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ABSTRACT

We consider the problem of designing a virtual topology
to minimize electronic routing, that is, grooming traffic, in
wavelength routed optical rings. We present a new frame-
work consisting of a sequence of bounds, both upper and
lower, in which each successive bound is at least as strong
as the previous one. The successive bounds take larger
amounts of computation to evaluate, and the number of
bounds to be evaluated for a given problem instance is only
limited by the computational power available. The bounds
are based on decomposing the ring into sets of nodes ar-
ranged in a path, and adopting the locally optimal topol-
ogy within each set. Our approach can be applied to many
virtual topology problems on rings. The upper bounds we
obtain also provide a useful series of heuristic solutions.

1. INTRODUCTION

In recent years, wavelength routed optical networks have
been seen to be an attractive architecture for the next gen-
eration of backbone networks. This is due to the high band-
width in fibers with wavelength division multiplezing (WDM)
and the ability to trade off some of the bandwidth for elim-
ination of electro-optic processing delays using wavelength
routing [4]. It has also been noted in literature that, at
least in the short term, physical topologies in the forms of
rings are of more interest because of available higher layer
protocols such as SONET/SDH [6, 5].

Two concerns have recently emerged in this area: it has
been recognized that the the cost of network components,
specifically electro-optic equipment and SONET add/drop
multiplexers (ADMs), is a more meaningful metric for the
network or topology rather than the number of wavelengths,
and that the independent traffic streams that wavelength
routed networks will carry are likely to have small band-
width requirements compared even to the bandwidth avail-
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able in a single wavelength of a WDM system. These two
issues give rise to the concept of traffic grooming [6, 5, 11,
12, 2, 1, 7] which refers to techniques used to combine lower
speed traffic components onto available wavelengths in order
to meet network design goals such as cost minimization.

The problem of designing logical topologies for rings that
minimize cost as measured by the amount of electro-optic
equipment has recently received much attention in the lit-
erature [11, 12, 1, 2, 5, 6, 7]. The problem is addressed in
part or full to arrive at heuristic solutions in [11, 12, 2, 7].
A common cost measure used in literature is the number of
SONET ADMs [5, 11]. Wavelength assignment to lightpaths
has been recognized to be an important part of the problem
and several studies focus on this [9, 5], while others con-
sider the lightpath routing problem as well [7]. In [11, 12], a
strategy of first grooming traffic components into circles is
presented; in [11] these circles are then groomed, in [12] they
are scheduled in a sequence of virtual topologies. Heuristic
algorithms to minimize network cost by grooming are pre-
sented in [2], for special traffic patterns such as uniform,
certain cases of cross-traffic, and hub. In [1], a heuristic al-
gorithm based on a bipartite matching formulation of the
problem is presented for specific traffic characteristics.

As has been noted in literature [4, 11], the problem of log-
ical topology design is NP-hard even for a physical ring
topology, and achievability bounds are useful for evaluating
the performance of heuristic algorithms. We present a new
framework for computing bounds for the problem of optimal
traffic grooming in physical ring topologies. We decompose
the ring into path segments consisting of successively larger
number of nodes. We show that solving a path segment ex-
actly is much easier than solving a ring of the same number
of nodes. We combine the path solutions to obtain a series of
bounds, both lower and upper. Computation of the bounds
requires less effort than computing the optimal value, and
depending on the problem instance, several bounds in the
sequence are likely to require significantly less effort.

The problem we consider is very general, as we do not im-
pose any constraints on the traffic patterns. Furthermore,
the upper bounds we derive are based on actual feasible
topologies, so our algorithm for obtaining the upper bounds
is a heuristic for the problem of traffic grooming. Finally,
although we illustrate our approach using a specific formu-
lation of the problem, it is straightforward to modify it to
apply to a wide range of problem variants with different ob-
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jective functions and/or constraints such as multiple fiber
links, physical hop limit, bidirectional rings, etc.

2. PROBLEM FORMULATION

We consider a unidirectional ring R with N nodes, num-
bered from 0 to N—1, as shown in Figure 1(a). The fiber link
between each pair of nodes can support W wavelengths, and
carries traffic in the clockwise direction; in other words, data
flows from a node ¢ to the next node i@ 1 on the ring, where
@ denotes addition modulo-N. (Similarly we use © to de-
note subtraction modulo-N.) The links of R are numbered
from 0 to N—1, such that the link from node i to node i®1 is
numbered 7. Each node in the ring is equipped with a wave-
length add/drop multiplexer (WADM) (see Figure 1(b)). A
WADM can perform three functions. It can optically switch
some wavelengths from the incoming link of a node directly
to its outgoing link without the need for electro-optic con-
version of the signal carried on the wavelength. It can also
terminate (drop) some wavelengths from the incoming link
to the node; the data carried by the dropped wavelengths is
converted to electronic form and undergoes buffering, pro-
cessing, and possibly, electronic switching at the node. Fi-
nally, the WADM can also add some wavelengths to the
outgoing link; these wavelengths may carry traffic originat-
ing at the node, or they may carry traffic originating at
previous nodes in the ring and electronically switched at
this node. We assume that estimates of the node-to-node
traffic are available, requiring the design of a virtual or log-
ical topology (see the discussion below) consisting of a set
of static lightpaths. In this paper we do not consider the
dynamic scenario in which requests for lightpaths or traffic
components are received continuously during operation.

