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1. INTRODUCTION

In wavelength division multiplexing (WDM) optical net-
works, the lightpath is the main transport element. The set
of lightpaths defines a logical topology. The logical topology
design problem has been studied extensively in the litera-
ture [2]. Traffic grooming is a variant of the logical topology
design problem, and is concerned with the development of
techniques for combining low speed traffic components onto
high speed channels in order to minimize network cost, and
has received attention in recent literature [4, 3, 1, 6, 8]. In
this paper we consider the problem of traffic grooming in
path, star, and tree networks, which are useful topologies
in themselves but are also building blocks for more general
topologies. First, we settle the complexity of traffic groom-
ing in path and star networks. Since routing and wave-
length assignment in these two topologies is trivial, these
results demonstrate that traffic grooming is itself an inher-
ently difficult problem. Secondly, we obtain a series of lower
and upper bounds which are increasingly tighter but have
considerably higher computational requirements, with cor-
responding heuristics. Out objective is to minimize the total
amount of electronic switching at all networking nodes. A
formulation of traffic grooming as an integer linear problem
can be found in [4].

2. COMPLEXITY RESULTS

Below we state our theoretical results regarding traffic
grooming in elemental topologies. For brevity, we omit the
proofs and detailed discussions, most of which, as well as
other corollaries, can be found in [7]. We consider a net-
work in the form of a unidirectional path P with N nodes.
There is a single directed fiber link from node ¢ to node ¢ +1,
for each i € {1,2,--- , N — 1}. For bidirectional paths, each
directed fiber link is replaced with a directed fiber pair. We
also consider a network in the form of a star S with N + 1
nodes. There is a single hub node which is allowed to routed
traffic, and is connected to every other node by a physical
link. Each physical link consists of a fiber in each direction,
and each fiber can carry W wavelengths. A tree network is
defined as the obvious generalization of star networks, and
a ring network is defined as in [3]. We note that the wave-
length assignment problem trivially disappears for path and
star networks.

An instance of the traffic grooming problem is provided
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by specifying a number of path (or star) nodes, a traffic
matrix T = [t;5],1 < ¢ < j < N, a grooming factor C, a
number of wavelengths W, and a goal F'. Each wavelength
channel can carry C units of traffic. The (decision) problem
asks whether a valid logical topology may be formed and all
traffic in T routed over the lightpaths of the logical topology
so that the total electronic switching over all nodes is less
than or equal to F'.

Bifurcated routing of traffic may or may not be allowed.
Specifically, if bifurcation is not allowed, then for any source-
destination pair (¢, j) such that ¢;; < C, we require that all
t;; traffic units be carried on the same sequence of lightpaths
from source ¢ to destination j. If bifurcation is allowed, a
traffic component ¢;; may be split into various subcompo-
nents which may follow different logical routes from source
to destination. The bifurcation is restricted to integer sub-
components.

THEOREM 2.1. The decision version of the traffic groom-
ing problem in both unidirectional and bidirectional path net-
works (both the cases of bifurcated routing of traffic allowed
and not allowed) is NP-Complete.

COROLLARY 2.1. The decision version of the traffic groom-
ing problem in both unidirectional and bidirectional Ting net-
works (both the cases of bifurcated routing of traffic allowed
and not allowed) is NP-Complete, even when every node has
full wavelength conversion capability.

THEOREM 2.2. The decision version of traffic grooming
in star networks is NP-Complete.

COROLLARY 2.2. The decision version of traffic grooming
in tree networks is NP-Complete, even when every interior
tree node has full wavelength conversion capability.

3. BOUNDS AND ALGORITHMS

Path Bounds: We examine the unidirectional path with
bifurcation allowed, which is the practically interesting case.
In [3], a sequence of upper and lower bounds on the optimal
solution for ring networks was obtained by decomposing the
ring into segments, and we apply the same approach. The
decomposition is effected by considering certain path nodes
to be completely opaque, i.e., insisting that no lightpaths
optically pass through these nodes. For details, the reader
is referred to [3]. Successive bounds, increasingly tighter,
are obtained by increasing the size of the segments allowed
between opaque nodes. The upper bounds represent solu-
tions to the traffic grooming problem whose performance is



precisely characterized. In particular, when only two-hop
segments are allowed, the logical topology is such that ei-
ther all the odd-numbered or the even-numbered nodes are
opaque, i.e., it consists of either single-hop or two-hop light-
paths. It is straightforward to verify (refer also to [3]) that
the upper bound in this case is no worse than one-half the
worst-case amount of the electronic switching, when no op-
tical routing is performed.

