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We present an approximate analytical method to evaluate efficiently and accurately the call block-
ing probabilities in wavelength routing networks with multiple classes of calls. The model is fairly
general and allows each source-destination pair to service calls of different classes, with each call
occupying one wavelength per link. Our approximate analytical approach involves two steps. The
arrival process of calls on some routes is first modified slightly to obtain an approximate mul-
ticlass network model. Next, all classes of calls on a particular route are aggregated to give an
equivalent single-class model. Thus, path decomposition algorithms for single-class wavelength
routing networks may be readily extended to the multiclass case. This article is a first step towards
understanding the issues arising in wavelength routing networks that serve multiple classes of
customers.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and
Statistics—Markov processes; I.6.4 [Simulation and Modeling]: Model Validation and Analysis

General Terms: Performance

Additional Key Words and Phrases: Blocking Probabilities, Multiclass networks, Wavelength divi-
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1. INTRODUCTION

A basic property of single mode optical fiber is its enormous low-loss bandwidth
of several tens of terahertz (THz). Unfortunately, due to dispersive effects and
limitations in optoelectronic component technology, single channel transmis-
sion is limited in speed to only a small fraction of the fiber capacity. To take full
advantage of the potential of fiber, the use of wavelength division multiplexing
(WDM) techniques has become the option of choice [Brackett 1996; Green 1996],
and WDM networks have been a subject of research both theoretically [Subra-
maniam et al. 1996; Ramaswami and Sivarajan 1996] and experimentally [Hall
et al. 1996; Wagner et al. 1996]. Multiwavelength optical networks have the
potential of delivering an aggregate throughput on the order of terabits per
second, and they appear to be a viable approach to satisfying the ever-growing
demand for more bandwidth per user on a sustained long-term basis.

The wavelength routing mesh architecture appears promising for wide area
network (WAN) distances [Mukherjee et al. 1996; Wauters and Demeester
1996; Chlamtac et al. 1992]. The network architecture consists of wavelength
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routers and fiber links that interconnect them. A wavelength router is capable of
switching a light signal at a given wavelength from any input port to any
output port. A router may also be capable of enforcing a shift in wavelength
[Ramamurty and Mukherjee 1998], in which case a light signal may emerge
from the switch at a different wavelength than the one it arrived. By appropri-
ately configuring the routers, all-optical paths (lightpaths) may be established
between pairs of nodes in the network. Lightpaths represent direct optical con-
nections without any intermediate electronics. Because of the long propaga-
tion delays, and the time required to configure the routers, wavelength rout-
ing WANs are expected to operate in circuit-switched mode [Ramaswami and
Sivarajan 1996; Mukherjee et al. 1996]. This architecture is attractive for two
reasons: the same wavelength can be used simultaneously at different parts of
the network; and the signal power is channeled to the receiver and is not spread
to the entire network as in the broadcast-and-select approach [Ramaswami
1993]. Hence, wavelength routing WANs can be highly scalable.

Given the installed base of optical fiber, and the maturing of optical compo-
nent technology, it appears that current network technologies are transitory,
and will eventually evolve to an all-optical, largely passive infrastructure. Al-
though the long-term result of such an evolution is not yet clear, a feasible
scenario for near-term large-scale all-optical networks has emerged in recent
years [Brackett 1996; Green 1996]. Wavelength routing WANs are an integral
part of this scenario, since it is envisioned that they will act as the backbone
that provides the interconnection for local area photonic subnetworks attached
to them. The contribution of our work is the development of an approximate, but
accurate and efficient, analytical framework for evaluation of the performance
of multiclass wavelength routing optical networks.

