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ABSTRACT

We consider wavelength routing networks with and without wavelength converters, and several wavelength allocation
policies. We show through numerical and simulation results that the blocking probabilities for the random wave-
length allocation and the circuit-switched case provide upper and lower bounds on the blocking probabilities for two
wavelength allocation policies that are most likely to be used in practice, namely, most-used and �rst-�t allocation.
Furthermore, we demonstrate that using the most-used or �rst-�t policies has an e�ect on call blocking probabilities
that is equivalent to employing converters at a number of nodes in a network with the random allocation policy.
These results have been obtained for a wide range of loads for both single-path and general mesh topology networks.
The main conclusion of our work is that the gains obtained by employing specialized and expensive hardware (namely,
wavelength converters) can be realized cost-e�ectively by making more intelligent choices in software (namely, the
wavelength allocation policy).

1. INTRODUCTION

Recent advances in wavelength division multiplexing (WDM) and optical switching make it possible to contemplate
the deployment of wavelength routing networks that will provide backbone connectivity over wide-area distances
and at very high data rates7 . A wavelength routing network consists of wavelength routers and the �ber links that
interconnect them. Wavelength routers are optical switches capable of routing a light signal at a given wavelength
from any input port to any output port, making it possible to establish end-to-end lightpaths, i.e., direct optical con-
nections without any intermediate electronics. The functionality of optical switches may be enhanced by employing
wavelength converters, devices that are capable of shifting an incoming wavelength to a di�erent outgoing wave-
length11 . Wavelength conversion is a desirable feature since it improves the performance of the network in terms
of call blocking probability. However, this gain in performance must be weighted against the cost of wavelength
converters.

The problem of computing call blocking probabilities under static (�xed or alternate) routing with random
wavelength allocation and with or without wavelength converters has been studied in1,9,2,6,12,14 . The model presented
in1 is based on the assumption that wavelength use on each link is characterized by a �xed probability, independently
of other wavelengths and links, and thus, it does not capture the dynamic nature of traÆc. In9 it was assumed
that statistics of link loads are mutually independent, an approximation that is not accurate for sparse network
topologies. In2 a Markov chain with state-dependent arrival rates was developed to model call blocking in arbitrary
mesh topologies and �xed routing; this technique was extended to alternate routing in6 . While more accurate, this
approach is computationally intensive and can only be applied to networks of small size in which paths have at most
three links. A more tractable model was presented in12 to compute recursively the blocking probabilities assuming
that the load on link i of a path depends only on the load of link i � 1. Finally, a study of call blocking under
non-Poisson input traÆc was presented in14 , under the assumption that link loads are statistically independent.

Other wavelength allocation schemes, as well as dynamic routing are harder to analyze. First-�t wavelength
allocation was studied using simulation in3,9 , and it was shown to perform better than random allocation, while an
analytical over
ow model for �rst-�t allocation was developed in8 . A dynamic routing algorithm that selects the
least loaded path-wavelength pair was also studied in8 , and in10 an unconstrained dynamic routing scheme with a
number of wavelength allocation policies was evaluated. Except in12,13 , all other studies assume that either all or
none of the wavelength routers have wavelength conversion capabilities. The work in12 takes a probabilistic approach
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in modeling wavelength conversion by introducing the converter density, which represents the probability that a node
is capable of conversion independently of other nodes in the network. Finally, in13 a dynamic programming algorithm
to determine the location of converters on a single path that minimizes average or maximum blocking probability
was developed under the assumption of independent link loads.

Most of the approximate analytical techniques developed for computing blocking probabilities in wavelength
routing networks9,2,6,14,8,10,13 make the assumption that link blocking events are independent and amount to the
well-known link decomposition approach5 . Also, the development of some other techniques is based on the additional
assumption that link loads are also independent. Link decomposition has been extensively used in conventional circuit
switched networks where there is no requirement for the same wavelength to be used on successive links of the path
taken by a call. The accuracy of these underlying approximations also depends on the traÆc load, the network
topology, and the routing and wavelength allocation schemes employed. While link decomposition techniques make
it possible to study the qualitative behavior of wavelength routing networks, we believe that more accurate analytical
tools are needed to eÆciently evaluate the performance of these networks, as well as to tackle complex network design
problems.

