onto as few

as 15 or 20 service levels, no more than 5 percent processor load is required above the amount requested. Finally, we demonstrate

that the scheduling of a set of periodic tasks is greatly simplified through quantization and we present a fast online algorithm that

schedules quantized periodic tasks.

Index Terms—Multiprocessor scheduling, periodic tasks scheduling, quantization.

æ

1 INTRODUCTION

1.1 The Periodic Tasks Scheduling Problem

WE are given a number m � 1 of processors and a

number n > m of periodic real-time tasks. A periodic

task is made up of an infinite number of subtasks, each of
length one. Time is slotted such that a processor can process

one subtask in one slot. Associated with each task is a

rational density �i, 0 < �i < 1, which represents the task’s

demand for processing time, in terms of subtasks per slot. If

�i is written as a fraction in lowest terms, �i ¼ Ci
Di

, then the

numerator Ci is the computation time (number of subtasks)

that must be processed within the period Di. A job of a task

refers to the collection of Ci subtasks that must be
completed within one period Di. All subtasks of the first

job of task i are released for processing at time 0 and must

be completed by time Di; subtasks of the kth job are

released for processing at time ðkÿ 1ÞDi and must be

completed by time kDi. A subtask may receive processing

time from any of the m identical processors. Scheduling is

preemptive so that subsequent subtasks need not be

processed consecutively, nor even by the same processor.
The system is subject to two constraints: The Processor

Constraint requires that, at any instant in time, a processor
may work on at most one subtask, and the Task Constraint

requires that, at any instant in time, a task may have a subtask
being processed by at most one processor. This model is
nearly identical to that considered in [3] and [5], which does
not require the ratio Ci

Di
to be in lowest terms. Any problem

instance from their model becomes a problem instance for our

model by setting �i ¼ Ci
Di

; any feasible schedule for our
problem is also feasible for theirs. However, there exist
feasible schedules for their problem that are not feasible for
ours. For example, consider a task with Ci ¼ 2 andDi ¼ 4. A
feasible schedule according to [3] and [5] may process the two
subtasks at any time on the interval ½0; 4Þ. Our model,
however, views this task as having �i ¼ 2

4 ¼ 1
2 , and a feasible

schedule must process the first subtask on the interval ½0; 2Þ
and the second on ½2; 4Þ.

1.2 Periodic versus P-Fair Schedules

A more stringent requirement than periodicity is propor-
tional fairness or p-fairness [3], [4], [2]. Intuitively, a p-fair
schedule closely mimics the idealized fluid system, in
which both time and the jobs of a task are infinitely
divisible, in contrast to the integer time slot and unit-length
subtask restrictions. A p-fair schedule meets the require-
ments of periodicity, but a periodic schedule will not
necessarily be p-fair. As it turns out, the periodic tasks
scheduling problem is most quickly solved by trying to
create a p-fair schedule.

The problem of finding a p-fair (and, hence, periodic)
schedule for the periodic tasks scheduling problem has
been solved; in [3], Baruah et al. present Algorithm PF
which, at each time slot, runs in time that is linear in the size
of the input in bits. In [4], Baruah et al. give a faster
algorithm PD with time complexity Oðminfm lgn; ngÞ at
each slot. Finally, in [2], Anderson and Srinivasan simplify
the priority definition used by PD to yield PD2, with time
complexity Oðm lgnÞ at each slot. The priority of competing
subtasks is determined in part by a subtask’s slot deadline,
the latest slot in which it may be scheduled while still
maintaining the p-fairness of the schedule.

While algorithms PF, PD, and PD2 are all optimal in that
they always find a p-fair (and, hence, periodic) schedule
whenever one exists (i.e., whenever

Pn
i¼1 �i � m), the

computation time per slot is a function of the number of
tasks n. In particular, since the algorithms at each slot select
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the m tasks with the most imminent slot deadlines for
processing, the running time per slot can be no lower than
O (m lgn). Therefore, these algorithms may not be appro-
priate for applications with a very large number of tasks.
For instance, consider a Web server for a popular Web site
which uses multiple processors to serve client requests.
Such a Web site may receive millions of requests per
minute, and therefore it is essential to have a scheduling
algorithm with a running time independent of the number
of requests. Also, consider the recent announcement by IBM
regarding the creation of server farms that will provide
processing power to applications on demand. This view of
processing power as a service that is provided by some
form of public utility may be appealing to both individuals
and companies of all sizes (which may wish to reduce costs
by outsourcing their computation needs much like they
“outsource” their power or water needs). Such a public
utility will face very large task sets that are also highly
dynamic in nature. Thus, it will have to rely on fast
scheduling algorithms in order to provide service in an
effective and efficient manner.

We propose to simplify the scheduling algorithms in
multiprocessor systems by restricting the number of service
levels offered. Operating a multiprocessor system that
provides only a (small) set of quantized service levels
makes sense in many respects. In such a system, many
functions, such as billing and the scheduling, management,
and handling of dynamic task requests, will be significantly
simplified as compared to a system offering a continuous
spectrum of rates. On the other hand, limiting the number
of supported rates does have a disadvantage in that it may
require more processing power than a continuous-rate
system to accommodate a given set of task requests.
Specifically, rather than receiving the exact rate needed, a
task may have to subscribe to the next higher rate offered by
the system. As a result, quantization will have an adverse
effect on performance, which will manifest itself either as a
higher blocking probability (i.e., a higher probability of
denying a task request compared to a continuous-rate
system), or as a lower utilization (since a larger number of
processors may be needed to carry the same set of tasks).