Pankaj and Gallager [1996] study lower bounds on the number of wavelength
channels required in all-optical networks with and without wavelength con-
verters, in order to solve an arbitrary permutation routing problem in a non-
blocking manner. Our approach lies in solving for the blocking probabilities in
a network with a fixed number of wavelengths and a given routing scheme.
The problem of computing call blocking probabilities under static (fixed or al-
ternate) routing with random wavelength allocation and with or without wave-
length converters has been studied in Barry and Humblet [1996]; Kovacevic
and Acampora [1996]; Birman [1996]; Harai et al. [1997]; and Subramaniam
et al. [1996; 1997]. The model presented in Barry and Humblet [1996] is based
on the assumption that wavelength use on each link is characterized by a fixed
probability, independently of other wavelengths and links, and thus, it cannot
capture the dynamic nature of traffic. In Kovacevic and Acampora [1996] it
was assumed that statistics of link loads are mutually independent, an approx-
imation that is not accurate for sparse network topologies. The work in Bir-
man [1996] developed a Markov chain with state-dependent arrival rates to
model call blocking in arbitrary mesh topologies and fixed routing; it was ex-
tended in Harai et al. [1997] to alternate routing. While more accurate, this
approach is computationally intensive and can only be applied to networks of
small size in which paths have at most three links. A more tractable model was
presented in Subramaniam et al. [1996] to recursively compute blocking prob-
abilities assuming that the load on link i of a path depends only on the load of
link i − 1. Finally, a study of call blocking under non-Poisson input traffic was
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presented in Subramaniam et al. [1997], under the assumption that link loads
are statistically independent.

Other wavelength allocation schemes, as well as dynamic routing are
harder to analyze. First-fit wavelength allocation was studied using simulation
in Chlamtac et al. [1992] and Kovacevic and Acampora [1996], and it was shown
to perform better than random allocation, while an analytical overflow model for
first-fit allocation was developed in Karasan and Ayanoglu [1998]. A dynamic
routing algorithm that selects the least loaded path–wavelength pair was also
studied in Karasan and Ayanoglu [1998]; and in Mokhtar and Azizoglu [1998],
an unconstrained dynamic routing scheme with a number of wavelength alloca-
tion policies was evaluated. Except in Subramaniam et al. [1996; 1998], all other
studies assume that either all or none of the wavelength routers have wave-
length conversion capabilities. The work in Subramaniam et al. [1996] takes a
probabilistic approach in modeling wavelength conversion by introducing the
converter density, which represents the probability that a node is capable of
conversion independently of other nodes in the network. While this approach
works well when the objective is the estimation of the expected call blocking
performance, it cannot be used to calculate the actual blocking probability on
individual paths when the placement of converters is known, nor can it be
used to compare various converter placement strategies. Finally, in Subrama-
niam et al. [1998] a dynamic programming algorithm to determine the location
of converters on a single path that minimizes average or maximum blocking
probability was developed under the assumption of independent link loads.

Most of the approximate analytical techniques developed for comput-
ing blocking probabilities in wavelength routing networks [Kovacevic and
Acampora 1996; Birman 1996; Harai et al. 1997; Subramaniam et al. 1997;
Karasan and Ayanoglu 1998; Mokhtar and Azizoglu 1998; Subramaniam et
al. 1998] make the assumption that link blocking events are independent and
amount to the well-known link decomposition approach [Girard 1990], while
the development of some techniques is based on the additional assumption
that link loads are also independent. Link decomposition has been extensively
used in conventional circuit-switched networks where there is no requirement
for the same wavelength to be used on successive links of the path taken by
a call. The accuracy of these underlying approximations also depends on the
traffic load, the network topology, and the routing and wavelength allocation
schemes employed. While link decomposition techniques make it possible to
study the qualitative behavior of wavelength routing networks, more accurate
analytical tools are needed to evaluate the performance of these networks effi-
ciently, as well as to tackle complex network design problems, such as selecting
the optical switches where wavelength converters are to be employed.

We have considered the problem of computing call blocking probabilities in
mesh wavelength routing networks with fixed and alternate routing and ran-
dom wavelength allocation. Unlike previous studies, we have developed an it-
erative path decomposition algorithm [Zhu et al. 1999c] for analyzing arbitrary
network topologies. Specifically, we analyze a given network by decomposing it
into a number of path subsystems. These subsystems are analyzed in isolation
using our approximation algorithm for computing blocking probabilities in a
single path in a wavelength routing network [Zhu et al. 1999b]. The individual
solutions are appropriately combined to form a solution for the overall network,
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and the process repeats until the blocking probabilities converge. Our approach
accounts for the correlation of both link loads and link blocking events, giving
accurate results for a wide range of loads and network topologies. It also allows
nonuniform traffic, in the sense that call request arrival rates can vary for each
source-destination pair. Our algorithm can compute call blocking probabilities
in a mesh network where only a fixed but arbitrary subset of nodes is capable of
wavelength conversion. Therefore, our algorithm can be an important tool in the
development and evaluation of converter placement strategies. Finally, in Zhu
et al. [1999a] we studied the first-fit and most-used wavelength allocation poli-
cies, and we showed that they have almost identical performance in terms of
blocking probability for all calls in the network. We also demonstrated that the
blocking probabilities under the random wavelength allocation policy with no
converters and with converters at all nodes provides upper and lower bounds for
the values of the blocking probabilities under the first-fit and most-used policies.