We have considered the problem of computing call blocking probabilities in mesh wavelength routing networks
with �xed and alternate routing and random wavelength allocation in16 . Unlike previous studies, we have developed
an iterative path decomposition algorithm for analyzing arbitrary network topologies. Speci�cally, we analyze a
given network by decomposing it into a number of single path sub-systems. These sub-systems are then analyzed
in isolation using our algorithm for calculating the blocking probabilities in a single path in a wavelength routing
network15 . The individual solutions are appropriately combined to form a solution for the overall network. This
process repeats until the blocking probabilities converge. Our approach accounts for the correlation of both link loads
and link blocking events, giving accurate results for a wide range of loads and network topologies. Our algorithms
can also compute call blocking probabilities in a mesh network where only a subset of arbitrarily selected nodes are
capable of wavelength conversion.

In this paper, we study the blocking performance of several wavelength allocation policies for various network
topologies and traÆc patterns. We show that the most-used and �rst-�t policies have very similar call blocking
probabilities for all calls in a network, regardless of the number of hops used by the calls. We also demonstrate that
the random policy and the circuit-switched case (i.e., a system with a converter in each node), for which analytical
solutions exist for networks of large size, provide lower and upper bounds on the call blocking probability under the
�rst-�t and most-used policies. We also present results which indicate that the call blocking probabilities of the �rst
�t and most-used policies is similar to that of the random policy when a number of converters is employed in the
network.

In Section 2 we study a single path in a wavelength routing network, and in Section 3 we consider mesh network
topologies. We conclude with a summary of our �ndings in Section 4.

2. A SINGLE PATH OF A NETWORK

We consider a single path of a wavelength routing network. A k-hop path consists of k +1 nodes labeled 0; 1; � � � ; k,
and hop i; i = 1; � � � ; k, represents the link between nodes i � 1 and i. Each link in the path supports exactly W
wavelengths, and each node is capable of transmitting and receiving on any of the W wavelengths. We assume that
calls arrive as a Poisson process. Let �ij ; j � i, denote the arrival rate of calls that use hops i through j of the path,
i.e., calls that originate at node i � 1 and terminate at node j. If the request can be satis�ed, an optical circuit
is established between the source and destination for the duration of the call. Call holding times are exponentially
distributed with mean 1/�. Also, let �ij = �ij=� denote the o�ered load of calls using hops i through j.

We de�ne a \segment" of a k-hop path as a sub-path consisting of one or more consecutive links of the original
path. We let nij , j � i, be a random variable representing the number of calls using hops i through j that are
currently active. We also let fij ; j � i, be a random variable representing the number of wavelengths that are free
on all hops i through j. We shall see shortly that random variables nij and fij are part of the state description of
the Markov process corresponding to the k-hop path.

Some of the nodes in the path can be equipped with a wavelength converter. These nodes can switch an incoming
wavelength to an arbitrary outgoing wavelength. If no wavelength converters are employed in the path, a call
can only be established if the same wavelength is free on all the links used by the call. This is known as the



wavelength continuity requirement, and it increases the probability of blocking for calls using multiple hops. If a call
cannot be established due to lack of available wavelengths, the call is blocked. On the other hand, if a call can be
accommodated, it is assigned one of the wavelengths that are available on the links used by the call. If there are
multiple wavelengths available, a wavelength allocation policy must be employed to select a wavelength for the call.
Di�erent selection policies lead to di�erent call blocking probabilities. In this paper we investigate the following four
wavelength allocation policies:

� Random allocation: a call is randomly assigned to one of the wavelengths that are available on all the links
that will be used by the call.

� Most-used allocation: the wavelength that is already in use on the largest number of links in the path is assigned
to the call; ties are broken arbitrarily. The objective of the policy is to keep more wavelengths available for
calls traveling over long paths.

