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ABSTRACT

We study the issues arising when considering the problem of recon�guring broadcast optical networks in response
to changes in the tra�c patterns. Although the ability to dynamically optimize the network under changing tra�c
conditions has been recognized as one of the key features of multiwavelength optical networks, this is the �rst in-
depth study of the tradeo�s involved in carrying out the recon�guration process. We �rst identify the degree of load
balancing and the number of retunings as two important, albeit con
icting, objectives in the design of recon�guration
policies. We then formulate the problem as a Markovian Decision Process and we develop a systematic and 
exible
framework in which to view and contrast recon�guration policies. We also apply results from Markov Decision
Process theory to obtain optimal recon�guration policies even for networks of large size. The advantages of optimal
policies over a class of threshold-based policies are also illustrated through numerical results.

Keywords: Broadcast optical networks, Wavelength division multiplexing (WDM), Recon�guration policies, Markov
decision process

1. INTRODUCTION

One of the key features of multiwavelength optical networks is rearrangeability,1 i.e., the ability to dynamically
optimize the network for changing tra�c patterns, or to cope with failure of network equipment. This ability arises
as a consequence of the independence between the logical connectivity and the underlying physical infrastructure of
�ber glass. By employing tunable optical devices, the assignment of transmitting or receiving wavelengths to the
various network nodes may be updated on the 
y, allowing the network to closely track changing tra�c conditions.

While the rearrangeability property makes it possible to design tra�c-adaptive, self-healing networks, the recon-
�guration phase will interfere with existing tra�c and disrupt network performance, causing a degradation of the
quality of service perceived by the users. The issues that arise in recon�guring a lightwave network by retuning a set
of slowly tunable transmitters or receivers have been studied in the context of multihop networks.2{4 Speci�cally, the
problem of obtaining a virtual topology that minimizes the maximum link 
ow, given a set of tra�c demands, has
been studied,2 algorithms have been developed for minimizing the number of branch-exchange operations required
to take the network from an initial to a target virtual topology, once the tra�c pattern changes,3 and near-optimal
policies to dynamically determine when and how to recon�gure the network have been obtained.4

In this paper we study the recon�guration issues arising in single-hop lightwave networks, an architecture suitable
for Local and Metropolitan Area Networks (LANs and MANs).5 The single-hop architecture employs wavelength di-
vision multiplexing (WDM) to provide connectivity among the network nodes. The various channels are dynamically
shared by the attached nodes, and the logical connections change on a packet-by-packet basis creating all-optical
paths between sources and destinations. Thus single-hop networks require the use of rapidly tunable optical lasers
and/or �lters that can switch between channels at high speeds.

When tunability only at one end, say, at the transmitters, is employed, each �xed receiver is permanently assigned
to one of the wavelengths used for packet transmissions. In a typical near-term WDM environment, the number of
channels supported within the optical medium is expected to be smaller than the number of attached nodes. As a
result, each channel will have to be shared by multiple receivers, and the problem of assigning receive wavelengths
arises. Intuitively, a wavelength assignment (hereafter referred to as WLA) must be somehow based on the prevailing
tra�c conditions. More speci�cally, the stability condition for the HiPeR-` reservation protocol6 for broadcast WDM
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networks suggests that, in determining an appropriateWLA, the objective should be to balance the o�ered load across
all channels, such that each channel carries an approximately equal portion of the overall tra�c. But with �xed
receivers, any WLA is permanent and cannot be updated in response to changes in the tra�c pattern.

Alternatively, one can use slowly tunable, rather than �xed, receivers. We will say that an optical laser or �lter is
rapidly tunable if its tuning latency (i.e., the time it takes to switch from one wavelength to another) is in the order
of a packet transmission time at the high-speed rates at which optical networks are expected to operate. Slowly
tunable devices, on the other hand, have tuning times that can be signi�cantly longer. As a result, these devices
cannot be assumed \tunable" at the media access level (i.e., for the purposes of scheduling packet transmissions), as
this requires fast tunability. Motivation for the use of slowly tunable lasers or �lters is provided by two factors. First,
they can be signi�cantly less expensive than rapidly tunable devices, making it possible to design lightwave network
architectures that can be realized cost e�ectively. Second, the variation in tra�c demands is expected to take place
over larger time scales (several orders of magnitude larger than a single packet transmission time). Hence, even very
slow tunable devices will be adequate for updating the WLA over time to accommodate varying tra�c demands.

Assuming an existing WLA and some information about the new tra�c demands, a new WLA, optimized for the
new tra�c pattern, must be determined. We have considered this problem,7 and we have proposed an approach to
recon�guring the network that is minimally disruptive to existing tra�c. Speci�cally, we have developed the GLPT
algorithm for obtaining a new WLA such that (a) the new tra�c load is balanced across the channels, and (b) the
number of receivers that need to be retuned to take the network from the old to the new WLA is minimized. The
speci�cations of GLPT include a knob parameter which provides for tradeo� selection between load balancing and
number of retunings. In terms of load balancing, the WLA obtained by GLPT is guaranteed to be no more than
50% away from the optimal one, in the worst case, regardless of the knob value used. GLPT also leads to a scalable
approach to recon�guring the network since it tends to select the less utilized receivers for retuning, and since for
certain values of the knob parameter the expected number of retunings scales with the number of channels, not the
number of nodes in the network.