All previous studies of call blocking probabilities discussed here have only
considered single-class wavelength routing networks. It is expected, however,
that a wide range of future applications with varying characteristics in terms
of their arrival rates and call holding times will be utilized. In this article, we
present a method to extend the results in Zhu et al. [1995b; 1999c] to multiclass
optical networks. While multiclass circuit-switched networks have been studied
in the literature [Baynat and Dallery 1993], to the best of our knowledge, this
is the first time that multiclass wavelength routing networks are analyzed.

The development of our approximate analytical techniques involves two
steps. The arrival process of calls on some routes is first modified slightly to
obtain a modified multiclass network model. Next, all classes of calls on a partic-
ular route are aggregated to give an equivalent single-class model. This equiva-
lent single-class model has the same call blocking probability on any given route
as the modified multiclass network, and can be easily solved due to the existence
of a product-form solution. Simulation results further show that these results
approximate the blocking probability of the original multiclass network with
good accuracy. Thus, the solutions for single-class networks developed in Zhu
et al. [1995b; 1999c] may be extended to the multiclass case.

In Section 2, we describe the multiclass wavelength routing network under
study. In Section 3, we explain how the modified multiclass model and the
equivalent single-class model are obtained for a single path of a wavelength
routing network. In Section 4, we describe a decomposition algorithm for long
paths and mesh network topologies. Section 5 gives numerical comparisons
of performance measures obtained from the approximate model and from the
exact model through simulations. We conclude the paper in Section 6.

2. THE MULTICLASS WAVELENGTH ROUTING NETWORK

We consider a wavelength routing network with an arbitrary topology. Each
link in the network supports exactly W wavelengths, and each node is capable
of transmitting and receiving on any of these W wavelengths. In our model, we
allow some of the nodes in the network to employ wavelength converters. These
nodes can switch an incoming wavelength to an arbitrary outgoing wavelength.
(When there are converters at all nodes, the situation is identical to that in
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Fig. 1. A k-hop path.

classical circuit-switching networks, a special case of the more general scenario
discussed here.) Call requests between a source and a destination node arrive
at the source according to a Poisson process with a rate that depends on the
source-destination pair. When a call arrives, a path over which the connection
will be established first must be determined. In this article, we consider both
fixed and alternate routing.

In fixed routing, each source-destination pair is assigned to a single path. If
there are no wavelength converters in the path, a call is blocked if there is no
wavelength that is free on all links of the path. If some nodes along the path
employ converters, the call is blocked if no wavelength is free on all links of any
segment of the path consisting of the links between successive nodes on the
path with converters. This is known as the wavelength continuity requirement,
and it increases the probability of call blocking. On the other hand, if a call
can be accommodated, it is randomly assigned one of the wavelengths that are
available on the links used by the call.1 Thus, we only consider the random
wavelength assignment policy.

In alternate routing, a set of paths (consisting of one primary path and one or
more alternate paths) is assigned to each source-destination pair. Upon arrival
of a call, this set is searched in a fixed order to find an available path for the
call. If the request can be satisfied, an optical circuit is established between
the source and destination for the duration of the call, which is referred to as
the call holding time, or the call service time. Call holding times are assumed
to be exponentially distributed, with a mean that depends on the class of the
call.

Calls between any two nodes may be of several classes. In the general case,
the number of classes of calls on a given route may not be the same as the
number of classes on another route. However, to simplify the model, we can
add some dummy classes of calls on any given route such that the arrival rate
of calls of each dummy class is zero and the mean holding time is some finite
quantity. Thus, without any loss of generality, we may assume that there are R
classes of calls on each and every route. Each class of calls has its own Poisson
arrival rate and exponential holding time.