Our goal is to determine the set of service levels that
strikes a balance between the two conflicting goals of
simplicity and performance. Specifically, we address the
issue of determining the optimal set of rates in which to
quantize the processor power given 1) a fixed set of task
requests, or 2) the probability density function of task
requests. The objective is to minimize the performance
penalty due to quantization, i.e., the difference between the
amount of processor power required by a system support-
ing an optimal set of quantized rates and that required by a
continuous-rate system.

Similar work in the context of ATM networks [9] has
demonstrated that ATM networks offering a handful of
quantized levels suffer little performance degradation
compared to continuous rate networks. Our conclusions
are similar, although our approach is different and our
results are stronger. Specifically, [9] takes a queueing
theoretic approach, considers a single link with Poisson
arrivals, and uses a heuristic technique (simulated anneal-
ing) to obtain a suboptimal vector of service levels. In this
paper, we use a dynamic programming approach which

allows us to compute the optimal service levels in a very

efficient manner.
Our problem bears some resemblance to the problems

considered in [7] and the references therein (e.g., the p-

median problem and the simple uncapacitated plant location

problem on the real line). These problems allow a task

requesting a rate � to be served by the nearest service level,

whether it is above or below �. Our problem is fundamentally

different in that we require a task to receive at least the rate

requested. To our knowledge, this problem has never

previously been treated in the literature.
The rest of the paper is structured as follows: We define

the Periodic Task Quantization problem with Deterministic

input (PTQ-D) in Section 2 and, then, present an optimal

dynamic programming solution. The trade off penalty in

terms of excess processor load is examined in a simulation

study given in Section 2.3. In Section 3, we introduce the

Periodic Task Quantization problem with Stochastic input

(PTQ-S), for which the input is a probability density

function of task requests. We present an optimal solution

for a certain class of probability density functions, as well as

an approximate solution. Last, we consider the scheduling

of a quantized set of periodic tasks, and give a new

algorithm which runs in time O(m) at each time slot.

2 THE PERIODIC TASK QUANTIZATION PROBLEM

WITH DETERMINISTIC INPUT (PTQ-D)

2.1 Statement of the Problem

Let N be a set of n periodic task densities f�1; . . . ; �ng,
such that �1 � �2 � � � � � �n and let the density of N be

�N ¼
Pn

i¼1 �i. A set L ¼ fs1 . . . slg, s1 < s2 < � � � < sl,

1 � l � n, is a feasible quantization set of N if and only if

�i � sl, i ¼ 1 . . .n. For notational convenience, we assume

s0 ¼ 0. Associated with a feasible quantization set is an

implied mapping from N ! L, where �i ! sj if and only if

sjÿ1 < �i � sj. That is, a periodic task that requests a

share of processor power equal to �i will be able to meet

its periodic deadlines if it is given a share of processor

power (or service level) equal to sj, so long as �i � sj.
Fig. 1 shows a sample mapping from a task set of 13

densities onto a quantization set of six service levels. Let

Nj be the set of tasks mapped to service level sj and let

Nj

�� �� ¼ nj.
Problem 1. (PTQ-D) Given a set N of n periodic task densities,

�1 � �2 � � � � � �n, find a feasible set L of l quantized service

levels, s1 < s2 < � � � < sl, 1 � l � n, which minimizes the

following objective function:
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gDðs1; . . . ; slÞ ¼
Xl
j¼1

X
�i2Nj

ðsj ÿ �iÞ ð1Þ

¼
Xl
j¼1

njsj
ÿ �

ÿ �N ð2Þ

¼ qDðs1; . . . ; slÞ ÿ �N: ð3Þ

The objective function gD represents the penalty of excess
processor load used by the quantized set above that
requested by the original task set. Processor capacity is a
limited resource and, therefore, minimizing wasted proces-
sor load will allow the system to accept more customers and
serve those customers in a more cost-efficient way. The
second term of (3), �N , the requested load, is the amount of
processor load requested by the original task set, while the
first term, qDðs1; . . . ; slÞ, is the quantization load, the
processor load assigned to the set of quantized tasks.1 The
minimum (optimal) value of gD is called g�D, and a feasible
set L at which g�D is obtained is called an optimal
quantization set of N . Minimizing gD also minimizes a
quantity called the Normalized Quantization Load for
deterministic input, NQLD:

NQLD ¼
qDðs1 . . . slÞ

�N
ð4Þ

¼
Pl

j¼1 njsj

�N
ð5Þ

� 1: ð6Þ

Clearly, the closer NQLD is to 1, the fewer processor
resources are wasted.

For any feasible quantization set for which �n < sl, the
objective function gD can be reduced by setting sl ¼ �n.
Therefore, in an optimal quantization set, the maximum
service level sl must equal the maximum task density �l.
Furthermore, we can state the following lemma:

Lemma 1. Let N be a set of n periodic task densities such that

�1 � �2 � � � � � �n. There exists an optimal quantization set

L ¼ ft1; . . . ; tlg, t1 < t2 < � � � < tl, of N , for which tj 2 N ,

for each j ¼ 1; . . . ; l.