The traffic demands between pairs of nodes in the ring are
given in the traffic matrix T = [t(*¥)]. We assume that the
network supports traffic streams at rates that are a multi-
ple of some basic rate (e.g., OC-3). We let C denote the
capacity of each wavelength expressed in units of this ba-
sic rate. Thus, C denotes the maximum number of traffic
units that can be multiplexed on a WDM channel (wave-
length). For example, if each wavelength runs at OC-48
rates and the basic rate is OC-3, then C = 16. Each quan-
tity t¢4 € {0,1,2,---} is also expressed in terms of the
basic rate, and it denotes the number of traffic units that
originate at node s and terminate at node d.

Given the ring physical topology, a logical topology is de-
fined by establishing lightpaths between pairs of nodes. A
lightpath is a direct optical connection on a certain wave-
length. More specifically, if a lightpath spans more than one
physical link in the ring, its wavelength is optically passed
through by WADMs at intermediate nodes, thus, the traf-
fic streams carried by the lightpath travel in optical form
throughout the path between the endpoints of the lightpath.
We assume that ring nodes are not equipped with wave-
length converters, therefore a lightpath must be assigned
the same wavelength on all physical links along its path.

An important problem that has received considerable atten-
tion in the literature is the design of logical topologies that
optimize a certain performance metric. The performance
metric of interest in this work is the amount of electronic for-
warding (routing) of traffic streams, since such forwarding
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Figure 1: (a) An N-node unidirectional ring, and
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Figure 2: An n-node decomposition:
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involves electro-optic conversion and added message delay
and processor load at the intermediate nodes. There is also
the possibility of increased buffer requirement and queueing
delay. In a global sense, this means that we want to reduce
the number of logical hops taken by traffic components, in-
dividually or as a whole. For each node, it also means that
we want to reduce the amount of traffic that node has to
store and forward. Thus we have two alternative goals, one
is to minimize the total traffic weighted logical hops in the
network, and the other is to minimize the maximum number
of traffic components electronically routed at a node. In this
paper we have chosen to concentrate on the former.

We let t(l) denote the aggregate traffic load on the physical
link ! (from node ! to node I @ 1) of the ring. The value
of t(I) can be easily computed from the traffic matrix 7' by
adding up all traffic components t¢? such that the path
from s to d includes the physical link ! (note that, because
of our assumption of unidirectional traffic flow around the
ring, there is exactly one path between any pair of nodes).
The component of the traffic load ¢(I) due to the traffic from
source node s to destination node d is denoted by ¢4 (1).
If one or more lightpaths exist from node ¢ to node j in
the virtual topology, the traffic carried by those lightpaths
is denoted by t;;. The component of this load due to traf-
fic from source node s to destination node d is denoted by
tz(-;-d) . In our formulation, we forbid a traffic component to



be carried completely around the ring before being delivered
at the destination, thus each traffic component can traverse
a given link at most once. We also allow for multiple light-
paths with the same source and destination nodes.

We can now formulate the problem of designing a virtual
topology for a ring network such that the total amount of
electronic routing at the ring nodes is minimized, following
the formulation in [4] for the general topology case. The spe-
cific details and the mathematical formulation as an Integer
Linear Problem (ILP) for the ring network is omitted here
and can be found in [3]. It consists of O(N* + N2W) con-
straints and O(N*+N2W) variables, where N is the number
of nodes in the ring, and W the number of wavelengths.

The framework we present below is based on the formula-
tion we have chosen, but this formulation is not essential
for it. The framework can be adapted to many variations
that are possible in the formulation. There may be multi-
ple fiber links between successive nodes, and the nodes may
be equipped with wavelength routers instead of WADMs.
Hardware for wavelength conversion, limited or otherwise,
may be available at the nodes [9]. A physical hop limit for
lightpaths may be imposed on feasible topologies, due to
physical fiber characteristics or OAM issues. The ring may
be bidirectional, either with some simple routing strategy
(such as shortest-path, as in [11, 5]) that allows us to con-
sider it as two unidirectional rings, or the lightpath routing
(either clockwise or counter-clockwise) may be integrated
as part of the optimization process (as in [7]). In all these
cases, the objective may be to minimize electronic routing.
The framework we present may be extended, in a straight-
forward manner for some of these cases, and with some en-
hancements in others. When the objective is not an additive
function as in our formulation but some other type such as
a min-max type (minimize electronic routing at the node
with maximum electronic routing) or a quantified version
(minimize number of wavelengths added/dropped, number
of SONET ADMs, etc.) our framework can also be adapted
to bound the optimal value of the objective function.

3. PATH DECOMPOSITION OF A RING

3.1 Definition of Decomposition

We consider a ring network R with NV nodes labeled 0- - - (N—
1), in order, and traffic matrix 7. We define a segment of
length n,1 < n < N, starting at node 4,0 < ¢ < N, as the
part of the ring R that includes the n consecutive nodes
,1®1,1D2,---,1® (n— 1), and the links between them.

We define a decomposition of ring R around a segment of
length n starting at node ¢ as a path ”PT(LZ) that consists of
n+2 nodes and n+1 links as follows: the n nodes and n—1
links of the segment of ring R of length n starting at node
i, a new node S and a link from S to %, and a new node
D and a link from node ¢ @ (n — 1) to D. We also refer to

() as an n-node decomposition of ring R starting at node
i. Figure 2 shows such a decomposition.