� Least-used allocation: the call is assigned to the wavelength that is currently used in the smallest number of
links in the path, with ties broken arbitrarily. This policy results in wavelength fragmentation, leading to
higher blocking probability for calls using long paths.

� First-�t allocation: the wavelengths on each link are given labels in a �xed order, and the call is assigned to the
wavelength with the smallest label that is available on all the links it requires. The objective of this allocation
scheme is to minimize wavelength fragmentation. As we shall show later, its performance is very close to that
of the most-used policy, but it is easier to implement since there is no need to maintain information on the
global use of wavelengths.

In a path with wavelength converters, the above allocation policies are used to assign a wavelength to the call
within each segment of the path whose starting and ending nodes are equipped with converters. In addition to these
wavelength allocation policies, we will also consider the following case:

� Circuit-switched paths: paths in which there are converters at all nodes. In circuit-switching, a call can be
established as long as at least one wavelength (not necessarily the same one) is free on each of the links
required by the call. Consequently, wavelength allocation is not an issue under circuit-switching.

In our study, we have used a number of di�erent traÆc load patterns to compare the four wavelength allocation
policies against each other and against circuit-switching. These patterns are representative of the wide range of
loading situations that one expects to encounter in practice, and can be found in17 . To ensure that the results
are comparable across the di�erent patterns, the load values were chosen so that the total load is the same for all
patterns.

2.1. Policy Comparison for a Single Path of a Network

We have shown in15 that the evolution of a 2-hop path with random wavelength allocation can be characterized by
the Markov process (n11; n12; n22; f12). The �rst three random variables in the state description provide the number
of active calls between the three source-destination pairs in the path, and the last random variable gives the number
of wavelengths that are free on both links of the path. The state transition diagram of this Markov process is shown
in Figure 1 for W = 2 wavelengths, and it is straightforward to see that the process is not time-reversible15 . By
modifying a few of the transition rates of this process, we were able to derive a time-reversible Markov process with
the same state space, which has a product-form solution. We have demonstrated in15 that the blocking probabilities
obtained through the product-form solution to the time-reversible Markov process are very close to the blocking
probabilities obtained through the numerical solution to the original Markov process for a wide range of traÆc loads.

Let us now consider the same 2-hop path with the most-used wavelength allocation policy. This policy can be
modeled as a Markov process with the same state description as the random policy case, i.e., (n11; n12; n22; f12). The
key di�erence is that, under the most-used policy, if n11 > n22, then we know that there is at least one wavelength
that is used on hop 1 but not used on hop 2. Thus, an incoming call that uses the second hop only will be assigned a
wavelength that is already in use on the �rst hop, and will cause a transition to state (n11; n12; n22+1; f12); similarly
for n22 > n11 and incoming calls using only the �rst hop. (Under the random wavelength allocation policy, the



0,0,0,20,0,1,11,0,1,11,0,0,1

2,0,0,0 2,0,1,0 1,0,2,0 0,0,2,0

0,2,0,0

0,1,0,10,1,1,01,1,1,01,1,0,0

1,0,1,0

2,0,2,0

λ
22

µ
22

µ
11

λ11 λ
2222

µ

λ11 µ
11λ

22

µ
22

2µ
11

2µ
22

λ
22

λ
22

λ11

µ
11

22
λλ11 2µ11

λ   /2
22

µ
22

λ
22

µ
12 λ1212

µ λ12
µ λ12 12

µ λ1212

λ12 12µ
11

λ

µ

11

11

λ11

22
λ

µ
22

λ11

µ
11λ

22

22
µ

λ   /2
22

µ
22

µ
22

2µ
22

2µ

n  = 0

n  = 1

n  = 2
12

12

12

λ   /211

µ
11

λ   /211

µ 11

Figure 1. State space (n11; n12; n22; f12) of a 2-
hop path with W = 2 wavelengths (random allo-
cation)
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Figure 2. State space (n11; n12; n22; f12) of a 2-
hop path with W = 2 wavelengths (most-used al-
location)

transition could be to either state (n11; n12; n22 + 1; f12) or to state (n11; n12; n22 + 1; f12 � 1) if the number of free
wavelengths on both hops f12 > 0 and one of these wavelengths is assigned to the call.)