Proof. Suppose there exists an optimal quantization set of N
called L1 ¼ fs1 . . . slg, s1 < s2 < � � � < sl, for which there
exists some sa 2 L1, but sa =2 N . There can be no �i that is
mapped to sa. If there were, then sa could be moved
down to sa ÿ�, for some � > 0, and the objective
function could be lowered, contradicting the optimality
of L1. Therefore, we can create L from L1 by setting tj ¼
sj for j 6¼ a and ta ¼ �n. tu

2.2 Dynamic Programming Solution:
Algorithm Quantize

We now present the algorithm Quantize which uses a
dynamic programming approach to obtain an optimal set of
service levels for problem PTQ-D. This approach is based
on the observation that, due to Lemma 1, an optimal set of
service levels is a subset of the set N of task densities.

Quantize computes this optimal subset in an efficient
manner.

Quantize builds four tables of values described below and,

in doing so, finds the optimal value of the objective function

g�D and an optimal quantization set L. The n� n tables Diff

and Cumul hold differences and cumulative sums of

differences, respectively; these values will be used to fill in

the entries of the n� l table Opt. Entries in Diff and Cumul

are calculated according to the following formulas (the array

rho holds the elements of the task set N):

Diff½i�½j� ¼ rho½j� ÿ rho½i� ; i � j

Cumul½i�½j� ¼
Xi
k¼j

Diff½k�½i�

¼
Xi
k¼j

rho½i� ÿ rho½k�ð Þ ; j � i:

Filling in a single entry of Opt corresponds to solving

one instance of PTQ-D; entry (i; j) holds the minimum value

of the objective function gD for an instance of PTQ-D in

which N ¼ f�1; . . . ; �ig and l ¼ j. Each entry of Opt is

calculated recursively, using entries representing smaller

problem instances; that is, an instance having a smaller

value of n or a smaller value of l or both. Specifically:

Opt½i�½j� ¼
0 if i ¼ j
Cumul½i�½j� if j ¼ 1

miniÿ1
k¼jÿ1fOpt½k�½jÿ 1� þ Cumul½i�½kþ 1�g j < i and j 6¼ 1:

8><>:
ð7Þ

Last, the n� l table Prev holds the information needed to

construct the optimal quantization set L. By Lemma 1, each

service level sj 2 L must take on the value of some �i 2 N .

Prev ½i�½j�holds the index into therhoarray of sjÿ1, assuming

that sj ¼ �i; that is, if sj ¼ �i, then sjÿ1 ¼ rho½Prev½i�½j��. Prev
½i�½j� also equals the value of k at which the minimum was

attained in the third line of (7) (or iÿ 1 if i ¼ j). Note that, for

j ¼ 1, Prev ½i�½j� is undefined since there is no s0. Thus, when

Quantize finishes building Prev, the optimal quantization

set L can be constructed using only a few lines of code. The

pseudocode description of Quantize can be found in [8].

2.2.1 Correctness Proof

Theorem 1 below proves the correctness of Quantize by

demonstrating that the value calculated for Opt½n�½l� is equal

to the optimal value of the objective function g�D for an

instance of PTQ-D in which a set of n tasks are optimally

quantized into l service levels. We first prove two lemmas

to aid in the proof of Theorem 1.

Lemma 2. Opt½n�½l� ¼ g�Dðs1; . . . ; slÞ whenever n ¼ l.
Proof. Since there are as many service levels as there are

tasks, each task is assigned exactly the service level it

has requested, namely, si ¼ �i for i ¼ 1; . . . ; n. Thus,
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g�Dðs1; . . . ; slÞ ¼
Pn

i¼1 si ÿ �ið Þ ¼ 0, which agrees with the

first case of (7). tu

Lemma 3. Opt½n�½l� ¼ g�Dðs1; . . . ; slÞ whenever l ¼ 1.

Proof. Since there is only one service level, then s1 ¼ �n and,

thus, g�Dðs1Þ ¼
Pn

i¼1 �n ÿ �ið Þ ¼ Cumul½n�½1�, which agrees

with the second case of (7). tu

Theorem 1. Opt½n�½l� ¼ g�Dðs1; . . . ; slÞ, for n � 1 and 1 � l � n.

Proof. By induction. For the base case, let n ¼ 1 and l ¼ 1.

By Lemma 2, Opt½1�½1� ¼ g�Dðs1Þ.
Assume Opt½i�½j� = g�Dðs1; . . . ; snÞ, for all possible

(i; j)-pairs i ¼ 1; . . . ; n and j ¼ 1; . . . ; l, for some n � 1

and 1 � l < n. We now prove that Opt½n�½lþ 1� =

g�Dðs1; . . . ; slþ1Þ. Note that this is sufficient for the

induction step; by Lemma 3, we can always fill in the

first element of each row of the Opt table. Then, we

need only fill in each row from left to right, beginning

with row 1 and proceeding to row 2, etc. Thus, for the

induction step, it is sufficient to show that we can

accurately calculate the next entry (one column to the

right) in the current row, namely Opt½n�½lþ 1�.
Case 1: lþ 1 ¼ n. By Lemma 2,

Opt½n�½lþ 1� ¼ g�Dðs1; . . . ; slÞ:

Case 2: lþ 1 < n. The largest service level must equal

the largest task density: slþ1 ¼ �n. We next examine all

possible values for sl and choose the one that yields the
lowest value of the objective function gDðs1; . . . ; slþ1Þ.
According to Lemma 1, we need only consider the task

densities as possible values for sl; in particular, sl may only

equal one of the following densities: f�l; �lþ1; . . . ; �nÿ1g.
Suppose sl ¼ �k, for some k 2 fl; lþ 1; . . . ; nÿ 1g. Then,

the tasks f�kþ1; . . . ; �ng will be mapped to slþ1 ¼ �n, and

the contribution to the objective function gDðs1; . . . ; slþ1Þ
from the slþ1-mapping alone will be:Xn

i¼kþ1

ðslþ1 ÿ �iÞ ¼
Xn
i¼kþ1

ð�n ÿ �iÞ

¼
Xn
i¼kþ1

Diff½i�½n�

¼ Cumul½n�½kþ 1�:

This quantity, Cumul½n�½kþ 1�, is exactly the second

term inside the min function of the third case of (7).