Associated with the decomposition PT(f) is a new traffic ma-
d .. .
[t;:g))], s,d € {i,idl,---,i®d (n—1),D,S},

trix T’PS)
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derived from the original matrix 7', where t;:(di)) is given by:
t(sd) if i<s<d=<i®(n-1)
zm{i,@l,___,del}t(fd),' if s=8i=<d=<i®d(n—1)
JE{s®1, - ,i®(n—1)} t(sj)a if d=D,iXs=2i® (n - 1)
tpa.ssfthru i, n), if s= S, d=D
s=d or
. s=D or
0, if d=S or
1Xd<s=Xid((n—-1)

(1)

where tpass—thru (%, ) denotes the traffic of the original ma-
trix T that passes through the segment of length n starting
at node ¢, i.e., traffic on ring R that uses the links of the
segment but does not either originate or terminate at any
of the nodes in that segment. We call this the pass-through
traffic. The amount of this traffic can be readily obtained
by inspection of traffic matrix 7. We have used s < d in the
above expression to denote that node s precedes node d in
the decomposition and s < d to denote that node s precedes
and may be the same as node d in the decomposition.

The traffic matrix for the decomposition is defined such that
the traffic flowing from a node s to another node d, such that
s < d, in the segment is the same as that in the original
ring for the corresponding nodes (see the first expression
in (1)). Thus any traffic component the path of which is
entirely in the segment is unchanged in the decomposition.
The decomposition is effected by the introduction of the two
nodes S and D together with the links connecting them to
the segment. The node S acts as the source of all traffic
components in the original matrix T originated at a node
outside the segment and destined to any node in the segment
(refer to the second expression in (1)). Node S also acts as
the source for all traffic components that pass through the
segment, as the fourth expression in (1) indicates. Similarly,
node D is the sink for traffic originating at any node in the
segment and terminating at a node outside the segment in
the original ring (see the third expression in (1)), as well
as for pass-through traffic. Finally, any traffic components
in the original matrix T that do not originate or terminate
at nodes of the segment, or do not traverse any links of
the segment, are not included in the traffic matrix for the
decomposition. This is captured by the last expression in (1)
where it is shown that no traffic lows from node D to node
S in the decomposition.

Because of the way the traffic matrix for the decomposition
is defined in (1), from the point of view of any node k,i <
k <i® (n—1) in the segment, the traffic pattern in the new

path P is ezactly the same as in the original ring. The
new nodes S and D are introduced in the decomposition to
abstract the interaction of traffic components between nodes
in and outside the segment. Specifically, the new node S
hides the details of how traffic sourced at ring nodes outside
the segment and using the links in the segment actually flows
over the rest of the ring, by providing a single aggregation
point for this traffic. Similarly, the new node D provides
a single aggregation point for traffic using the links of the
segment and destined to nodes outside the segment, hiding
the details of how this traffic flows in the rest of the ring.



Finally, the fact that P is a path (i-e., that there is no link
from node D to node S) means that the details of traffic in
the original ring that does not involve any nodes or links of
the segment are hidden in the decomposition.

3.2 Solving Path Segmentsn Isolation

Consider the traffic matrix T_) = [t(sz?)
Pr Pn

sition P of a segment of length n starting at node ¢ in the
ring R, as given in (1). This matrix can be thought of as rep-
resenting the traffic demands in a ring network consisting of
nodes S, i,...,i® (n—1), D, where there is simply no traffic
flowing over the link from node D to node S. Consequently,
the ILP formulation we described in Section 2 can be used to
obtain a virtual topology that minimizes electronic routing
for this “ring”. Since the ILP formulation disallows traffic
routing that carries a traffic component beyond its destina-
tion and all around the ring, no lightpaths can be formed to
carry traffic over the link from D to S that is absent in the
decomposition. Thus, the topology obtained in this manner
can be directly applied to the path P,(;‘). When we use the
ILP to find an optimal topology for path P
that we solve the n-node segment in ¢solation.

] of the decompo-

we will say

The topology obtained by solving an n-node segment in iso-
lation does not take into account the details of the original
ring outside of the n-node segment. Such a topology will
only be optimal with respect to this n-node segment, in the
sense that it will minimize the amount of electronic routing
within the segment, but without considering the effects that
doing so would have on the amount of electronic routing at
nodes of ring R outside the segment. In fact, this topology
may not be optimal for the ring as a whole. In other words,
it is possible that, for any optimal topology for the ring as
a whole, the subtopology corresponding to the n-node seg-
ment will be different than the topology obtained by solving
the ILP for PT(f) in isolation. Thus it may not be possible
to combine optimal solutions to different segments in isola-
tion into a (near-)optimal topology for the original ring R.
Our contribution is in proving a looser result: that it is pos-
sible to combine optimal solutions to different segments in
isolation to obtain lower and upper bounds on the optimal
solution to the ring R as a whole.

Our motivation for using the path decomposition described
in this section is two-fold. First, as the number n of nodes
in a segment starting at some node ¢ increases, the result-
ing decomposition ’Pr(f) will more closely approximate the
original ring. As a result, the bounds we obtain will be
tighter with increasing n. Second and more importantly, a
path decomposition significantly alleviates the problem of
exponential growth in computational requirements for solv-
ing the original ILP for an n-node network. This result is
a direct consequence of the following lemma, the proof of
which is omitted here and can be found in [3].