Since many of our results are developed in terms of a single path in a wave-
length routing network, we introduce some relevant notation. A k-hop path,
such as the one shown in Figure 1, consists of k+ 1 nodes. Call these node 0,
node 1, · · ·, node k. nodes (i− 1) and i, 1 ≤ i ≤ k, are said to be connected by
link i. A segment is a subpath that includes links i through j, j ≥ i ≥ 1. Calls

1In a path with wavelength converters, a wavelength is randomly assigned within each segment
of the path whose starting and ending nodes are equipped with converters.
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originating at node i − 1 and terminating at node j use the above segment,
which we denote by the pair (i, j). Calls between these two nodes may belong
to one of R classes, and these calls are said to use route (i, j). We also define the
following parameters.

—λ
(r)
i j , j ≥ i, 1 ≤ r ≤ R, is the Poisson arrival rate of calls of class r that originate

at node (i − 1) and terminate at node j.
—1/µ(r)

i j is the mean of the exponentially distributed service time of calls of
class r that originate at node (i − 1) and terminate at node i. We also let
ρ

(r)
i j = λ(r)

i j /µ
(r)
i j .

—N (r)
i j (t) is the number of active calls at time t on segment (i, j) belonging to

class r.
—Fij(t) is the number of wavelengths that are free on all hops of segment (i, j) at

time t. A call that arrives at time t and uses route (i, j) is blocked if Fij(t) = 0.

3. BLOCKING PROBABILITIES IN A SINGLE PATH OF A NETWORK

3.1 The Single-Class Case

In this section we briefly review some of our previous results for a path of
a single-class wavelength routing network. Consider the k-hop path shown in
Figure 1. Let the state of this system at time t be described by the k2-dimensional
process:

Xk(t) = (N11(t), N12(t), · · · , Nkk(t), F12(t), F13(t), · · · , F1k(t), F23(t), · · · , F(k−1)k(t)).
(1)

A closer examination of the process Xk(t) reveals that it is not time-reversible
(see Zhu et al. [1999b]). This result is true in general, when k≥ 2 and W ≥ 2.

The number of states of the Markov chain for the 2-hop case grows as W4. In
the k-hop case, the state-space grows as Wk2

. The computational complexity of a
brute-force approach grows nearly as the cube of the size of the state-space. An
exact solution would thus become computationally infeasible even for modest
values of W and k.

Consequently, an approximate model was constructed in Zhu et al. [1999b]
to analyze a single-class, k-hop path of a wavelength routing network. The
approximation consists of modifying the call arrival process to obtain a time-
reversible Markov process that has a closed-form solution. In a time-reversible
Markov process, the steady-state probabilities of being in a given state can
be expressed as the product of the marginal probabilities over the state vari-
ables. In other words, P (n11, n12, n22, f12) may be written as H ×5i, j Pij(nij) ×
Q12( f12), where Pij(.) represents the marginal distribution of Nij(t), Q12(.) rep-
resents the marginal distribution of F12(t), and H is some normalizing con-
stant. Computing these marginal probabilities is fairly straightforward, as
shown later, and requires constant time. Evaluating the normalizing constant
for the k-hop case involves O(Wk(k+1)/2) steps. Thus, there is a considerable
reduction in computational complexity in constructing a time-reversible
Markov chain.
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To illustrate our approach, let us consider the Markov process corresponding
to a 2-hop path:

X2(t) = (N11(t), N12(t), N22, F12(t)). (2)

We now modify the arrival process of calls that use both hops (a Poisson process
with rate λ12 in the exact model) to a state-dependent Poisson process with rate
312 given by

312 (n11, n12, n22, f12) = λ12
f12(W − n12)

f11 f12
. (3)

The arrival process of other calls remains as in the original model. As a result,
we obtain a new Markov process X′2(t) with the same state space and the same
state transitions as process X2(t), but which differs from the latter in some of
the state transition rates.