Next, we calculate the contribution to the objective

function gDðs1; . . . ; slþ1Þ from the task mappings to the

remaining service levels s1 to sl; this contribution

depends on the placement of s1 to slÿ1 (recall that we

have fixed sl at �k). By the inductive hypothesis, we

have already calculated the optimal placement of s1 to

slÿ1 whenever sl ¼ �k; in particular, Opt½k�½l� is the

minimum value of the objective function for a problem

instance in which N ¼ f�1; . . . ; �kg is quantized into l

service levels, and the Prev table holds the positions

of the service levels that yield this minimum value.

Thus, the min function of the third case of (7) does the

following: For each possible position �k for sl,

�k 2 f�l; . . . ; �nÿ1g, it calculates the objective function

gDðs1; . . . ; slþ1Þ ¼ Opt½k�½l� þ Cumul½n�½kþ 1� and, then,

chooses the position that yields the minimum. The

chosen value of k is stored in the Prev table. tu

2.2.2 Analysis of Quantize

The operation of Quantize can be divided into four

sequential tasks. First, the algorithm builds the Diff table

in time Oðn2Þ. Second, it uses the Diff table to fill in the

entries of the Cumul table, also in time Oðn2Þ. Third, the

algorithm builds the Opt table: For an entry calculated

using the third line of (7), the min operation inspects at

most n sums, hence, the line with the min operation

requires time OðnÞ. There are at most nl entries in Opt and,

thus, Quantize builds the Opt table in time Oðn2lÞ. The

fourth and final task of Quantize consists of constructing

the optimal quantization set L from the information held in

the Prev table, which is accomplished in time OðlÞ.
Therefore, the overall running time of Quantize is Oðn2 þ
n2 þ n2lþ lÞ or Oðn2lÞ.

2.3 Quantifying the Performance Penalty Due to
Quantization

2.3.1 Simulation Set-Up and Input Parameters

To determine the penalty in terms of excess processor load

resulting from quantization, a simulation study was

designed using a variety of different types of task sets N .

In particular, six different input distributions were used to

generate task sets N in the simulations: uniform, triangle,

increasing, decreasing, unimodal, and bimodal. Fig. 2

shows the graph of each input distribution’s probability

density function; the mathematical expressions of each pdf

and cdf are given in [8]. From each input distribution,

100 task sets with n ¼ 100 were generated and another one

hundred task sets with n ¼ 1; 000 were generated. Each task

set was generated starting from a unique seed for a Lehmer

random number generator with modulus 231 ÿ 1 and

multiplier 48,271.

Each task set is then served as input to the algorithm

Quantize. We used the normalized quantization load

NQLD (defined in (4)) as the measure of the performance

penalty due to quantization. For each task set, NQLD was

calculated for a variety of values of l, the number of service

levels in the optimal quantization set.

2.3.2 Simulation Results

Fig. 3 contains six graphs, one for each input distribution.

Each graph shows NQLD along the y-axis corresponding to

values of l ranging from l ¼ 2; 3; . . . ; 100 along the x-axis, for

task sets of size n ¼ 100 and n ¼ 1; 000. Each point was

generated by averaging NQLD across 100 task sets. The n ¼
1; 000 curve lies slightly above the n ¼ 100 curve, yet the
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general shape of the curves remains the same regardless of

N and input distribution: NQLD drops immediately as l

increases. In each graph, NQLD has dropped below 1.05 at

an l-value � 20, for both the n ¼ 100 curve and the n ¼
1; 000 curve. This means that, by using only 20 (or fewer)

service levels, we can adequately service task sets of 100 or

even 1,000 periodic requests, dedicating no more than

5 percent processor resources beyond the amount re-

quested. Another interpretation is that, for a fixed amount

of processor resources, we can accept periodic task requests

up to approximately 95 percent capacity.

Fig. 4 contains two graphs using the triangle input

distribution. Fig. 4a shows NQLD along the y-axis corre-

sponding to each of the 100 individual task sets N for

n ¼ 100. Fig. 4b shows the same, for 100 task sets with

n ¼ 1; 000. Level curves for l ¼ 2; 4; 6; 8; 10; 15; 20 are shown.

These graphs present the information contained within the

triangle-input graph of Fig. 3 in a different way; the single

point at, say, l ¼ 10 in the n ¼ 100 (respectively, n ¼ 1; 000)

triangle-input graph of Fig. 3 was created from averaging

the NQLD values of the 100 points shown in the level curve

for l ¼ 10 in Fig. 4a (respectively, Fig. 4b). As expected, we
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see that, as the number of service levels used for

quantization increases, the normalized quantization load

improves; that is, as l increases, NQLD approaches 1 from

above. Comparing the Fig. 4a to Fig. 4b, we can see that the

variation in NQLD decreases as the task set N increases in

size from n ¼ 100 to n ¼ 1; 000.
Figures similar to Fig. 4 for the remaining input

distributions exhibit similar characteristics, and can be

found in [8].