The state transition diagram of the Markov process for the most-used allocation policy is shown in Figure 2
for a 2-hop path with W = 2 wavelengths. Again, it is straightforward to verify that this Markov process is not
time-reversible. Comparing to Figure 1, we note that despite having the same state space, the two processes di�er
in two ways. First, some of the transition rates are di�erent; for instance the transition rate from state (0,0,1,1)
to state (1,0,1,1) is equal to �11=2 for the random allocation, but �11 for the most-used allocation. Second, some
of the transitions are missing in the new Markov process. For example, there is a transition from state (0,0,1,1) to
state (1,0,1,0) under random allocation in Figure 1, but there is no such transition in Figure 2. Furthermore, since
there is a transition from state (1,0,1,0) to state (0,0,1,1) in Figure 2, but no transition in the reverse direction, it
is not possible to obtain an approximate time-reversible process by simply modifying some of the transition rates,
as we did for the random policy. Although we do not have an approximate product-form solution for the most-used
allocation policy, the state space for a 2-hop path is small enough so that the solution to the Markov process can be
obtained numerically.

Based on similar arguments, it can be determined that the least-used wavelength allocation policy can also be
modeled by a Markov process with the state description (n11; n12; n22; f12). The state transition diagram for this
process is shown in Figure 3, and it can be easily veri�ed that the process is not time-reversible.

If a converter is placed at node 1 of a 2-hop path (the only interesting possibility in this case), the system
becomes equivalent to a 2-hop circuit-switched path, and it can be described by the three-dimensional Markov
process (n11; n12; n22). Random variable f12 becomes redundant because calls using both hops can now use any of
the (W � n12 � n22) available wavelengths on the second hop. It is well-known that this process has a closed-form
solution. In Figure 4 we show the state space of a 2-hop circuit switched path with two wavelengths. Although this
path is described by the above 3-dimensional process, we include in the state description of Figure 4 the variable f12
to make it easier to compare to Figures 1{3. For instance, the fact that there are no transitions into state (1,0,1,0)
in the �gure can be explained by recalling that f12 = 0 (i.e., that no wavelength is free on both links of the path)
implies that calls traversing both hops are blocked. However, since exactly one wavelength is free on each hop (even
if it is not the same one), calls using both hops cannot be blocked in the circuit-switched path, and the system will
never enter state (1,0,1,0), only state (1,0,1,1).

The �rst-�t wavelength allocation policy can also be modeled as a Markov process, but the size of its state space
is in the order of W 5, too large to obtain a numerical solution even for relatively small values of W . In view of this,
the blocking probabilities for this policy are obtained by simulation only.
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2.1.1. Numerical Comparisons

Let us �rst consider the blocking probabilities of the random, most-used, least-used, and circuit-switched systems
for calls traversing both links of the 2-hop path. In Figures 1 to 4, the blocking states for these calls are those with
f12 = 0, i.e., those states in which neither of the two wavelengths is free on both links. We also observe that, except
for state (1,0,1,0) at the bottom of each of the four �gures, the transitions (and transition rates) in and out of all
other blocking states are exactly the same for all four cases. Consequently, we expect that the di�erence in the
blocking probability experienced by calls traversing both links of the path under the di�erent policies will be mainly
due to the steady-state probability of blocking state (1,0,1,0).