During the recon�guration phase, while the network makes a transition from one WLA to another, some cost is
incurred in terms of packet delay, packet loss, packet desequencing, and the control resources involved in receiver
retuning. Clearly, receiver retunings should not be very frequent, since unnecessary retunings a�ect the performance
encountered by the users. Hence, it is desirable to minimize the number of network recon�gurations. However,
postponing a necessary recon�guration also has adverse e�ects on the overall performance. Since the network does
not operate at an optimal point in terms of load balancing, it takes longer to clear a given set of tra�c demands,
causing longer delays and/or bu�er over
ows, as well as a decrease in the network's tra�c carrying capacity. Similarly,
if the decisions are made merely by considering the degree of load balancing, even tiny changes in the tra�c demands
can lead to constant recon�guration, thereby signi�cantly hurting network performance. Consequently, it is important
to have a performance criterion which can capture the above tradeo�s in an appropriate manner and allow their
simultaneous optimization.

In this paper we develop a novel, systematic, and 
exible framework in which to view and contrast recon�guration
policies. Speci�cally, we formulate the problem as a Markovian Decision Process and we show how an appropriate
selection of reward and cost functions can achieve the desired balance between various performance criteria of
interest. However, because of the huge state space of the underlying Markov process, it is impossible to directly
apply appropriate numerical methods to obtain an optimal policy. We therefore develop an approximate model with
a manageable state space, which captures the pertinent properties of the original model. We also demonstrate that
results from Markov Decision Process theory can be applied in an e�cient way to obtain recon�guration policies for
networks of large size.

The rest of this paper is organized as follows. In Section 2 we present a model of the broadcast WDM network
under study. In Section 3 we formulate the recon�guration problem as a Markovian Decision Process, and we discuss
the issues of obtaining an optimal policy. We present numerical results in Section 4, where we also compare the
optimal policy against a class of threshold policies, and we conclude the paper in Section 5.

2. THE BROADCAST WDM NETWORK

We consider a packet-switched single-hop lightwave network with N nodes, and one transmitter-receiver pair per
node. The nodes are physically connected to a passive broadcast optical medium that supports C < N wavelengths,
�1; � � � ; �C . Both the transmitter and the receiver at each node are tunable over the entire range of available



wavelengths. However, the transmitters are rapidly tunable, while the receivers are slowly tunable. We will refer to
this tunability con�guration as rapidly tunable transmitter, slowly tunable receiver (RTT-STR). Although we will
only consider RTT-STR networks in this paper, we note that all our results can be easily adapted to the dual
con�guration, STT-RTR.

We represent the current tra�c conditions in the network by a N �N tra�c demand matrix T= [tij ]. Quantity
tij could be a measure of the average tra�c originating at node i and terminating at node j, or it could be the
e�ective bandwidth8 of the tra�c from i to j. As tra�c varies over time, the elements of matrix T will change. This
variation in tra�c takes place at larger scales in time, for instance, we assume that changes in the tra�c matrix T

occur at connection request arrival or termination instants. We also assume that the current matrix T completely
summarizes the entire history of tra�c changes, so that future changes only depend on the current values of the
elements of T.

During normal operation, each of the slowly tunable receivers is assumed to be �xed to a particular wavelength.
Let �(j) 2 f�1; � � � ; �Cg be the wavelength currently assigned to receiver j. A WLA is a partition R = fRc; c =
1; � � � ; Cg of the set N = f1; � � � ; Ng of nodes, such that Rc = fj j �(j) = �cg; c = 1; � � � ; C, is the subset of nodes
currently receiving on wavelength �c. This WLA is known to the network nodes, and it is used to determine the
target channel for a packet, given the packet's destination. The network operates by having each node employ a
media access protocol, such as HiPeR-`, that requires tunability only at the transmitting end. Nodes use HiPeR-
` to make reservations, and can schedule packets for transmission using algorithms that can e�ectively mask the
(relatively short) latency of tunable transmitters.9

We now de�ne the degree of load balancing (DLB) �(R;T) for a network with tra�c matrix T operating under
WLA R as:

(1 + �(R;T))

PN

i=1

PN

j=1 tij
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:
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tij

9=
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The right hand side of (1) represents the bandwidth requirement of the dominant (i.e., most loaded) channel, while
the second term in the left hand side of (1) represents the lower bound, with respect to load balancing, for any WLA
for tra�c matrix T. Thus, the DLB is a measure of how far away WLA R is from the lower bound. If � = 0, then
the load is perfectly balanced, and each channel carries an equal portion of the o�ered tra�c, while when � > 0, the
channels are not equally loaded. In other words, the DLB characterizes the e�ciency of the network in meeting the
tra�c demands denoted by matrix T while operating under WLA R: the higher the value of �, the less e�cient the
WLA is.