LEMMA 3.1. A wavelength assignment always ezists for
a feasible virtual topology on a unidirectional path, and can
be obtained in time linear in the number of links and the
number of wavelengths W per link.

In solving the decomposed problem, we are merely interested
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in the optimum value of the objective, since this is the value
from which we will obtain the bounds. Since we know that a
wavelength assignment is always possible and we are not in-
terested in the details of the wavelength assignment, we can
eliminate the wavelength assignment from our formulation
altogether. This creates a formulation that is smaller and
requires dramatically less computation to solve. In practice,
we have found that eliminating the wavelength assignment
subproblem can result in a reduction in computation time
by several orders of magnitude. For instance, completely
solving a six-node ring network using the original formula-
tion (with wavelength assignment) requires between 60 and
90 minutes on a Sun Ultra-10 workstation. However, solv-
ing a six-node path network using the simplified formulation
(no wavelength assignment) requires only a few seconds. In
both cases, we used the LINGO scientific computation pack-
age which utilizes branch-and-bound algorithms.

3.3 Interpretation of the Optimal Value for

DecomposedPaths

We denote the optimal objective value for the decomposi-
tion Pff) by ¢>£f ). That is, ¢>£f ) is the amount of electronic
routing performed by the optimal virtual topology on the
decomposition P, The two additional nodes S and D,
by the construction of the decomposition, do not have any
traffic passing through them at all, and hence they do not
contribute any electronic routing. Since the traffic pattern
seen by the n nodes abstracted from the ring is the same
as when they are included in the ring, (0 also represents
the locally best (lowest) amount of electronic routing at this
set of nodes when considered as part of the ring. In other
words, the electronic routing at this set of nodes is mini-
mized, irrespective of how much electronic routing has to be
performed at other nodes of the original ring as a result.

It might appear that as we include more and more nodes
in the decomposition, the optimal solution to the original
problem will be obtained when all N nodes have been rep-
resented in the decomposed network (that is, when we have
a decomposition consisting of N + 2 nodes). However, be-
cause we convert the ring to a path, some information is
not taken into account at the point where we “open up” the
ring when considering an N node decomposed network. As
a result, solving an N-node decomposition does not provide
the optimal solution for the N-node ring.

4. BOUNDS

In this section we describe how we can combine the ¢£f)
values we get from n-node decompositions to obtain lower
as well as upper bounds on the total amount of electronic
routing performed in the optimal case by a virtual topology
on the original ring. We first discuss the case where we only
consider single-node decompositions, then move on to the
general case where larger decompositions are available.

4.1 BoundsFromSingle-NodeDecompositions
A decomposition of an N-node ring around a single node i is
shown in Figure 3. The next two sections show how to obtain
lower and upper bounds, respectively, on the optimal ILP
solution for the ring as a whole by appropriately combining
the optimal ILP solutions ¢Y) for the possible single-node

decompositions Pl(i),i =0,---,(N-1).



411 Lower Bound

Recall that ¢£Z ) represents the locally best amount of elec-
tronic routing at the nodes in the segment of length n start-
ing at node 7. In particular, ¢§’) represents the locally best
amount of electronic routing that can be achieved at node
¢ considered in isolation. There may or may not be an
optimal (or even feasible) virtual topology for the ring R
that achieves this value of electronic routing at node %, but
there can be no topology which achieves an even lower value.
Thus, ¢§’> is a lower bound on the amount of electronic rout-
ing performed at node i for any feasible virtual topology, and
in particular, for the optimal virtual topology.

Since ¢§i) represents contribution to the electronic routing
only by node i, we can add the contributions together for
each node to obtain a lower bound on the total electronic
routing performed for all nodes in a feasible virtual topology.
We call this lower bound ®:

N-—-1 )
o= ¢t (2)
=0

The quantity ®; is a lower bound on the objective value
(total electronic routing) for any feasible virtual topology,
and in particular, for the optimal virtual topology for R.

4.1.2 Upper Bound

We first note that the value of the objective function for any
feasible virtual topology sets an upper bound on the optimal
value, since it corresponds to an actual solution and the
optimal solution can only be better than or as good as this
solution. Thus, we consider different achievable topologies
and we obtain upper bounds from them.

First we consider an upper bound we can obtain directly
from the traffic matrix, without recourse to decompositions.
This bound corresponds to the simplest virtual topology
possible, namely, the topology consisting only of single-hop
lightpaths. Consider node i. In this topology, single-hop
lightpaths from node ¢ © 1 carrying all traffic to node ¢ and
beyond terminate at node i. Node ¢ electronically switches
all traffic for which it is not the destination, combines it with
its own outgoing traffic, and sources a number of single-hop
lightpaths (up to W) that carry this traffic to node i @ 1.
We will call this the no-wavelength-routing topology, since
no wavelengths are optically routed at any node and each
lightpath spans exactly one physical link. In such a topol-
ogy, each node ¢ performs the maximum possible amount
of electronic routing, which we denote by . Quantities
Y®,i =0,---,(N — 1), can be readily obtained from the
traffic matrix T'. We let ¥ denote the total electronic rout-
ing performed under the no-wavelength-routing topology:

N-1

Uy = Z w(i)

=0

®3)

Since this is a feasible topology, ¥o is an upper bound on
the optimal electronic routing,

In general, ¥y is a rather loose upper bound. We now con-
sider how we might utilize single-node decompositions to
improve upon the no-wavelength-routing topology to obtain
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@ (b)

Figure 3: A single node decomposition of a ring: (a)
original ring, and (b) single node decomposition 'PY)
around node ¢

(a) N even

(b) N odd
@ max electronic routing (concentrator nodes)

(O min electronic routing (single-node decompositions)

Figure 4: Virtual topology with alternating single-
node decompositions and concentrator nodes

a tighter upper bound. To this end, let us refer again to Fig-
ure 3(b), which shows a single-node decomposition around
node . Recall now that, in deriving the best local electronic
routing ¢§l) at node i, we made the assumption that all
traffic passing through node i is originated by node S and
terminated by node D.