Referring to Figure 4, we note that the corresponding Markov process never enters state (1,0,1,0). Thus, we
expect that calls traversing both hops will experience the least blocking probability in a circuit-switched path. In
Figure 2 (most-used policy) we note that there are two transitions into state (1,0,1,0), and four transitions out of it.
The blocking probability will be higher under this policy compared to the circuit-switched case. The Markov process
in Figure 1 (random policy) has two additional transitions into state (1,0,1,0) from states (0,0,1,1) and (1,0,0,1) with
rates �11=2 and �22=2, respectively. Therefore, the blocking probability of these calls under the random policy will
be higher than under the most-used policy. Finally, the Markov process in Figure 3 (least-used policy) has the same
transitions as the one in Figure 1, but the transition rates into state (1,0,1,0) from states (0,0,1,1) and (1,0,0,1) are
�11 and �22, respectively. Therefore, we expect that these calls will experience the highest blocking probability under
the least-used policy.

We now note that the lower the blocking probability for calls traversing both hops, the larger the number of such
calls accepted, and the larger the number of wavelengths they occupy, thus leaving fewer wavelengths available for
calls using a single link (either the �rst or the second) of the path. Hence, we expect that the behavior of the four
policies in terms of the blocking probability of calls using a single link of the path will be exactly the opposite of
what was discussed above. Speci�cally, we expect the least-used policy to provide the lowest blocking probability for
these calls, followed by the random, the most-used, and the circuit-switched policies, in that order.

The above conclusions, derived by direct comparison of the states of the Markov processes, are in agreement
with intuition. We have con�rmed these conclusions by numerically comparing the blocking probabilities of the
various policies for 128 di�erent load values. Figures 5 and 6 show results for two cases corresponding to a uniform
and descending load pattern, respectively, and for W = 10 wavelengths. More speci�cally, the arrival rates used
to obtain the results in Figure 5 were �11 = 0:2; �12 = 0:1; �22 = 0:2, while for the results in Figure 6 we used
�11 = 3:0; �12 = 2:0; �22 = 2:0. In both �gures we plot the blocking probability for the three types of calls, namely,
calls using the �rst hop only (label \hop 1" in the x-axis of the �gures), calls using the second hop only (label
\hop 2"), and calls using both hops (label \both hops"). We �rst note that the results are a�ected by the traÆc
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pattern used. For instance, under uniform loading (Figure 5), calls using the �rst hop only experience the same
blocking probability as hops using the second hop only, while in the descending pattern (Figure 6), due to the lower
load o�ered to the second hop, the latter calls experience a much lower blocking probability for all four policies.
More importantly, the relative values of the blocking probabilities for the four policies are also consistent with our
discussion above. Very similar results have been obtained for all 128 di�erent load values.

In Figure 7 we compare the most-used and �rst-�t policies for the same arrival rates as those used for Figure 6.
We observe that the blocking probabilities of the �rst-�t policy are almost identical to those of the most-used policy
for all three types of calls. This result can be explained by noting that both policies attempt to maximize the number
of wavelengths that are available for calls that use both hops of the 2-hop path by reducing the \fragmentation" of
the set of wavelengths. The most-used policy assigns to an incoming call that requires a single hop of the path a
wavelength that is already used on the other hop, if such a wavelength exists. On the other hand, the �rst-�t policy
attempts to achieve the same goal by searching the set of wavelengths in a �xed order, thus increasing the chances
that a wavelength used on a single hop will be assigned to an incoming call using the other hop. As can be seen
from Figure 7, the most-used policy is slightly better, but overall the blocking probability values of the two policies
are very close. Similar results have been obtained for all 128 traÆc loads.

The relative behavior of the four policies for longer paths is very similar to shown in Figures 5 and 7 for a wide
range of traÆc patterns. Speci�cally, for calls using one or two hops of a path only, the least-used policy provides
the lowest blocking probability, followed by the random policy, the most-used policy, and the circuit-switched case.
However, for calls traversing three or more hops of the path, the situation is reversed. Due to space limitations,
results for paths longer than two hops are omitted, but can be found in17 . Since, under the least-used policy, the
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blocking probability of calls using multiple hops increases signi�cantly, we will not consider the least-used policy any
further.