2.1. The Transition Phase

In order to more e�ciently utilize the bandwidth of the optical medium as tra�c varies over time, a new WLA may
be sought that distributes the new load more equally among the channels. We will refer to the transition of the
network from one WLA to another as recon�guration. In general, we assume that recon�guration is triggered by
changes in the tra�c matrix T. When such a change occurs, the following actions must be taken:

1. a new WLA for the new tra�c matrix must be determined,

2. a decision must be made on whether or not to recon�gure the network by adopting the new WLA, and

3. if the decision is to recon�gure, the actual retuning of receivers must take place.

The GLPT algorithm7 which takes as input the current WLA R and the new tra�c matrix T0, and determines the
new WLA addresses the �rst issue. The rest of the paper addresses the second problem of determining whether the
changes in tra�c conditions warrant the recon�guration of the network to the new WLA. We now discuss the third
issue of receiver retuning.

Let R and T be the current WLA and tra�c matrix, respectively, and let T0 be the new tra�c matrix. Let R0

be the new WLA computed by the GLPT algorithm with R and T0 as input. Assuming that a decision has been



made to recon�gure, there will be a transition phase during which a set of receivers is retuned to take the network
from the current WLA R to the new WLA R0. Let us de�ne the distance D between the two WLAs R and R0 as:

D(R;R0) = N �
CX
c=1

j Rc \R
0
c j (2)

The distance D(R;R0) represents the number of receivers that need to be taken o�-line for retuning during the
transition phase.

There is a wide range of strategies for retuning the receivers, mainly di�ering in the tradeo� between the length of
the transition period and the portion of the network that becomes unavailable during this period (similar issues also
arise in multihop networks3). One extreme approach would be to simultaneously retune all the receivers which are
assigned new channels under R0. The duration of the transition phase is minimized under this approach (it becomes
equal to the receiver tuning latency), but a signi�cant fraction of the network may be unusable during this time. At
the other extreme, a strategy that retunes one receiver at a time minimizes the portion of the network unavailable at
any given instant during the transition phase, but it maximizes the length of this phase (which now becomes equal
to the receiver tuning latency times the distance D(R;R0)). Between these two ends of the spectrum lie a range of
strategies in which two or more receivers are retuned simultaneously.

While the receiver of, say, node j, is being retuned to a new wavelength, it cannot receive data, and thus, any
packets sent to node j are lost. If, on the other hand, the network nodes are aware that node j is in the process
of retuning its receiver, they can refrain from transmitting packets to it. In this case, packets destined to node j
will experience longer delays while waiting for the node to become ready for receiving again. Moreover, packets for
j arriving to the various transmitters during this time cannot be serviced, and may cause bu�er over
ows. This
increase in delay and/or packet loss is the penalty incurred for recon�guring the network.

We note that, in general, the recon�guration penalty associated with retuning a given number D of receivers
will depend on the actual retuning strategy employed (e.g., simultaneously retuning all D receivers versus retuning
one receiver at a time). Furthermore, the relative penalty of the various retuning strategies is a function of system
parameters such as the receiver tuning latency and the o�ered load. Determining the best retuning strategy for a
given region of network operation is beyond the scope of this paper. In our work, we instead develop an abstract
model that includes a cost function to account for the recon�guration penalty. Our model is 
exible in that the cost
function can be appropriately selected to �t any given strategy.

3. MARKOV DECISION PROCESS FORMULATION

3.1. Recon�guration Policies

We de�ne the state of the network as a tuple (R;T). R is the current WLA, and T is a matrix representing the
prevailing tra�c conditions. Changes in the network state occur at instants when the matrix T is updated. Since we
have assumed that future tra�c changes only depend on the current values of the elements of T, the process (R;T)
is a semi-Markov process. Let M be the process embedded at instants when the tra�c matrix changes. Then,M is
a discrete-time Markov process. Our formulation is in terms of the Markov process M.

A network in state (R;T) will enter state (R0;T0) if the tra�c matrix changes toT0. Implicit in the state transition
is that the system makes a decision to recon�gure to WLA R0. In order to completely de�ne the Markovian state
transitions associated with our model, we need to establish next WLA decisions. The decision is a function of the
current state and is denoted by d[(R;T)]. Setting d[(R;T)] = Rnext implies that if the system is in state (R;T)
and the tra�c demands change, the network should be recon�gured into WLA Rnext. Note that WLA Rnext can
be the same as R, in which case the decision is not to recon�gure. Therefore, for each state (R;T) there are two
alternatives: either the network recon�gures to WLA R0 obtained by the GLPT algorithm with R and T0 as inputs
(in which case the new state will be (R0;T0)), or it maintains the current WLA (in which case the new state will be
(R;T0)). The set of decisions for all network states de�nes a recon�guration policy.