Let us call concentrator nodes those nodes which do not per-
form any optical forwarding (i.e., they terminate and origi-
nate all lightpaths). In the no-wavelength-routing topology,
every node is a concentrator node. Looking back at the
single node decomposition, we see that the nodes S and D
can be viewed as concentrator nodes. Carrying this line of
thought one step further, we are led to consider a new vir-
tual topology where every other node is a concentrator node
(performing the maximum electronic routing, ¢(i)) while the
remaining nodes perform the minimum electronic routing
possible, ngi). This topology is illustrated in Figure 4, where
the even-numbered nodes are concentrator nodes.

‘We now note that, based on which nodes in the ring we se-
lect to be the concentrator nodes, we obtain different virtual
topologies which yield potentially different values for the to-
tal amount of electronic routing. If the number of nodes N
in the ring is even, we have two possible topologies, depend-



ing on whether even-numbered or odd-numbered nodes are
concentrators. If N is odd, any virtual topology constructed
in the manner described above will have two concentrator
nodes next to each other at one position in the ring, as illus-
trated in Figure 4(b). Since there N ways of selecting the
position of these two concentrator nodes, there are N possi-
ble virtual topologies when N is odd. We take the smallest
value of total electronic routing we can obtain from these
topologies as the upper bound. This bound is indicated by
¥y, and in the general case, it can be expressed as:

>

k€{0,2,4,--,2(L(N-2)/2])}

>

k¢{0,2,4,--,2(L(N=-2)/2])}

Since this is a feasible topology which incurs the maximum
electronic routing only at the concentrator nodes while it in-
curs less at the others, the upper bound set by the objective
value of this topology must be at least as strong as ¥o; thus
we also have that ¥; < ¥,

U, — : (G+k)
! je[I(fJIJI—u ¢

(4)

4.2 BoundsBasedon Larger Decompositions
In this section we consider how we may combine decompo-
sitions containing more than a single node from the ring to
obtain a sequence of bounds similar to those obtained in the
last section.

4.2.1 Lower Bound

In obtaining the bound @®; above, we remarked that we can
add the various ngq‘) quantities together since they each rep-
resented electronic routing at node ¢ only. Consider the
quantity ¢§i): it represents the minimum possible amount of
electronic routing (best case) at node i and node i @1 taken
together. We cannot add ngi) or ¢§"®“ to this quantity and
still have something that is guaranteed to be a lower bound
on the amount of electronic routing these nodes together
perform in any feasible topology, because we are potentially
counting the traffic routed by a single node twice. How-
ever, we can add ¢éi) and ¢§i@2), since the two quantities
involve sets of nodes that are disjoint and therefore there is
no potential double counting of electronic routing. Gener-
alizing this notion, we find that we can add the quf ) values
for any set of decompositions that involve segments that are
disjoint in the ring, and we are still guaranteed to obtain a
lower bound on the objective value for any feasible topology.
We formalize this in the following lemma. The proof follows
obviously from the arguments above and is omitted.

LEMMA 4.1. Let 0y, be a set of segments of ring R which
partition the nodes of the ring in segments of length n or
smaller. Let ly,li, < n, denote the length (number of nodes)
of segment k,k =1,---,| on |, and let iy, denote its starting
node. The quantity

[on]
B(on) =Y 01" (5)
k=1
is a lower bound on the objective value for any feasible vir-
tual topology on the ring R, and therefore on the optimal
objective value.
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‘We now define ®,, as:

®, = max{®(on)} (6)
where the maximum is taken over all partitions of the ring
which contain segments with n or less nodes. Figure 5 shows
two partitions of the same ring, the first containing only 1-
and 2-node segments, and the second containing only 1-, 2-
and 3-node segments.

Because of the definition (6), in computing bound ®,41 we
must consider all partitions (and bounds derived therefrom)
considered to compute ®,, and, additionally, all partitions
which include one or more (n + 1)-node segments. Specif-
ically, the set of partitions 0,41 we consider for ®,41 is a
proper superset of the set of partitions o, we consider for
®,,. Since we draw the maximum bound from each set as
per the definition in (6), this allows us to draw the general
conclusion that:

41>, Vne{l---(N-1)} (7)
As a result, the sequence @1, P, - ,®n, is a strong se-
quence of bounds in which each is at least as tight as the
previous one. We note that our definition of ®; in Sec-
tion 4.1.1 is consistent with our general definition above.
We were able to express ®; in a simpler and more explicit
form because there is only one possible partition of the nodes
of a ring into single-node segments.

We discuss some details of the computation of &, after we
describe the upper bounds in the next section.