3 THE PERIODIC TASK QUANTIZATION PROBLEM

WITH STOCHASTIC INPUT (PTQ-S)

3.1 Statement of the Problem

Let fð�Þ and F ð�Þ be the probability density function and

cumulative distribution function, respectively, representing

the population of periodic tasks, with domain wholly

contained within ð0; 1Þ. Let � be the mean of fð�Þ and let

b � 1 be the least upper bound on the domain of fð�Þ. A set
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L ¼ fs1; . . . ; slg, 0 < s1 < s2 < � � � < sl < 1, is a feasible quanti-

zation set of fð�Þ if and only if b � sl. For notational

convenience, we set s0 ¼ 0: Notice that each sj is unique.

Associated with a feasible quantization set is an implied

mapping from the domain of fð�Þ into L, where �! sj if and

only if sjÿ1 < � � sj. That is, a periodic task that requests a

share of processor power equal to � will be able to meet its

periodic deadlines if it is given a share of processor power (or
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service level) equal to sj, provided � � sj. We may also write

the implied mapping as ð�lower; �upper� ! sj, where �lower ¼
sjÿ1 and �upper ¼ sj. Fig. 5 shows a sample mapping for the

PTQ-S problem.

Problem 2. (PTQ-S) Given fð�Þ, F ð�Þ, and � as defined above,

find a feasible set of l quantized service levels sj, j ¼ 1; . . . ; l,

such that the following objective function is minimized:

gSðs1; . . . ; slÞ ¼
Xl
j¼1

Z sj

sjÿ1

ðsj ÿ �Þ fð�Þ d�
 !

ð8Þ

¼
Xl
j¼1

Z sj

sjÿ1

sj fð�Þ d�
 !

ÿ
Xl
j¼1

Z sj

sjÿ1

� fð�Þ d�
 !

ð9Þ

¼
Xl
j¼1

sj

Z sj

sjÿ1

fð�Þ d�
 !

ÿ � ð10Þ

¼ qSðs1; . . . ; slÞ ÿ �: ð11Þ

Notice that gSðs1 . . . slÞ is the average penalty per task of
excess processor load used by the quantized set above that
requested by the original task set. The second term of (11),
�, is the average amount of processor load requested by a
task, while the first term, qSðs1; . . . ; slÞ, is the average
quantization load, that is, the average processor load across
the set of quantized tasks. In contrast, in the deterministic
input case given in (3), gDðs1; . . . ; slÞ ¼ qDðs1; . . . ; slÞ ÿ �N is
the total penalty under quantization for a particular task set
N , not the average, and qDðs1; . . . ; slÞ (respectively, �N ) is
the total processor load for the quantized task set (respec-
tively, for the original task set). We reach this conclusion
mathematically by dividing (2) by n and taking the limit as
n goes to infinity:

lim
n!1

gDðs1; . . . ; slÞ
n

¼ lim
n!1

1

n

Xl
j¼1

ðnjsjÞ ÿ �N

 ! !

¼ lim
n!1

Xl
j¼1

nj
n
sj

� � !
ÿ lim

n!1

�N
n

� �
¼
Xl
j¼1

sj lim
n!1

nj
n

� �� �
ÿ �:

Notice that the limit of
nj
n as n goes to infinity equals the

proportion of �is that fall within the interval ðsjÿ1; sjÞ, orR sj
sjÿ1

fð�Þ d�. Thus, we have:

lim
n!1

gDðs1; . . . ; slÞ
n

¼
Xl
j¼1

sj

Z sj

sjÿ1

fð�Þ d�
 !

ÿ �

¼ gSðs1; . . . ; slÞ:

We can find an expression for Normalized Quantization
Load for stochastic input, NQLS , by taking the limit of (5) as
n goes to infinity (notice that, in going from (12) to (13)
below, we multiply the numerator and denominator by 1

n ):

NQLS ¼ lim
n!1

Pl
j¼1ðnjsjÞ
�N

ð12Þ

¼ lim
n!1

Pl
j¼1

nj
n sj
ÿ �
�N
n

ð13Þ

¼

Pl
j¼1 sj lim

n!1
nj
n

ÿ �� �
lim
n!1

�N
n

ÿ � ð14Þ

¼
Pl

j¼1ðsj
R sj
sjÿ1

fð�Þ d�Þ
�

ð15Þ

¼ qSðs1; . . . ; slÞ
�

: ð16Þ

Because � is a constant for a given fð�Þ, both the
objective function gSðs1; . . . ; slÞ and the Normalized Quan-
tization Load NQLS are minimized whenever the average
quantization load qSðs1; . . . ; slÞ is minimized. The following
lemma is analogous to the fact that, in the deterministic
case, the largest service level in an optimal quantization set
must equal the largest task density �n.

Lemma 4. Let fð�Þ, F ð�Þ, and b be defined as above. Let
L1 ¼ fs1; . . . ; slg, 0 < s1 < s2 < � � � < sl < 1, be an optimal
quantization set of fð�Þ. Then, sl ¼ b.

Proof. By contradiction. Suppose sl 6¼ b. From the definition

of a feasible quantization set, we know b � sl, thus,

b < sl. The values currently mapped to sl lie in the

interval ðslÿ1; b�. Moving sl down to b will reduce the

objective function by a nonnegligible amount equal to

ðsl ÿ bÞ
R b
slÿ1

fð�Þ d�. This contradicts the optimality of L1.