To formulate the problem as a Markov Decision Process, we need to specify reward and cost functions associated
with each transition. Consider a network in state (R;T) that makes a transition to state (R0;T0). The network
acquires an immediate expected reward equal to �[�(R0;T0)], where �(�) is a non-increasing function of �(R0;T0),
the DLB of WLA R0 with respect to the new tra�c matrix T0. Also, if R0 6= R, a recon�guration cost equal to



�[D(R;R0)] is incurred, where �(�) is an non-decreasing function of the number of receivers that have to be retuned
to take the network to the new WLA R0. In other words, a switching cost is incurred each time the network makes
a decision to recon�gure. We assume that the rewards and costs are bounded, i.e.:

�min � �[�(R0;T0)] � �max and 0 � �min � �[D(R;R0)] � �max (3)

where �min, �max, �min and �max are real numbers.

The problem is how to recon�gure the network sequentially in time, so as to maximize the expected reward minus
the recon�guration cost over an in�nite horizon. Let (R(k);T(k)) denote the state of the network immediately after
the k-th transition, k = 1; 2; � � �. Let also Z be the set of admissible policies. The network recon�guration problem
can then be formally stated as follows (note that D(R;R) = 0):

Problem 3.1. Find an optimal policy z? 2 Z that maximizes the expected reward

F = lim
k!1

1

k
E

(
kX
l=1

�[�(R(l);T(l))] � �[D(R(l�1);R(l))]

)
(4)

The �rst term in the right hand side of (4) is the reward obtained by using a particular WLA, and the second
term is the cost incurred at each instant of time that recon�guration is performed. The presence of a reward which
increases as the DLB � decreases (i.e., as the load is better balanced across the channels) provides the network
with an incentive to associate with a WLA that performs well for the current tra�c load. On the other hand,
the introduction of a cost incurred at each recon�guration instant discourages frequent recon�gurations. Thus, the
overall reward function captures the fundamental tradeo� between the DLB and frequent retunings involved in the
recon�guration problem.

For the case �max = 0, the problem of �nding an optimal policy is trivial, since it is optimal for the network to
associate with the WLA which best balances the o�ered load at each instant in time. This is because the evolution of
the tra�c matrix T is not a�ected by the network's actions and recon�gurations are free. However, when �max > 0,
there is a con
ict between future recon�guration costs incurred and current reward obtained, and it is not obvious
as to what constitutes an optimal policy. We also note that as �min ! 1, the optimal policy would be to never
recon�gure, since this is the only policy for which the expected reward in (4) would be non-negative. Again, however,
the point (i.e., the smallest value of �min) at which this policy becomes optimal is not easy to determine, as it depends
on the transition probabilities of the underlying Markov chain.

Consider an ergodic, discrete-space discrete-time Markov process with rewards and a set of alternatives per state
that a�ect the probabilities and rewards governing the process. The policy-iteration algorithm10 can be used to obtain
a policy that maximizes the long-term reward in (4) for such a process. Initially, an arbitrary policy is speci�ed from
which all state transition rates are determined. The algorithm then enters its basic iteration cycle which consists of
two stages. The �rst stage is the value-determination operation which evaluates the current policy. In the second
stage, the policy-improvement routine uses a set of criteria to modify the decisions at each state and obtain a new
policy with a higher reward than the original policy. This new policy is used as the starting point for the next
iteration. The cycle continues until the policies in two successive iterations are identical. At this point the algorithm
has converged, and the �nal policy is guaranteed to be optimal with respect to maximizing the reward in (4).

A di�culty in applying the policy-iteration algorithm to the Markov process M is that its running time per
iteration is dominated by the complexity of solving a number of linear equations in the order of the number of states
in the Markov chain. Even if we restrict the elements of tra�c matrix T to be integers � and impose an upper bound
on the values they can take, the potential number of states (R;T) is so large that the policy-iteration algorithm
cannot be directly applied to anything but networks of trivial size. In the next subsection we show how to overcome
this problem by making some simplifying assumptions that will allow us to set up a new Markov process whose state
space is manageable.

�If the elements of T are real numbers, then M becomes a continuous-state process and the policy-iteration algorithm cannot be
applied.



3.2. Alternative Formulation

Consider a network in state (R;T), and a new tra�c matrix T0 for which the WLA obtained with the GLPT
algorithm is R0. A closer examination of the reward function in (4) reveals that the immediate reward acquired when
the network makes a transition does not depend on the actual values of the tra�c elements or the actual WLAs
involved, but only on the values of the DLBs �(R;T0) and �(R0;T0), and the distance D(R;R0). Thus, we make the
simplifying assumption that the decision to recon�gure will also depend on the DLBs and the distance only. This is a
reasonable assumption, since it is the DLB, not the actual tra�c matrix or WLA that determine the e�ciency of the
network in satisfying the o�ered load. Similarly, it is the number of retunings that determines the recon�guration
cost, not the actual WLAs involved.

Based on these observations, we now introduce a new process embedded, as Markov processM, at instants when
the tra�c matrix changes. The state of this process is de�ned to be the tuple (�;D), where � is the DLB achieved
by the current WLA with respect to the current tra�c matrix, and D is the number of retunings required if the
network were to recon�gure. Transitions in the new process have the Markovian property, since they are due to
changes in the tra�c matrix which, in turn, are Markovian. However, as de�ned, the process is a continuous-state
process since, in general, the DLB � is a real number. In order to apply Howard's algorithm we need a discrete-state
process. We obtain such a process by using discrete values for random variable � as follows.