We made the observation in Zhu et al. [1999b] that under the new arrival
process (3) for calls using both hops, the Markov process X′2(t) is time-reversible
and the stationary vector π is given by

π (n11, n12, n22, f12) = 1
G2(W)

ρ
n11
11

n11!
ρ

n12
12

n12!
ρ

n22
22

n22!
×

(
f11
f12

)(
n11

W − n12 − n22 − f12

)
(

W − n12
W − n12 − n22

) , (4)

where Gk(W) is the normalizing constant for a k-hop path with W wavelengths.
Let P(n11, n12, n22) be the marginal distribution over the states for which

Nij(t) = nij , 1 ≤ i ≤ j ≤ 2. It can be verified [Zhu et al. 1999b] that

P(n11, n12, n22) = 1
G2(W)

ρ
n11
11

n11!
ρ

n12
12

n12!
ρ

n22
22

n22!
(5)

Likewise, for a k-hop path, k ≥ 2, with the modified state-dependent Poisson
arrival process, the marginal distribution over the states for which Nij(t) = nij ,
1 ≤ i ≤ j ≤ k, is given by

P(n11, n12, · · · , nkk) = 1
Gk(W)

∏
{(i, j)|1≤i≤ j≤k}

ρ
nij
i j

nij !
(6)

It is easily seen that this distribution is the same as in the case of a net-
work with wavelength converters at each node. An interesting feature of having
wavelength converters at every node is that the network has a product-form
solution even when there are multiple classes of calls on each route, as long as
call arrivals are Poisson, and holding times are exponential [Kelly 1979; Girard
1990]. Furthermore, when calls of all classes occupy the same number of wave-
lengths, we can aggregate classes to get an equivalent single class model with
the same steady-state probability distribution over the aggregated states, as
we show next.
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3.2 The Multiclass Case

Let us now consider a k-hop path with wavelength converters at all nodes, and
with R classes of calls. If λ(r)

i j , 1 ≤ i ≤ j ≤ k, 1 ≤ r ≤ R, is the arrival rate of
calls of class r on route (i, j), and 1/µ(r)

i j , 1 ≤ i ≤ j ≤ k, 1 ≤ r ≤ R, is the mean of
the exponential holding time of calls of class r, the probability of being in state
n= (n(1)

11 , n(2)
11 , · · · , n(R)

11 , n(1)
12 , · · · , · · · , n(R)

kk ) is given by:

P(n) = 1
Gk(W)

 ∏
{(i, j)|1≤i≤ j≤k}

R∏
r=1

(
ρ

(r)
i j

)n(r)
i j

n(r)
i j !

. (7)

Let σi j =
∑

r ρ
(r)
i j and sij =

∑
r n(r)

i j . As defined, sij is the total number of calls of
all classes that use segment (i, j) of the path, and σi j is the total offered load of
these calls. Taking the summation of (7) over all states such that

∑
r n(r)

i j = sij ,
1 ≤ i ≤ j ≤ r, we obtain:

P′(s11, s12, · · · , skk) =
∑

{n|
∑

r
n(r)

i j =sij }
P(n) = 1

Gk(W)

∏
{(i, j)|1≤i≤ j≤k}

σ
sij
i j

sij !
(8)

Observe that this is identical to the solution (6) for the single-class case obtained
by substituting σi j by ρi j and sij by nij in (8).

Based on the above results, we conclude that by employing class aggregation
on a multiclass path with converters at all nodes, we obtain a system equiv-
alent to a single-class path with converters. In Section 3.1, we showed that
the modified single-class wavelength routing network without converters has
a steady-state marginal distribution similar to the exact single-class network
with converters. We now show that a modified multiclass network without wave-
length converters can also be subjected to class aggregation that results in an
equivalent single-class model. The modification applied to the arrival process
of calls is similar to the single-class case, and is given by expression (9):

3
(r)
i j (x) =

λ
(r)
i j

fi j
(∑i

l=1 sli + fii
)(∑i+1

l=1 sl(i+1) + f(i+1)(i+1)
) · · · (∑ j−1

l=1 sl( j−1) + f(m−1)(m−1)
)

fii f(i+1)(i+1) · · · f j j

(9)

Then, the probability that the equivalent single class network without con-
verters is in state

Sx =
(
s11, s12, · · · , s1k, s22, · · · , skk, f12, f13, · · · , f(k−1)k

)
(10)

is given by expression (11):
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π (Sx) =

(∏
i, j

sij !
σ

sij
i j

)
k∏

l=2

(
f1(l−1)

f1l

){∏l−1
m=2

(
fm(l−1) − f(m−1)(l−1)

fml − f(m−1)l

)}(
fll + nll − f(l−1)(l−1)

fll − f(l−1)l

)
(

fll + nll
fll

) .