Thus, sl ¼ b. tu

3.2 Optimal Solution through Nonlinear
Programming

For a given cumulative distribution function F ð�Þ and given
values of l and b, we can optimally solve problem PTQ-S
using the method described in this section, whenever F ð�Þ
is 1) twice differentiable and 2) not piecewise defined, over
the entire domain of F ð�Þ. In Section 3.3, we present an
approximate solution for instances of PTQ-S for which F ð�Þ
fails to have these two properties.

Rewriting gSðs1; . . . ; slÞ from (10), we have the following
optimization problem:

Minimize gSðs1; . . . ; slÞ ¼
Xl
j¼1

sj F ðsjÞ ÿ F ðsjÿ1Þ
ÿ �ÿ �

ÿ �

subject to : 0 < s1 < s2 < . . . < slÿ1 < sl ¼ b:

When F ð�Þ is twice differentiable and not piecewise
defined, fð�Þ and f 0ð�Þ are also not piecewise defined.
Specifically, for each of F ð�Þ, fð�Þ, and f 0ð�Þ, it is possible to
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write the function as a single closed form expression over its
entire domain, a necessary property for applying the
following method: locate a critical point of gS and, then,
verify that the point is a minimum.

To find a critical point, we set the first order partial
derivatives of gS with respect to sj, j ¼ 1; . . . ; lÿ 1, equal to
zero, yielding a set of lÿ 1 simultaneous differential
equations in lÿ 1 unknowns. The highest service level sl
is known; from Lemma 4, we know sl ¼ b. It will then be
possible to solve for each sj, j ¼ 2; . . . ; l, in terms of s1 only.
Since sl ¼ b, we can find s1. Through back-substitution, we
can then obtain the remaining values for sj, j ¼ 2; . . . ; lÿ 1.

Taking the partial derivative of gS with respect to sj,
j ¼ 1; . . . ; lÿ 1, we have:

@gS
@sj
¼ sj

@F ðsjÞ
@sj

þ F ðsjÞ ÿ F ðsjÿ1Þ
ÿ �

ÿ sjþ1
@F ðsjÞ
@sj

ð17Þ

¼ ðsj ÿ sjþ1Þ
@F ðsjÞ
@sj

þ F ðsjÞ ÿ F ðsjÿ1Þ ð18Þ

¼ ðsj ÿ sjþ1ÞfðsjÞ þ F ðsjÞ ÿ F ðsjÿ1Þ: ð19Þ

From the equation @gS
@sj
¼ 0, j ¼ 1; . . . ; lÿ 1, we can solve

for sjþ1 in terms of sj and sjÿ1:

sjþ1 ¼ sj þ
F ðsjÞ ÿ F ðsjÿ1Þ

fðsjÞ
: ð20Þ

Since s0 ¼ 0, then F ðs0Þ ¼ 0. For the equation corre-
sponding to @gS

@s1
¼ 0, we have:

s2 ¼ s1 þ
F ðs1Þ
fðs1Þ

: ð21Þ

Thus, we have s2 in terms of s1 only. For the equation
corresponding to @gS

@s2
¼ 0, we have:

s3 ¼ s2 þ
F ðs2Þ ÿ F ðs1Þ

fðs2Þ
: ð22Þ

Using (21) to substitute for s2 in (22) above, gives an
expression for s3 in terms of s1 only. For the equation
corresponding to @gS

@s3
¼ 0, we have:

s4 ¼ s3 þ
F ðs3Þ ÿ F ðs2Þ

fðs3Þ
: ð235Þ

Since we already have both s3 and s2 in terms of s1 only,
we can use substitution to get s4 in terms of s1 only. In
general, we can obtain an expression for sjþ1 only in terms
of s1 after using substitution in the equation corresponding
to @gS

@sj
¼ 0. The final equation corresponding to @gS

@slÿ1
¼ 0 is:

b ¼ sl ¼ slÿ1 þ
F ðslÿ1Þ ÿ F ðslÿ2Þ

fðslÿ1Þ
:

After substitution, the left-hand side of this equation is
the constant b, and the right-hand side is a function of s1.
Thus, we can solve for s1. All other values of sj,
j ¼ 2; . . . ; lÿ 1, can be obtained once s1 is known.

Notice that the feasible region, defined by 0 < s1 < s2 <
. . . < slÿ1 < sl ¼ b, is a convex set. IfF ð�Þ is a convex function,
then gS is also convex, and the critical point ðs1; s2; . . . ; slÿ1Þ
will be a global minimum. Otherwise, the critical point
ðs1; s2; . . . ; slÿ1Þ is a minimum if and only if the Hessian matrix
of second partial derivatives of gS is positive definite. Since

the Hessian for gS turns out to be a symmetric tridiagonal
matrix, it can be shown to be positive definite (or not) in time
Oðl2Þ [6].