4.2.2 Upper Bound

It is now straightforward to obtain a strong sequence of
upper bounds along the same lines. In Section 4.1.2 we
obtained the upper bound ¥; by creating a topology in
which single-node segments (where electronic routing is min-
imized) alternate with concentrator nodes. Similarly, we
now define ¥, as the lowest objective value we obtain for
all topologies which are created by alternating concentrator
nodes with segments no larger than n nodes in size. We can
once again consider this in light of partitions of the nodes
of a ring. Now, however, the partitions are constrained not
only to use segments of n-nodes or less, but every alternate
segment must contain exactly one node. These alternate
single-node segments are used as concentrator nodes in the
topology we create, rather than as single-node decomposi-
tions. Once again, the form of this upper bound is an alter-
nate sum of ¢¥) and 9% values, similar to expression (4)
for ¥y; but for ¥, the value of z is not restricted to 1 as for
¥, instead it can take on any value from 1 to n. Figure 6
shows two ways we can partition a ring using no larger than
3-node segments, thus creating two topologies among the
ones we would consider in computing V3.

‘We note that the bounds ¥y and ¥; we obtained in Sec-
tion 4.1.2 are consistent with this framework. We also note
that since every decomposed segment has to alternate with
a concentrator node, we can only use up to N — 1 node de-
compositions, and cannot use any N-node decompositions.
As before, the set of all topologies we consider in obtaining
W, +1 is a superset of the set of all topologies we consider in



Figure 5: Partitions of the nodes of a ring into (a)
segments of no more than 2 nodes, and (b) segments
of no more than 3 nodes

@

Figure 6: Two partitions of a ring into alternating
concentrator nodes and segments of no more than 3
nodes

obtaining ¥,,, therefore we may assert that:
\I’n+ls\1’n VTLE{O(N—Q)}

giving us a strong sequence of upper bounds.

(8)

Because the bounds {¥,, } are based on actual feasible topolo-
gies, they also provide us with a useful series of heuristic
solutions to the ring. In the next section we derive a re-
sult which shows the tightness of the bounds and thus the
goodness of the heuristics, and we see in Section 5 that even
the first few solutions of the series can outperform a sim-
plistic heuristic. The later solutions in the series can com-
pare favorably with some heuristics reported in literature.
Specifically, ¥y _1 must be as good or better than a single-
hub architecture [6, 2, 1], because it considers all topologies
with a single concentrator node (which is equivalent to a
hub node). For a similar reason, ¥y, k > [N/2] must be
as good or better than a double hub design, if the hubs are
constrained to be diametrically opposite in the ring.

4.2.3 Tightness of Bounds

Consider the value 9 —qﬁgi) for each node of a ring, which is
the difference between the minimum and maximum traffic
the node can route in any virtual topology. Let the node
for which this difference is minimum be node j, and let the
corresponding difference be ¢ @) so that:

¢V = min(p® — ¢{") ©)

170

The final upper and lower bound in our framework are guar-
anteed to be no further apart than this quantity. We state
this in the following lemma, the proof of which is omitted
here and can be found in [3].

LEMMA 4.2. The guarantee on the final values in the se-
quences of upper and lower bounds is:
< C(J')

Uny_1 —Pn_1 (10)

Of course, depending on the value of N and the computa-
tional power available, it may or may not be practical to
compute ¥y_; and ®ny_1; however, this is the theoretical
guarantee on the tightness of the framework we present.

4.2.4 Computational Considerations

The bounds ®,, (and ¥,) for successive values of n incorpo-
rate progressively more information about the problem and
as such require progressively more computational effort to
determine. This increase in computational effort manifests
itself in two ways:

1. the calculation of the ¢£f ) values required for a given
bound, and

2. the evaluation of all partitions of the ring in segments of
length at most n by appropriate combinations of ¢£f ) values.
In the discussion that follows, we focus on the sequence
{®»} of the lower bounds, but the observations we make
are equally applicable to the sequence of upper bounds.

The computation of a bound utilizing a certain size of de-
compositions requires knowledge of decompositions of all
lower sizes as well. Thus, computing ®, would require us to
compute 45%) for all values of ¢ € {0--- (/N —1)}, and all val-
ues of n € {1---z}. However, the incremental computation
of decompositions required to determine &, consists only of
determining ¢§f) for all nodes %, since d),(f) for n < x would
already have been computed when determining ®,_;. Nat-
urally, as z increases, this incremental effort required also
increases; as we have noted before the number of variables
and constraints increase as O(n*). Thus the maximum value
of n for which we can determine the corresponding bound is
limited by this computational effort.

Regarding the second factor that affects the computation
time required to obtain the bound ®,, we note that a straight-
forward approach would require us to enumerate all possi-
ble partitions of an N-node ring into segments of length
at most n. While evaluating each partition (i.e., comput-
ing the lower bound for it) takes time linear in the number
of segments of the partition (assuming that the individual
o9z € {1---n}, values are available), the number of pos-
sible partitions increases with n. The total number of par-
titions is maximum when n = N, and this number is easily
seen to be 2% — 1 (because each link of the ring can be bro-
ken to form partitions or not, with the single case where no
link is broken being excluded). For smaller values of n, the
total number is smaller but still very large. We note that
assuming node ¢ is the first of a segment in the partition



(and thus excluding some partitions), the total number of
segments in such a partition must always be at least [N/n]
for a given value of n, and since each segment can consist
of 1,2,--- ,n nodes the total number of such partitions is at
least n/™/"1. Considering n = 2, we can set a lower limit
on this value, and thus say that for 2 < n < N, the total
number of partitions is between 2/V/21 and 2 — 1, and is
thus exponential in N. Thus the incremental number of par-
titions to consider for a given value of n is also exponential
in N in the worst case. Thus a straightforward approach to
combine decompositions into bounds would severely limit
the maximum value of N for which we can determine the
corresponding bounds.