(11)

Once again, the parameters of the single-class model are given by:

sij =
R∑

r=1

n(r)
i j 1 ≤ i < j ≤ k (12)

σi j =
R∑

r=1

ρ
(r)
i j 1 ≤ i < j ≤ k (13)

3.3 Blocking Probabilities in the Multiclass Case

Since the arrival rate of calls of each class on each route is Poisson, the blocking
probability, Q(r)

i j , of a call of class r using route (i, j) is just the fraction of time
that there is no wavelength that is free on all hops along route (i, j) (see the
PASTA theorem in Wolff [1982]). Thus, we have:

Q(r)
i j = lim

τ→∞

∫ τ
t=0 I{Fij (t)=0}dt

τ
, (14)

where

I{Fij (τ )=0} =
{

1 if Fij(τ ) = 0
0 otherwise . (15)

As can be seen, the blocking probability is class-independent.
Next, we focus on the call blocking probabilities in the modified model. The

arrival process of calls of class r on route (i, j) is a state-dependent Poisson
process whose rate at time τ , A(r)

i j (τ ) is a function of the state X(τ ) of the process,
and is given by

A(r)
i j (τ ) = 3(r)

i j (X(τ )) = λi j
Fij(τ )

∏ j−1
k=i

(∑k
l=1Nlk(τ )+ Fkk(τ )

)
Fii Fi+1,i+1 · · · Fjj

. (16)

Note that the modified arrival process satisfies the criterion:

3
(r1)
i j (x)

3
(r2)
i j (x)

= λ
(r1)
i j

λ
(r2)
i j

1 ≤ r1, r2 ≤ r (17)

By applying the PASTA theorem conditioned on being in state x, the conditional
call blocking probability, P (r)

i j (x), of calls of class r on route (i, j) is given by the
fraction of time spent in state x in which there is no wavelength that is free on
all hops of route (i, j). Therefore:
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P (r)
i j (x) = lim

τ→∞

∫ τ
t=0 I{Fij (t)=0,X(t)=x}dt∫ τ

t=0 I{X(t)=x}dt
=
{

1 if fij = 0
0 otherwise . (18)

Let P(r)
i j be the unconditional probability that a call of class r, on route (i, j)

gets blocked in the modified multiclass model. This is given by:

P(r)
i j =

∑
x3

(r)
i j (x)π (x)P (r)

i j (x)∑
x3

(r)
i j (x)π (x)

=
∑
{x| fij=0}3

(r)
i j (x)π (x)∑

x3
(r)
i j (x)π (x)

(19)

and can also be seen to be independent of the class r. Thus, by computing
the blocking probability on the equivalent single-class path, we can obtain the
solution to the multiclass path.

4. BLOCKING PROBABILITIES IN LONG PATHS AND MESH TOPOLOGIES

The solution to single-class wavelength routing networks involving paths with
a large number of hops, and for networks with mesh topologies, with wave-
length converters at an arbitrary subset of nodes, has been presented in Zhu
et al. [1999b; 1999c]. Recall the evaluation of the normalizing constant of the
product-form solution has a computational complexity given by O(W(k(k+1)/2).
When k is large, a brute-force computation of the normalizing constant becomes
computationally infeasible. So, we apply path decomposition.

This solution involves decomposition of the network into short path segments
with two or three hops, and analyzing these approximately using expression (4).
The solutions to individual segments are appropriately combined to obtain a
value for the blocking probability of calls that traverse more than one segment.
The effect of the wavelength continuity requirement is captured by an approx-
imate continuity factor that is used to increase the blocking probability of calls
continuing to the next segment to account for the possible lack of common free
wavelengths in the two segments. The process repeats until the blocking prob-
abilities converge. By applying the transformations given in (12) and (13), the
same algorithms may be used to calculate blocking probabilities for multiclass
networks.

Specifically, we use the following steps to compute the blocking probabilities
of a wavelength routing network with R classes of calls.

(1) Path decomposition. Decompose the multiclass mesh network topology into
L single-path subsystems using the algorithm in Zhu et al. [1999c].