Example: Solution for uniform input distribution. Due to
the simplicity of the uniform distribution, namely, fð�Þ ¼
1 and F ð�Þ ¼ �, it is possible to solve for the optimal
values of s1; . . . ; slÿ1 without specifying a particular
value for l. The domain of the uniform distribution is
ð0; 1Þ; thus, from Lemma 4, we have sl ¼ 1. Using (20),
we have:

sjþ1 ¼ sj þ
sj ÿ sjÿ1

1

¼ 2sj ÿ sjÿ1:

Recalling s0 ¼ 0, the first equation (corresponding to
@gS
@s1
¼ 0) yields: s2 ¼ 2s1. From the second equation, we

have: s3 ¼ 2s2 ÿs1 ¼ 3s1; from the third: s4 ¼ 2s3

ÿs2 ¼ 4s1; and so on, up to the ðlÿ 1Þst equation: sl ¼ ls1.
In general, sj ¼ js1 for j ¼ 2; . . . ; l. Using the additional
information that sl ¼ 1; , we have that sl ¼ ls1 ¼ 1. Thus,
s1 ¼ 1

l and, for j ¼ 2; . . . ; lÿ 1, we have sj ¼ j
l .

3.3 An Efficient Approximate Solution

3.3.1 Algorithm Quantize-Continuous

For any given cumulative distribution function F ð�Þ and
given values of l and b, we can find an approximate solution
to problem PTQ-S using the method described here. This
approximation is necessary whenever F ð�Þ is piecewise
defined or fails to be twice differentiable; in addition, this
approximation may be used whenever the complexity of
F ð�Þ and fð�Þ make the approach of Section 3.2 difficult.

In this situation, it is possible to create a discrete
approximation of the pdf and use an algorithm similar to
Quantize to find an estimate of the optimal quantization set
L. That is, the new algorithm, called Quantize-Continuous,
will find the optimal quantization set for a given approx-
imation of a pdf. The better the pdf approximation, the
closer the estimate will be to the true optimal solution for
the pdf.

In particular, we can choose an integerK > l and partition

the interval ð0; 1Þ into K intervals ðiÿ1
K ; iKÞ, i ¼ 1; . . . ; K. The

right-hand endpoint of the ith interval is ei ¼ i
K ; with ei, we

associate a discrete point mass density mi ¼
R i
k
iÿ1
k

fð�Þ d�.

These K ordered pairs ðei;miÞ form the approximation of

fð�Þ that serves as input to the algorithm Quantize-Contin-

uous, which selects the sjs of the optimal quantization set L

from among theK endpoint values feig. Fig. 6 demonstrates

the approximation process for a sample pdf fð�Þ.
Quantize-Continuous differs from Quantize in several

ways. First, the input to Quantize-Continuous is the

collection of K ordered pairs ðei;miÞ, while the input to

Quantize is the periodic task set N , containing n values of

�i. Second, the tables Diff and Cumul are replaced by the

K �K tables Sum and Prod:

Sum½i�½j� ¼
Xj
x¼i

m½x� ; i � j

Prod½i�½j� ¼ e½i� � Sum½j�½i� ; j � i:
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Finally, Quantize-Continuous minimizes the average
quantization load qSðs1; . . . ; slÞ (and holds these values in
a K � l table called AQL), whereas Quantize minimizes the
total quantization load qDðs1; . . . ; slÞ (and holds the values
of qDðs1; . . . ; slÞ ÿ �N ¼ gDðs1; . . . ; slÞ in the Opt table).
Apart from these differences, the two algorithms are very
similar, in that the same code used in Quantize to build Opt

(using Cumul) is exactly the same code used in Quantize-
Continuous to build AQL (using Prod in the place of
Cumul). Quantize-Continuous runs in time OðK2lÞ and
Quantize runs in time Oðn2lÞ; these time complexities are
identical since K and n simply represent the size of the
input.

Note that the entry AQL ½i�½j� holds the minimum value of
qS for a subset of the larger problem instance of PTQ-S that
we wish to solve; namely, AQL ½i�½j� is the portion of
qSðs1; . . . ; slÞ that arises from optimally choosing j service
levels to quantize the first i pairs ðe1;m1Þ up to ðei;miÞ. (AQL
½i�½j� does not hold the minimum value of qS for a smaller
problem instance of PTQ-S in which the K ¼ i and l ¼ j.)
The pseudocode description of Quantize-Continuous can be
found in [8].

3.3.2 Performance of Quantize-Continuous on

Six Input Distributions

To evaluate the performance of Quantize-Continuous, we
ran the algorithm on the six different input distributions
described in Section 2.3.1 for a variety of values of K and l.
In particular, we allowed K to take on the values
10; 15; 20; . . . ; 100 and l the values from 2 to 50. However,
in the graphs of Fig. 7, we have chosen only to display level
curves of l for l ¼ 5; 10; 15; 20; 25; 30. This figure contains
two graphs: Fig. 7a was created using the triangle
distribution as input to Quantize-Continuous and Fig. 7b
using the bimodal distribution. (Graphs created using the
remaining input distributions can be found in [8].) We have
plotted the value of the normalized quantization load
NQLS on the y-axis corresponding to a particular value of
K along the x-axis. As expected, the level curves of l

approach 1 as l increases. Notice also that, for a particular
value of l, as K increases, the value of NQLS decreases
slightly and immediately settles down to a particular value.
For example, in Fig. 7a (triangle input), the level curve of
l ¼ 20 settles down to a value of NQLS � 1:045 as early as
K ¼ 25. Therefore, by dividing the interval ð0; 1Þ into as few
as 25 smaller intervals, we can adequately estimate the

effect on processor resources due to quantization into
20 service levels.