By de�nition (refer to expression (1)), the DLB � can take any real value between 0 and C � 1, where C
is the number of channels in the network. We now divide the interval [0; C � 1] into a number K + 1 of non-

overlapping intervals [�
(l)
0 ; �

(u)
0 ); [�

(l)
1 ; �

(u)
1 ); � � � ; [�(l)K ; �

(u)
K ], where �

(l)
k and �

(u)
k are the lower and upper values of

interval k; k = 0; � � � ;K; and: �(l)k < �
(u)
k , �

(l)
0 = 0, �

(u)
k = �

(l)
k+1, and �

(u)
K = C � 1. Let �k denote the midpoint of

interval k. We now de�ne a new discrete-state processM0 with state (�k ; D). We will use state (�k ; D) to represent

any state (�;D) of the continuous-state process such that �
(l)
k � � < �

(u)
k . Clearly, the larger the number K of

intervals, the better the approximation.

Before we proceed, we make one further re�nement to the new discrete-state process M0. We note that the
GLPT algorithm7 is an approximation algorithm for the load balancing problem, and it guarantees that the DLB
of the WLA obtained using the algorithm will never be more than 50% away from the degree of load balancing
of the optimal WLA. The importance of this result is as follows. Consider a network in which the tra�c matrix
changes in such a way that the current WLA provides a DLB � for the new tra�c matrix such that � < 0:5. Based
on the guarantee provided by algorithm GLPT, we can safely assume that the load is well balanced and avoid a
recon�guration. This is because the network will incur a cost for recon�guring, without any assurance that the new

DLB will be less than �. Therefore, we choose to let �
(u)
0 = 0:5, and therefore the midpoint for the �rst interval is

�0 = 0:25. We will call any state (�0; D) a balanced state since the o�ered load is balanced within the guarantees of
the GLPT algorithm.

We now specify decision alternatives, as well as reward and cost functions associated with each transition in the
new processM0. Consider a network in state (�k ; D). At the instant the tra�c matrix changes, the network has two
options. It may maintain the current WLA, in which case it will make a transition into state (�l; D

0), where �l is the
DLB of the current WLA with respect to the new tra�c matrix, and D0 is the new distance. Or, it will recon�gure
into a new WLA. In the latter case, the network will move into state (�0; D

00), since its new DLB is guaranteed to
be less than 0.5. When the network makes a transition into state (�l; D

0); l � 0, it acquires an immediate expected
reward which is equal to �(�l). In addition, if (�l; D

0) is a balanced state (i.e., if l = 0), a recon�guration cost equal
to �(D) is incurred.

The transitions out of state (�k ; D) and the corresponding rewards are illustrated in Figure 1. If the decision
of the policy is not to recon�gure, then the process will take one of the transitions indicated by the solid arrows in
Figure 1. Since the network does not incur any recon�guration cost, the immediate reward acquired is a function of
the new DLB in the new state. If, on the other hand, the decision is to recon�gure, the transition out of state (�k ; D)
will always take the network to a balanced state with a DLB equal to �0. These transitions are shown in dotted lines
in Figure 1. A recon�guration cost is incurred in this case, making the immediate reward equal to �(�0)� �(D).

The new process M0 is a discrete-space, discrete-time Markov process with rewards and two alternatives per
state, and we can use the policy-iteration algorithm10 to obtain an optimal policy o�-line and cache its decisions.
The optimal policy decisions can then be applied to a real network environment in the following way. Consider a
network with tra�c matrix T operating under WLA R. Let T0 be the new tra�c matrix and R0 be the WLA
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Figure 1. Transitions and rewards out of state (�k ; D) of process M0 under the two decision alternatives (Note:
the labels along the transitions represent rewards, not transition probabilities)

constructed by algorithm GLPT7 with R and T0 as inputs. Let also D = D(R;R0) be the number of receivers
that need to be retuned to obtain WLA R0 from WLA R. To determine whether the network should recon�gure
to the new WLA R0, let �(R;T) be the current DLB for the network, and suppose that �(R;T) falls within the
k-th interval, 0 � k � K. By de�nition of the Markov process M0, the current network state is modeled by state
(�k ; D) of this process. If, under the optimal policy, the decision associated with this state is to recon�gure, then
the network must make a transition to the new WLA R0; otherwise, the network will continue operating under the
current WLA R.

We note that the discrete-space Markov process (�k ; D) is an approximation of the continuous-space process
(�;D), since, as discussed above, in general the DLB � is a real number between 0 and C � 1. We also note that
as the number of intervals K ! 1, the discrete-state process approaches the continuous-state one. Therefore, we
expect that as the number of intervals K increases, the accuracy of the approximation will also increase and the
decisions of the optimal policy obtained through the process (�k ; D) will \converge". This issue will be discussed in
more detail in the next section, where numerical results to be presented will show that the decisions of the optimal
policy \converge" for relatively small values of K. This is an important observation since the size of the state space
of Markov processM0 increases exponentially with K. By using a relatively small value for K we can keep the state
space of the process to a reasonable size, making it possible to apply the policy-iteration algorithm.10

4. NUMERICAL RESULTS

In this section we demonstrate the properties of the optimal policies obtained by applying the policy-iteration
algorithm10 to the Markov decision process developed in the previous section. We also show how the optimal policy
is a�ected by the choice of reward and cost functions, and we compare the long-term reward acquired by the network
when the optimal policy is employed to the reward acquired by other policies. All the results presented in this section
are for the approximate Markov processM0 with state space (�k ; D).