(2) Time-reversible process approximation. For each single-path subsystem,
modify the arrival process as given by expression (9) to obtain an approxi-
mate time-reversible Markov process for the path.

(3) Class aggregation. For each subsystem, apply the transformations in (12)
and (13) to obtain an equivalent single-class path subsystem.

(4) Calculation of blocking probabilities. For each path subsystem, obtain the
blocking probabilities as follows. If the path is at most three hops long, use
expressions (19) and (11) directly. If the path subsystem is longer than three
hops, analyze it by decomposing it into 2- or 3-hop paths which are solved
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Table I. Arrival and Service Parameters for a 2-Hop Path

Route Class 1 Class 2 Class 3
(i, j) λ µ λ µ λ µ

(1, 1) 3.0 8.0 4.0 8.0 3.0 6.0
(1, 2) 3.0 4.0 4.0 5.0 3.0 6.0
(2, 2) 5.0 8.0 5.0 5.0 3.0 6.0

Fig. 2. Blocking probabilities for a 2-hop path and the parameters shown in Table I.

in isolation, and combine the individual solutions to obtain the blocking
probabilities along the original longer path (see Zhu et al. [1999b]).

(5) Convergence. Repeat Steps 2 to 4, after appropriately modifying the original
arrival rates to each single-path subsystem to account for the new values of
the blocking probabilities obtained in Step 4 (see Zhu et al. [1999c]), until
the blocking probabilities converge within a certain tolerance.

5. NUMERICAL RESULTS

In this section, we validate the approximate method described in Section 4 by
comparing the blocking probabilities for each route as obtained from the ap-
proximate method with those obtained through simulation of the exact model.

5.1 A Single Path of a Network

We first provide results for 2- and 3-hop paths, since these systems represent
the basic blocks of our decomposition algorithm. In Table I we show the ar-
rival and service rates for calls on each route (i, j), 1 ≤ j ≤ 2, of a 2-hop path.
There are R = 3 classes of calls for each route. In Figure 2 we plot the blocking
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Table II. Arrival and Service Parameters for a 3-Hop Path

Route Class 1 Class 2 Class 3
(i, j) λ µ λ µ λ µ

(1, 1) 3.0 3.0 1.0 3.0 1.0 3.0
(1, 2) 1.0 6.0 2.0 6.0 1.0 6.0
(1, 3) 1.0 2.0 1.0 2.0 2.0 2.0
(2, 2) 1.0 3.0 1.0 3.0 2.0 3.0
(2, 3) 1.0 2.0 1.0 2.0 3.0 2.0
(3, 3) 3.0 6.0 1.0 6.0 1.0 6.0

Fig. 3. Blocking probabilities for a 3-hop path and the parameters shown in Table II.

probability of calls along each of the three possible routes (recall that block-
ing probabilities are class-independent) against the number W of wavelengths
supported by the links of the path. As we can see, the blocking probability de-
creases as W increases, as expected. We also observe that calls on Route (1, 2)
(i.e., calls using both hops of the path) experience the highest blocking prob-
ability, since they have to compete against calls using either the first or the
second hop of the path. Also, calls on Route (2, 2) (i.e., those using the second
hop only) experience higher blocking probability than those using Route (1, 1),
a direct consequence of the fact that the offered load of calls on Route (2, 2) is
higher than that of calls on Route (1, 1) (refer to Table I). Most important, how-
ever, we can see that there is good agreement between the values of the block-
ing probabilities obtained through our analytical technique and those obtained
through simulation. Similar results have been obtained for different values for
the arrival and service parameters and for different numbers of classes, indi-
cating that our approximate method is accurate over a wide range of network
characteristics.

We now consider a 3-hop path with R= 3 classes of calls, and the arrival and
service rates shown in Table II. In Figure 3, we plot the blocking probability
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Fig. 4. The 3× 3 torus network.

against the number W of wavelengths for three (out of the six) types of calls
in this path: calls using Route (1, 1), (i.e., the first hop of the path), calls on
Route (2, 3) (i.e., those using the last two hops), and calls on Route (1, 3) (using
all three hops of the path). The behavior of the blocking probability curves in
Figure 3 is similar to that in Figure 2. Specifically, the blocking probability
decreases as W increases, while it increases with the number of hops a call
must traverse. We also note that the curves derived analytically closely track
those obtained by simulation.