Finally, in Figure 8 we compare the �rst-�t policy to the random (no converters) and circuit-switched cases for
a 10-hop path (more results for 10-hop paths can be found in17). Two interesting observations can be made. First,
the blocking probability values of the �rst-�t policy are always between the corresponding values of the random and
circuit-switched cases. In other words, the blocking probability values under the random and circuit-switched cases
provide lower and upper bounds for the blocking performance of the �rst-�t policy. Second, the �rst-�t policy is
quite e�ective in reducing the blocking probability of calls traveling over multiple hops (which are the ones that
experience the highest blocking probability under the random policy) close to the level of the circuit-switched case.
Very similar results have been obtained for the other traÆc patterns17 .

3. MESH WAVELENGTH ROUTING NETWORKS

In this section we consider the NSFNET irregular topology in Figure 9. Results for other topologies can be found
in17 . Since we use the traÆc data reported in4 , following that study, we have augmented the 14-node NSFNET
topology with nodes 1 and 16 in Figure 9. We present detailed results for the blocking probabilities of calls involving
nodes along the path (3,5,6,7,9,12,15,16). There are 28 source-destination pairs in this path, and in Figures 10 to 14
they have been labeled so that numbers 1 to 7 refer to pairs with one-hop paths, numbers 8 to 15 correspond to pairs
with two-hop paths, etc.

We have used two traÆc patterns. For the �rst pattern, the call arrival rates are �sd = 0:6 � l, where l is the
length of the shortest path from s to d. The second traÆc pattern was designed to re
ect actual traÆc statistics
collected on the NSFNET backbone network4 . Clearly, this data, collected over a packet-switched network, cannot
be directly applied to a circuit-switched wavelength routing network. However, our intention is simply to capture
the relative traÆc demands among the di�erent source-destination pairs. To this end, we �rst divided the entries of
the matrix in4 by the link capacity to obtain the \o�ered load" �sd per source-destination pair. Since the resulting
values were too small, we multiplied them by a constant to obtain reasonable values for the o�ered load. Then,
assuming that all calls have a mean holding time 1=� = 1, the o�ered load values become the arrival rates �sd used
in the experiments.

Figure 10 compares the �rst-�t to the most-used policies, and we again see that that the two policies result
in almost identical blocking probability values for all calls. Figures 11 and 12 demonstrate that the random and
circuit-switched cases provide upper and lower bounds on the performance of the �rst-�t policy, similar to the single-
path cases studied above. Finally, in Figures 13 and 14 we compare the �rst-�t policy to the random policy with
converters. The converters were placed in the network using the optimization techniques in16 . As can be seen, using
the �rst-�t policy is roughly equivalent to employing a signi�cant number of converters in the network. The overall
behavior of the graphs in these �gures is very similar to the single path case as well as other topologies (see17) ,
indicating that our observations and conclusions are valid for a wide range of topologies and traÆc patterns.
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4. CONCLUDING REMARKS

We have shown that the most-used and �rst-�t policies have very similar call blocking probabilities for all calls in
a network, regardless of the number of hops used by the calls. The two policies tend to favor calls using multiple
paths at the expense of calls using a single path. This is a desirable feature, since calls traversing multiple paths
experience the highest blocking probability. However, the most-used policy requires that the network nodes exchange
information about the network-wide usage of wavelengths, while the �rst-�t policy only relies on a �xed ordering of
wavelengths, and is signi�cantly easier to implement.

We have also shown that the random policy and the circuit-switched case provide bounds on the call blocking
probability under the �rst-�t (or most-used) policy. Speci�cally, for calls using one or two hops, the random policy
provides a lower bound and the circuit-switched case provides an upper bound, while for calls using longer paths the
bounds are reversed.

We have presented results which indicate that the call blocking probabilities under the �rst-�t policy are similar
to those under the random policy but employing a number of converters in the network. In most cases, introducing
the �rst-�t policy results in a decrease in the blocking probability of calls traveling over multiple hops to a level very
close to the blocking probability experienced under the circuit-switched case. Since, in terms of implementation,
there is no signi�cant di�erence between the �rst-�t and random policies, the gains obtained by employing expensive
hardware can be realized by making more intelligent choices in software.