However, by exploiting the particular characteristics of ¢£f ) ,
we have developed a polynomial-time algorithm to compute
®,,, assuming that the appropriate ¢£f ) values are available.
The algorithm is based on incrementally building the best
sum of ¢£f ) around the ring, and following only the best
partial sum at an intermediate node. This algorithm is
presented as a dynamic programming problem in [3], and
requires O(n?N) time to find &, given all ¢ values for
z = 1,--- ,n. For the largest number of total partitions
(when n = N), this corresponds to O(N?®) instead of O(2")
time, and becomes linear in IV for a small given value of n.

We can achieve an improvement also by using the properties
of ¢>7(f ) values formalized in the following lemma, the proof
of which is omitted here and can be found in [3]. These
properties introduce a constant factor of improvement to
the dynamic programming algorithm mentioned above.

LEMMA 4.3. An (z+y)-node decomposition yields at least
as large an objective value for the decomposed network as the
sum of objective values of the x-node and y-node decompo-
sitions it ezactly contains. That is, ¢§3_y > qig) + d)(yH'm), if
x and y are positive and x +y < N.

COROLLARY 4.1. An z-node decomposition yields at least
as large an objective value for the decomposed network as
the sum of objective values of any combination of smaller
decompositions it can be partitioned into. That is, qig) >

i i ; i+y1+yatetyno1)

ézl)+¢§z2+y1)+¢§2+y1+yz)+___+¢(% y1t+y2 y 1), ife=

Yn
yity2 e+ yn.

The corollary follows immediately from the lemma by re-
peated application within the same decomposition, and al-
lows us to discard partitions in which a small segment follows
another. Specifically, if we are computing ®,, we can dis-
card a partition in which a yi-node segment is followed by
a y2-node segment if y1 + y2 < z, because the partition we
obtain by replacing these two segments by a single (y1 +y2)-
node segment must yield a higher bound, and we are only
interested in the maximum bound.

The above methods allow us to compute the {®,} bounds
by combining the ¢£f ) values in an insignificant fraction of
the time taken to compute the ¢£}') values themselves. In
practice, we found that computing the ¢£f ) values took min-
utes and hours for increasing n, while combining them to
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form the {®,} bounds took milliseconds. We conclude that
the limiting factor in determining how many of these bounds
can be computed in a reasonable amount of time is the effort
required to solve the ILP for n-node decomposition in order
to compute each of the NV ¢>£f) values. Similar observations
apply to the sequence of bounds {¥,}.

5. NUMERICAL RESULTS

In this section, we present the results of using our framework
for different traffic matrices. We first create the distinction
between symmetric and asymmetric traffic patterns. The
term symmetric applies to the ring, rather than the traffic
matrix itself. We call a traffic pattern symmetric if the traf-
fic pattern from any node to the others is repeated for all
the nodes. This type of traffic pattern is of interest since
the traffic pattern looks similar from different nodes on the
ring. In the general case, traffic components of the form
1(s®2.492) for overy given s and d, and for all values of z,
are all drawn from the same distribution. If the variance of
this distribution is zero, we call the resulting traffic pattern
strictly symmetric, otherwise we call it statistically symmet-
ric. If a traffic matrix is highly asymmetric, so that the
traffic patterns seen by different nodes of the ring are very
different, then the optimal topology is likely to perform well
in the sections of the ring where there is less congestion and
poorly in the sections of high congestion. This is also likely
to be the case for any feasible topology, in other words, the
difference between the best and worst may be comparatively
less. For this reason, we have chosen to concentrate on sta-
tistically symmetric traffic matrices for all our results.

We now turn our attention to the different traffic compo-
nents originated at a given node. We consider three simple
cases. First, the traffic from a given node ¢ to all other
nodes may be the same, we refer to this as uniform traffic.
When the traffic components to all the other nodes are not
the same, we can speak of a falling traffic pattern in which
the traffic from node s to node s @ = decreases linearly as z
increases. Similarly we speak of a rising pattern. Again, we
introduce the concept of statistical variation so that actual
matrix elements vary from these patterns statistically and
do not vary strictly linearly as described above.

In order to have a good basis for comparison for the above
three types of traffic patterns, we focus on the concept of
characteristic physical load of the traffic matrix. For the
problem instance to be feasible, the traffic flowing over each
physical link must be less than or equal to WC. If the
matrix is statistically symmetric, the loads on the links will
all be close to some value, because the traffic pattern is the
same looking from any node or link. We call this value the
characteristic physical load of the matrix and obtain it by
taking the average of the physical load on each link, and
express it as a percentage of WC. For the same pattern,
the characteristic load scales with the matrix elements.