In Fig. 7b (bimodal input), the level curves of l do not
appear to settle down as quickly; instead, they possess an
interesting sinusoidal shape. We, therefore, generated
another set of graphs (shown in [8]) for the bimodal
distribution, this time letting K take on the values
10; 15; 20; . . . ; 300. From K ¼ 100 to K ¼ 300, the sinusoidal
shape quickly decreases in amplitude and settles down to a
particular value of NQLS . The shape can be attributed to
the endpoints of the K intervals adequately falling along
the points of discontinuity of the pdf. The first peak in the
bimodal distribution rises at � ¼ :25 and falls at � ¼ :35, and
the second peak rises at � ¼ :65 and falls at � ¼ :75. When
K ¼ 20; 40; 60; . . . , there are endpoints ei that exactly equal
.25, .35, .65, and .75; further, these K values correspond to
the valleys (lower values of NQLS) of the level curves of l.

Thus, a probability density function fð�Þ with disconti-
nuities will be better approximated (and, hence, Quantize-
Continuous will perform better) whenever the K intervals
are chosen such that the endpoints lie at the points of
discontinuity. In fact, Quantize-Continuous does not re-
quire that the input pairs ðei;miÞ be evenly spaced along the
interval ð0; 1Þ. Therefore, whenever fð�Þ has many disconti-
nuities, the endpoints ei may be particularly chosen to fall at
the points of discontinuity to achieve better performance
from Quantize-Continuous.

4 SCHEDULING A QUANTIZED TASK SET

The algorithm PD2 is the fastest known algorithm that will
create a p-fair schedule for periodic task sets in whichPn

i¼1 �i � m, where m is the number of processors [1].
Recall from Section 1.2 that each subtask has an associated
slot deadline, the last eligible slot in which the subtask may
be processed in a p-fair schedule. PD2 uses these deadlines
to choose subtasks for scheduling. The online implementa-
tion of PD2 presented in [1] has the following main phases:

1. Preprocessing. The algorithm inserts the initial
eligible subtask of each of the n tasks into a heap
H, which holds all subtasks currently eligible for
processing.

2. Scheduling. At each time slot:

a. Selection. The algorithm chooses a total of m
eligible subtasks to process. It chooses subtasks
according to most imminent deadline and
breaks ties in constant time.

b. Update. For each of the m selected subtasks, the
algorithm calculates the earliest time slot t at
which the next subtask will become eligible. It
then inserts this next subtask into a heap Ht

according to its deadline. Since there are n tasks
in all, the number of nonempty heaps is at most
nþ 1.

PD2 completes the Preprocessing phase in time O(n).
During the Scheduling phase, PD2 completes Selection in
time O(m logn) and Update in time O(m logn). At any point
in time, for each task, at most one subtask (the next one to
be processed) is stored in one of several heaps: heap H if the
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subtask is currently eligible, or heap Ht if time slot t is the
next earliest slot that the subtask will be eligible.

We propose modifying PD2 to create a new algorithm
called Quantized-PD2 (Q-PD2). We use the same priority
definition as PD2; that is, we use the same rules during the

Selection phase to choose m eligible subtasks for processing.
Taking advantage of the quantized input, we replace the
collection of heaps with a set of l queues, one for each
service level sj. During the Preprocessing phase, the initial
eligible subtask of each of the n tasks is inserted in arbitrary
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order into the queue corresponding to its assigned service

level. Initially, all subtasks within a given queue have the

same deadline and, hence, the same priority. Choosing the

eligible head-of-line subtask with the highest priority from

among the l queues can be done in time O(1) (recall that l is

a constant; it does not depend on n or m). The Selection

phase can, therefore, be completed in time O(m). Next, for

each of the m selected subtasks, the Update phase involves:

1) calculating the time t_next at which the task’s next

subtask will become eligible, 2) calculating the priority of

the next subtask at time t_next, and 3) placing the next

subtask at the end of its queue. Each of these three actions

for updating a single task requires time O(1) so, in total, the

Update phase requires O(m).
Therefore, Q-PD2 has a per slot time complexity of O(m)

as compared to O(m logn) for PD2. The Preprocessing phase

time complexity remains unchanged at O(n). The pseudo-

code description of Q-PD2 is given in the appendix.

5 CONCLUSION

We have attempted to simplify the periodic tasks schedul-

ing problem by making a trade off between processor load

and computational complexity. In particular, we sought to

quantize processor power by determining a set of service

levels that would strike a balance between the two

conflicting goals of simplicity and performance. We

addressed the issue of determining this set of service levels

given 1) a fixed set of task requests (Periodic Task

Quantization Problem with Deterministic input), and 2) the

probability density function of task requests (Periodic Task

Quantization Problem with Stochastic input), giving opti-

mal solutions in each case. Finally, we have shown that the

scheduling of a set of periodic tasks is greatly simplified

through quantization and have presented a fast online

algorithm that schedules quantized periodic tasks.

APPENDIX

THE Q-PD2 ALGORITHM FOR SCHEDULING A

QUANTIZED TASK SET

Q = BuildQueues(rho) ; // Preprocessing phase t = 0 1

t = 0; 2

while (true) // Start of Scheduling phase 3

repeat { 4
T = ExtractMin(Q) ; 5

Schedule task T in slot t ; 6

t_next = the earliest future time at which

T will be eligible again ; 7

T.nextEligible = t_next; 8

T.priority = Determine T’s priority at time

t_next ; 9

Enqueue(Q, T) ; 10
} 11

until m tasks have been scheduled in slot t ; 12

t = t + 1 ; 13

} 14
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