In this study, we consider a near-neighbor tra�c model y. More speci�cally, we make the assumption that, if the
network currently operates with a DLB equal to �k and no recon�guration occurs, the next transition is more likely

yOther tra�c models, including one derived experimentally from a client-server communication pattern, have been considered.11

Although the optimal policy decisions obviously depend on the actual tra�c patterns in the network, the overall results regarding the
convergence of the optimal policy, the e�ects of di�erent reward and cost functions, and the comparison to other policies are very similar
to those shown here for the near-neighbor model.
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Figure 2. Near-neighbor model for K = 20

to take the network to the same DLB or its two nearest neighbors �k�1 and �k+1, than to a DLB further away from
�k. Speci�cally, we assume that

P [�l j �k] =

8>><
>>:

0:3; k = 1; � � � ;K � 1; l = k � 1; k; k + 1
0:1=(K � 2); k = 1; : : : ;K � 1; l 6= k � 1; k; k + 1
0:45; k = 0; l = 1 or k = K; l = K � 1
0:1=(K � 2); k = 0; l = 2; � � � ;K or k = K; l = 0; � � � ;K � 2

(5)

This tra�c model is illustrated in Figure 2 which plots the conditional probability P [�k j �l] that the next DLB will
be �l given that the current DLB is �k, for K = 20 intervals. The near-neighbor model captures the behavior of
networks in which the tra�c matrix T changes slowly over time and abrupt changes in the tra�c pattern have a low
probability of occurring.

Given the probabilities in (5), we let the transition probability, when no recon�guration occurs, from state (�k ; D)
to state (�l; D

0) be equal to:
P [(�l; D

0) j (�k; D)] = P [�l j �k] pD0 (6)

where pD0 is the probability that D0 retunings will be required in the next recon�guration. The probabilities pD where
measured experimentally, and we also observed that the probability that random variable D takes on a particular
value is independent of the DLB �k, thus the expression (6).

We note that we need to obtain two di�erent transition probabilities out of each state,10 one for each of the
two possible options: the do-not-recon�gure option and the recon�gure option. The above discussion explains how
to obtain the transition probability matrix for the do-not-recon�gure option. The transition probability matrix for
the recon�gure option is easy to determine since we know that regardless of the value �k of the current state, the
next state will always be a balanced state, i.e., its DLB will be �0. The individual transition probabilities from a
state (�k ; D) to a state (�l; D

0) are then obtained by making the same assumption that all values of D have an equal
probability of occurring. Therefore, the transition probabilities under the recon�gure option are:

P [(�l; D
0) j (�k ; D)] =

�
pD0 ; l = 0
0; otherwise

(7)

4.1. Convergence of the Optimal Policy

Let us consider the following reward and cost functions

�[(�k ; D)] =
A

1 + �k
; �(D) = BD (8)



where A and B are weights assigned to the rewards and costs. In general, it is desirable to select rewards and
costs that re
ect performance measures such as throughput, delay, packet loss, or the control resources involved in
receiver retuning. For example, a reward function of the form A=(1 + �) may, depending on the value of parameter
A, capture either the throughput or average packet delay experienced while the network operates with a DLB equal
to �. On the other hand, using a cost which is proportional to the number D = D(R;R0) of retunings (i.e.,
�(D(R;R0)) = BD) can account for the control requirements for retuning the receivers, or for the data loss incurred
during recon�guration. Furthermore, parameter B can be chosen based on which of the retuning strategies discussed
in Section 2.1 is employed. Thus, network designers can select in a uni�ed fashion appropriate rewards and costs to
achieve the desired balance among the various performance criteria of interest.

We apply Howard's algorithm10 to a network with N = 20 nodes and C = 5 wavelengths with a near-neighbor
tra�c model similar to the one shown in Figure 2. Our objective is to study the e�ect that the number of intervals
K in the range [0; C � 1] of possible values of DLB � has on the decisions of the optimal policy. As we mentioned in
Section 3.2, we expect the decisions of the optimal policy to \converge" as K ! 1. More formally, let ' be a real
number such that 0 � ' � C � 1, and let kK be the interval in which ' falls when the total number of intervals is
K. Also let d(K)[(�kK ; D)] be the decision of the optimal policy for state (�kK ; D) of Markov processM0 when the
number of intervals is K. We will say that the decisions of the optimal policy converge if

lim
K!1

d(K)[(�kK ; D)] = d[(';D)] 8 '; D (9)