It also appears that the bene�ts of the �rst-�t policy diminish at high loads. It is in these situations that
employing converters would bene�t calls traversing a large number of hops. However, the number of converters to



be employed in this case must be very large, close to the number of nodes in the network, and even if all nodes
contain converters the blocking probability will remain at (reduced but) high levels. Since it is unlikely that future
wavelength routing networks will be designed to operate at such high call blocking probabilities, reducing the call
blocking probabilities in this case may not be of practical importance.

While previous studies of \sparse" wavelength conversion have measured the improvement obtained by employing
converters in conjunction only with the random wavelength allocation policy, we have shown that an equivalent
improvement can be achieved merely by using appropriate allocation policies such as �rst-�t or most-used.

REFERENCES

1. R. A. Barry and P. A. Humblet. Models of blocking probability in all-optical networks with and without
wavelength changers. IEEE J-SAC, 14(5):858{867, June 1996.

2. A. Birman. Computing approximate blocking probabilities for a class of all-optical networks. IEEE J-SAC,
14(5):852{857, June 1996.

3. I. Chlamtac, A. Ganz, and G. Karmi. Lightpath communications: An approach to high bandwidth optical
WANS. IEEE Trans. Commun. , 40(7):1171{1182, July 1992.

4. B. Mukherjee et al. Some principles for designing a wide-area WDM optical network. IEEE/ACM Trans.
Networking, 4(5):684{696, October 1996.

5. A. Girard. Routing and Dimensioning in Circuit-Switched Networks. Addison Wesley, Reading, MA, 1990.

6. H. Harai, M. Murata, and H. Miyahara. Performance of alternate routing methods in all-optical switching
networks. Proc. INFOCOM '97, pp. 517{525, April 1997.

7. A. Hill, A. Salek, and K. Sato (Eds.). Special issue on high-capacity optical transport networks. IEEE J-SAC,
16(7), Sep. 1998.

8. E. Karasan and E. Ayanoglu. E�ects of wavelength routing and selection algorithms on wavelength conversion
gain in wdm optical networks. IEEE/ACM Trans. Networking, 6(2):186{196, April 1998.

9. M. Kovacevic and A. Acampora. Bene�ts of wavelength translation in all-optical clear-channel networks. IEEE
J-SAC, 14(5):868{880, June 1996.

10. A. Mokhtar and M. Azizoglu. Adaptive wavelength routing in all-optical netowrks. IEEE/ACM Trans. Net-
working, 6(2):197{206, April 1998.

11. B. Ramamurty and B. Mukherjee. Wavelength conversion in WDM networking. IEEE J-SAC, 16(7):1061{1073,
Sep. 1998.

12. S. Subramaniam, M. Azizoglu, and A. Somani. All-optical networks with sparse wavelength conversion.
IEEE/ACM Trans. Networking, 4(4):544{557, Aug. 1996.

13. S. Subramaniam, M. Azizoglu, and A. K. Somani. On the optimal placement of wavelength converters in
wavelength-routed networks. Proc. INFOCOM '98, pp. 902{909, Apr. 1998.

14. S. Subramanian, A. K. Somani, M. Azizoglu, and R. A. Barry. A performance model for wavelength conversion
with non-poisson traÆc. Proc. INFOCOM '97, pp. 500{507, Apr. 1997.

15. Y. Zhu, G. N. Rouskas, and H. G. Perros. Blocking in wavelength routing networks, Part I: The single path
case. Proc. INFOCOM '99, pp. 321{328, March 1999.

16. Y. Zhu, G. N. Rouskas, and H. G. Perros. Blocking in wavelength routing networks, Part II: Mesh topologies.
Proc. ITC 16, pp. 1321{1330, June 1999.

17. Y. Zhu, G. N. Rouskas, and H. G. Perros. Bounds on the blocking performance of allocation policies in wavelength
routing networks and a study of the e�ects of converters. Tech. Rep. TR-99-01, NCSU, Raleigh, NC, Jan. 1999.