Path Heuristic: First we note that when a traffic compo-
nent is of magnitude C or more, it will have a direct light-
path carrying C' units of it in an optimal solution, thus it is
safe to assign such a lightpath in our heuristic approach, and
reduce the traffic component accordingly. Consider the com-
pletely transparent topology obtained by assigning a light-
path to each non-zero traffic component ¢;; of the reduced
traffic matrix. If this logical topology is feasible, i.e., does
not violate the wavelength limit, then it is also optimal.
Accordingly, we propose the following heuristic approach: if
the transparent topology for the current traffic matrix is not
feasible, pick one traffic component and reassign it to a se-
quence of others with which it can be routed or “clubbed”,
then check the resultant transparent topology again.

With proper choices of (a) the traffic component to pick

and (b) its rerouting, the algorithm is guaranteed to termi-
nate with a feasible solution in a polynomial number of steps,
and performs very well. If the rerouting is performed by
preferentially switching traffic electonically at nodes which
would be opaque for the two-hop upper bound described
above, then this heuristic is also guaranteed to perform at
least as well as that bound; this and other assertions above
are verified numerically [7].
Star Bounds and Heuristics: Since the hub node is the
only node that routes traffic either optically or electronically,
any solution to a star network instance can be specified as a
masking of the traffic matrix indicating whether each traf-
fic component is routed optically or not. Optically routing
a traffic component will dedicate a wavelength on the two
links it traverses to it, so this decision affects the decisions
for other traffic components. In particular, after dedicating
the wavelengths required for the traffic components which
must be routed optically for any source node, the remain-
ing wavelengths must be sufficient to carry all other traffic
sourced by that node to the hub node. A similar condition
applies for destination nodes.

We obtain upper and lower bounds on the optimal that
are easily computed by introducing the concept of a par-
tial solution in which some of the mask elements are left
unspecified, then defining an optimistic and a pessimistic
completion of a partial solution. We pick the traffic com-
ponents in some order. The choice of the mask element to
assign to them (optical or electronic) can be viewed as a
tree branching. An exhaustive search amounts to generat-
ing the whole tree, and a search terminated at progressively
deeper levels provides a series of upper and lower bounds
when completed pessimistically and optimistically, respec-
tively. By specifying the order of picking the traffic compo-
nents, an increasing tightness of the successive upper bounds
can be guranteed. This is useful since the upper bounds are
feasible solutions and can also serve as heuristic solutions.
We also define a greedy heuristic which assigns lighpaths to
traffic components in order of decreasing magnitude, when-
ever the constraints above allow. The performance of the
greedy heuristic is seen to be quite good.
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Tree Bounds: Our approach to the tree network is again
based on decomposition, this time into star networks. Each
interior node of the tree can consider the traffic that passes
through it in isolation and this results in star networks. Op-
timal or heuristic solutions to the star networks thus formed
can be reconciled into a single feasible tree solution as long
as at least one of every two adjacent interior tree nodes is
made opaque. We note that picking the optimal set of such
interior nodes (to apply star solutions for) is itself the NPC
problem of finding a maximal independent set in a graph [5].
Fortunately, easier choices can still give good results. In par-
ticular, utilizing the alternate levels of a level order traver-
sal of the tree nodes to pick the star hub nodes guarantees
an independent set, and also guarantees that the electronic
switching for the resulting solution is no more than 50% of
the completely opaque solution. Instead of using the op-
timal star solutions, the increasingly better (and feasible)
upper bounds of the star networks can be used to obtain a
sequence of bounds for the tree. A similar approach yields
lower bounds for the tree network as well. Once again, the
upper bounds are heuristic solutions.

Tree Heuristics: We also define two greedy heuristics
on the tree network. Both are based on picking the traf-
fic components in decreasing order of magnitude, and then
attempting to assign them to direct lightpaths. A greedy
“first-available” heuristic is used for wavelength assignment.
The behavior of the two heuristic approaches differs with
respect to traffic components which cannot be assigned a
direct lightpath either due to lack of dedicated bandwidth
or due to a wavelength clash. In the more simplistic version,
the traffic component is then electronically routed at each
intermediate node, but the more sophisticated one attempts
to route it optically at some if not all intermediate nodes.
Numerical investigation shows that both greedy heuristic
algorithms perform well.
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