In Figures 3 to 5 we plot the decisions of the optimal policy for the 20-node, 5-wavelength network with a near-
neighbor tra�c model, and for three di�erent values of K; the weights used in the functions (8) were set to A = 30
and B = 1. Figure 3 corresponds to the optimal policy for K = 20 intervals, while in Figures 4 and 5 we increase K
to 30 and 40, respectively. The histograms shown in Figures 3 to 5, as well as in other �gures in this section, should
be interpreted as follows. In each �gure, the x axis represents the DLB �k (with a number of intervals equal to the
corresponding value of K), while the y axis represents the possible values of D. The vertical bar at a particular DLB
value �k has a height equal to Dthr

k such that:

d(K)[(�k ; D)] =

�
recon�gure; D � Dthr

k

do not recon�gure; D > Dthr
k

(10)

In other words, for each value of �k, there exists a retuning threshold valueD
thr
k such that the decision is to recon�gure

when the number of receivers to be retuned is less than Dthr
k , and not to recon�gure if it is greater than Dthr

k . Since
the optimal policy had similar behavior for all the di�erent reward and cost functions we considered, its decisions
will be plotted as a histogram similar to those in Figures 3 to 5 z.

As we can see in Figures 3 to 5, the decisions of the optimal policy do converge (in the sense of expression (9))
as K increases. For instance, let us consider a DLB of 1, which falls in the fourth interval when K = 20 (in Figure
3), the sixth interval when K = 30 (in Figure 4), and the seventh interval when K = 40 (in Figure 5). In all three
cases, the retuning threshold is equal to 9 for these intervals, therefore, the decisions of the optimal policy for the
three values of K are the same. On the other hand, for a DLB of 2, the retuning threshold is 14 in Figure 3, but
it drops to 13 in Figure 4, same as in Figure 5. In other words, for a DLB of 2, the decisions of the optimal policy
are di�erent when K = 20 than when K = 30 or 40 (in the former case, the decision is to recon�gure as long as
the number of retunings is at most 14, while in the latter the decision is to recon�gure only when the number of
retunings is at most 13). But the important observation is that the policy decisions do not change when the number
K of intervals increases from 30 to 40, indicating convergence. In fact, there are no changes in the optimal policy for
values of K greater than 40 (not shown here). We have observed similar behavior for a wide range of values for the
weights A and B, for di�erent network sizes, as well as for other reward and cost functions. These results indicate
that a relatively small number of intervals is su�cient for obtaining an optimal policy.

Another important observation from Figures 3 to 5 is that the retuning threshold increases with the DLB values.
This behavior can be explained by noting that, because of the near-neighbor distribution (refer to Figure 2), when

zThat the optimal policy was found to be a threshold policy (with a possibly di�erent retuning threshold) for each value of �k, can
be explained by the fact that we only consider cost functions that are non-decreasing functions of random variable D. As a result,
if the decision of the optimal policy for a state (�k; D1) is not to recon�gure, intuitively one expects the decision for state (�k;D2),
where D2 > D1 to also be not to recon�gure since the recon�guration cost �(D2) for the latter state would be at least as large as the
recon�guration cost �(D1) for the former.



the network operates at states with high DLB values, it will tend to remain at states with high DLB values. Since the
reward is inversely proportional to the DLB value, the network incurs small rewards by making transitions between
such states. Therefore, the optimal policy is such that the network decides to recon�gure even when there is a large
number of receivers to be retuned. By doing so, the network pays a high cost, which, however, is o�set by the fact
that the network makes a transition to the balanced state with a low DLB, reaping a high reward. On the other
hand, when the network is at states with low DLB, it also tends to remain at such states where it obtains high
rewards. Therefore, the network is less inclined to incur a high recon�guration cost, and the retuning threshold for
these states is lower.

4.2. Comparison to Threshold Policies

In this section we compare the optimal policy against a class of policies which we will call DLB-threshold policies.
With such a policy, there exists a threshold DLB value �max such that, if the system is about to make a transition
into a state (�k; D); �k > �max, then the network will recon�gure and make a transition to a state with DLB �0,
regardless of the recon�guration cost involved. Otherwise, no recon�guration occurs. This class of policies is not
concerned with the recon�guration cost incurred. Instead it ensures that the tra�c carrying capacity of the network
will never fall below the value 
min = C=(1 + �max).

We note that the DLB-threshold policies de�ne Markov processes which are outside the class of Markovian
Decision Processes considered in Section 3. In a Markovian Decision Process, there are several alternatives per state,
but once an alternative has been selected for a state, then transitions from this state are always governed by the
chosen alternative (refer also to Figure 1). In a DLB-threshold policy, on the other hand, the alternative selected does
not depend on the current state, but rather on the next state. Therefore, the system may select di�erent alternatives
when at a particular state, depending on what the next state is. Since Howard's algorithm10 is optimal only within
the class of Markovian Decision Processes, it is possible that these threshold policies obtain rewards higher than the
optimal policy determined by the algorithm.