From Figures 2 and 3 we conclude that for 2- and 3-hop multiclass paths
(the building blocks of our decomposition algorithm), the class aggregation and
the time-reversible Markov process (derived through the modification (9) of the
arrival process) can be used to compute call blocking probabilities accurately. In
the next subsection we demonstrate that the same is true for mesh topologies.

5.2 Mesh Topologies

In this section we provide results for two different mesh networks: a 3 × 3
regular torus topology, and the NSFNET irregular topology, shown in Figures 4
and 5, respectively.

Let us first consider the 3× 3 network in Figure 4. Each of the nine nodes is
directly linked with four others to form a toroid interconnection pattern. There
are 72 source-destination pairs in the network, and 36 bidirectional routes.
Each route requires at most two hops. Routes 1 through 18 comprise single-hop
paths, while routes 19 through 36 consist of 2-hop paths, as in Figure 4. Once
again we study this network with three classes of calls. The arrival and service
rates of calls of a particular class on each route were assumed identical, and
are given in Table III. We study the blocking probability as a function of the
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Table III. Arrival and Service Parameters for the 3 × 3 Mesh

Class 1 Class 2 Class 3
λ 0.4 0.6 0.5
µ 3.0 5.0 6.0

Fig. 5. The NSF network.

Fig. 6. Blocking probabilities for the 3× 3 torus network.

number of wavelengths on each link for two routes: Route 1 (the single-hop path
from node 1 to node 2) and Route 23 (the 2-hop path from node 2 to node 4). The
approximation and simulation results are plotted in Figure 6, and we observe
that they are in good agreement.

Next, we consider a network with topology similar to the NSF network, shown
in Figure 5. There are 16 nodes, and 240 unidirectional routes. There are three
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Table IV. Arrival and ServiceParameters for the NSF Network

Class 1 Class 2 Class 3
λ 0.1 0.2 0.15
µ 3.0 6.0 4.0

Fig. 7. Blocking probabilities for the NSF network.

classes of calls on each route. The arrival and service rates of calls of a particular
class are the same on each route, and are shown in Table IV. The blocking
probabilities are plotted in Figure 7 for four routes, as a function of the number
of wavelengths on each link. Route A is a single-hop route from nodes 1 to 5.
Route B has two hops, connecting node 1 to node 3 via node 2. Route C has
three hops, connecting node 1 to node 4 via nodes 2 and 3. Route D has four
hops, connecting node 4 to node 5 via nodes 3, 2, and 1.

From Figure 7 we can see that the length of the path used by a call consider-
ably affects the blocking probability experienced by the call, an observation that
is consistent with all our previous results in this section. Specifically, for a given
number W of wavelengths, the blocking probability increases with the number
of hops in a route, such that calls on Route A (a single-hop path) have the low-
est blocking probability while calls on Route D (a four-hop path) the highest.
Further, as in all previous topologies, the results indicate that our approxima-
tion method can be used to estimate accurately the blocking probabilities for
all calls in the network.

Results similar to the ones presented in Figures 2 through 7 have been ob-
tained for a wide range of traffic loads and different classes of calls. Our main
conclusion is that our approximate analytical technique can be applied to com-
pute the call blocking probabilities in wavelength routing networks of realistic
size and topology.
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6. CONCLUDING REMARKS

We have considered the problem of computing call blocking probabilities in
multiclass wavelength routing networks which employ the random wavelength
allocation policy. Trying to solve this problem by brute-force techniques is com-
putationally infeasible. A straight path network with k hops, W wavelengths
(WR×k2

) and R classes of calls could result in a state-space whose size grows.
Our approach consists of modifying the call arrival process to obtain an ap-
proximate multiclass network model, using class aggregation to map this to
an equivalent single-class network, and employing path decomposition algo-
rithms on the latter to determine the call blocking probabilities (which are class-
independent). The equivalent single-class model can be solved in O(Wk(k+1)/2)
steps for a straight-path network with k hops, W wavelengths and R classes of
calls. By applying path decomposition, we further break the network up into
paths with only two or three hops. Thus, the computational complexity of the
solution reduces to O(k×W6). Our work is a first step towards realizing wave-
length routing networks that can serve multiple classes of customers.
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