All the results presented in this section are for a network with N = 100 nodes, C = 20 wavelengths, a near-
neighbor tra�c model, and K = 20 intervals. The reward and cost functions considered are those in expression (8),
and we used A = 50 and B = 1 as the values for the weights in the reward and cost functions, respectively. In
Figure 6 we compare the optimal policy to a number of DLB-threshold policies, each with a di�erent threshold value.
The �gure plots the average long-term reward acquired by each of the policies against the retuning threshold �max.
The horizontal line corresponds to the reward of the optimal policy, which, clearly, is independent of the retuning
threshold. Each point of the second line in the �gure corresponds to the reward of a DLB-threshold policy with the
stated threshold value.

The most interesting observation from Figure 6 is that, for certain values of the DLB-threshold, the DLB-threshold
policy achieves a higher reward than the optimal policy obtained through Howard's algorithm. This result is possible
because, as we discussed earlier, the class of DLB-threshold policies is more general than the class of policies for
which Howard's algorithm is optimal. On the other hand, we note that the reward of the DLB-threshold policy
depends strongly on the DLB threshold used. Although within a certain range of these values the threshold policies
perform better than the optimal policy, the latter outperforms the former for most threshold values. Therefore,
threshold selection is of crucial importance for the threshold policies, but searching through the threshold space can
be expensive. The optimal policy, however, guarantees a high overall reward and is also simpler to implement since
the network does not need to look ahead to the next state to decide whether or not to recon�gure. We have also
found that for other reward and cost functions, or for di�erent reward and cost weights, the optimal policy is strictly
better than DLB-threshold policies regardless of the threshold value.

These results demonstrate that DLB- or two-threshold policies do not always perform better than the optimal
policy, and their performance depends on the system parameters and/or the reward and cost functions. Furthermore,
it is not possible to know ahead of time under what circumstances the threshold policies will achieve a high reward.
Equally important, if the network's operating parameters change, threshold selection must be performed anew.

Overall, we have found that the optimal policy obtained through Howard's algorithm can successfully balance the
two con
icting objectives, namely the DLB and the number of retunings, and always achieves a high reward across
the whole range of the network's operating parameters. On the other hand, pure threshold policies, although they
can sometimes achieve high reward, they are less 
exible, and they introduce an additional degree of complexity,
namely, the problem of threshold selection.
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Figure 3. Optimal policy decisions for N = 20, C = 5, K = 20, A = 30, B = 1
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Figure 4. Optimal policy decisions for N = 20, C = 5, K = 30, A = 30, B = 1
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Figure 5. Optimal policy decisions for N = 20, C = 5, K = 40, A = 30, B = 1
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Figure 6. Policy comparison, N = 100, C = 10, K = 20, A = 50, B = 1

5. CONCLUDING REMARKS

We have studied the problem of recon�guring broadcast multiwavelength optical networks so as to ensure that the
tra�c load remains balanced across the WDM channels under changing tra�c conditions. We have used Markov
Decision Process theory to obtain optimal recon�guration policies. The formulation presented in this paper provides a
uni�ed framework for recon�guration problems in optical networks, and provides further insight into the fundamental
tradeo�s involved in the design of recon�guration policies.

REFERENCES

1. J.-F. P. Labourdette, \Tra�c optimization and recon�guration management of multiwavelength multihop broad-
cast lightwave networks," Computer Networks & ISDN Systems , 1998. To appear.

2. J.-F. P. Labourdette and A. S. Acampora, \Logically rearrangeable multihop lightwave networks," IEEE Trans-
actions on Communications 39, pp. 1223{1230, August 1991.

3. J.-F. P. Labourdette, F. W. Hart, and A. S. Acampora, \Branch-exchange sequences for recon�guration of
lightwave networks," IEEE Transactions on Communications 42, pp. 2822{2832, October 1994.

4. G. N. Rouskas and M. H. Ammar, \Dynamic recon�guration in multihop WDM networks," Journal of High
Speed Networks 4(3), pp. 221{238, 1995.

5. B. Mukherjee, \WDM-Based local lightwave networks Part I: Single-hop systems," IEEE Network Magazine ,
pp. 12{27, May 1992.

6. V. Sivaraman and G. N. Rouskas, \HiPeR-`: A High Performance Reservation protocol with `ook-ahead for
broadcast WDM networks," in Proceedings of INFOCOM '97, pp. 1272{1279, IEEE, April 1997.

7. I. Baldine and G. N. Rouskas, \Dynamic load balancing in broadcast WDM networks with tuning latencies," in
Proceedings of INFOCOM '98, pp. 78{85, IEEE, March 1998.

8. H. G. Perros and K. M. Elsayed, \Call admission control schemes: A review," IEEE Communications Magazine
34(11), pp. 82{91, 1996.

9. G. N. Rouskas and V. Sivaraman, \Packet scheduling in broadcast WDM networks with arbitrary transceiver
tuning latencies," IEEE/ACM Transactions on Networking 5, pp. 359{370, June 1997.

10. R. A. Howard, Dynamic Programming and Markov Processes, M.I.T. Press, Cambridge, 1960.

11. I. Baldine, Dynamic Recon�guration in Broadcast WDM Networks. PhD thesis, North Carolina State University,
Raleigh, NC, August 1998.