We present results pertaining to 8-node and 16-node rings.
For most of our results, the value of W was taken to be
between 16 and 20 and the value of C' around 48. We used
randomly generated statistically symmetric traffic matrices
for all the runs. A discrete uniform probability distribution
was used for all traffic generation. We focus on characteristic
physical load values of 50% and 90%. Ouly a sampling of



the results obtained are presented here.

Because of different traffic patterns and different character-
istic load values, the absolute values of the different bounds
plotted are not easy to compare. It is necessary to express
them in terms of some characteristic of the problem that
makes it sensible to compare them. We concentrate on the
quantity ¥y, which denotes the amount of electronic rout-
ing performed by a topology that does not employ optical
forwarding at all. This is often actually used in networks at
transitory stages in which the fiber medium is employed with
WDM, but no wavelength routing is employed [4, 8]. We can
consider this case to correspond to no grooming, that is, no
effort has been made to groom individual traffic components
into lightpaths. The other extreme (not necessarily achiev-
able) is complete grooming, in which all traffic is groomed
into lightpaths and no electronic routing is performed. The
actual amount of electronic routing performed by any feasi-
ble topology falls between these limits and may be expressed
as a fraction of ¥ to indicate the effectiveness of grooming.
Thus 1 indicates that all the traffic has been left ungroomed,
while 0 corresponds to the best situation in which no traffic
is left to be groomed. The values {¥,} expressed as such
ratios indicate the upper bounds on the optimal grooming
effectiveness and themselves represent the grooming effec-
tiveness of the heuristic solutions created. The values {®,}
represent lower bounds on the grooming effectiveness that
can be reached in principle, that is, in the optimal case. In
our plots, we normalize each set of results to the correspond-
ing value of ¥y and plot the grooming effectiveness ratios as
above. Other quantities in the plot which we discuss below
are similarly normalized.

We present two broad sets of data. In the first, or detailed
section, we present ®, and ¥, for values of n upto 7, for
N = 8,16, for the two characteristic loads and statistically
uniform, rising and falling patterns. Figures 7, 8 show the
results for 8-node rings, statistically uniform traffic, 50% and
90% characteristic load respectively. Figures 9, 10 similarly
show the results for statistically falling traffic, 50% load, and
rising traffic, 90% load, respectively. Figures 11, 12 both
show detailed results for 16-node rings with falling data and
90% load; in the first case the traffic from a given node
falls to zero at the furthest destination node along the ring,
while in the second case it falls to zero at a destination node
halfway around the ring and is zero for all nodes further
along the ring. Such a pattern could be of interest if a bidi-
rectional ring is decomposed into two unidirectional rings by
adopting shortest path routing for all traffic components a
priori, as we mentioned in Section 2.

We observe that all the figures look similar. There is a sharp
decrease from ¥y to ¥; and more moderate decrease there-
after. In all cases of 8-node rings, there is a marked decrease
for ¥n_1, and the grooming effectiveness for ¥n_; is be-
tween 0.1 and 0.2 in all cases. For 16-node cases, ¥r (which
is no longer the final value ¥x_1) is again between 0.1 and
0.2. Thus we generally observe that we get good grooming
effectiveness and that the lower bounds are comparatively
less in magnitude. This validates our approach of describ-
ing the values of the bounds with respect to the no-optical-
forwarding case rather than the optimal value, because it
indicates that a high value of electronic routing for some
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feasible topology is more likely to result from lack of groom-
ing (and can be corrected by proper grooming) than being
the inevitable consequence of a high optimal value.

In this detailed section, we also plot three other quantities
(these do not vary with number of nodes like ®, and ¥,,).
The first is a lower bound computed after the fashion of
the Moore bound found in literature (for example, [10]) by
considering the number of lightpath endpoints available to
traffic, while the second is based on a per-node consideration
of the lightpath endpoints, derived after the fashion of [10].
Bounds of this type have been developed by consideration
of general topologies and it is expected that our bounds,
derived for the special case of the ring, will be tighter. In
fact we see that, in most cases, we obtain only the trivial
value of 0 for these bounds. However, for the 16-node ring
in the case where traffic falls to zero at the end of the ring,
(figure 11) the first bound has a comparable value to the
largest ®, we have obtained.

Finally, we plot an easy to compute lower bound on the
performance of a simple heuristic which is based on solving
the problem optimally but using only single-hop and two-
hop lightpaths. For even values of N, the simplicity of this
heuristic is especially attractive since a wavelength assign-
ment is always possible and thus need not be performed,
a result for which we omit the formal statement and proof
here. A lower bound on the performance of such a heuristic
is easy to obtain by considering that a traffic component
from node s to node s @ m must be electronically routed
at least | (m — 1)/2] times, for m > 2. We call this bound
the 2-hop lower bound. Since ¥y and ¥, are obtained from
topologies that can by definition contain no lightpaths longer
than two hops, the objective value of the optimal two-hop
topology will by definition be equal to or less than these.
This is borne out by the results. However, in each case we
see that all ¥, values for n > 1 are lower than the 2-hop
lower bound. Thus even the first few solutions provided by
our framework can outperform simplistic heuristics such as
the two hop optimal topology.

In the second set of data, we present different runs in each
of which results are plotted for 30 traffic matrices of the
same pattern and same value of NV (either 8 or 16). Fig-
ure 13 presents the results for an ensemble of 8-node statisti-
cally uniform traffic matrices with characteristic load around
90%, the actual values of electronic routing are plotted. Fig-
ure 14 presents an ensemble of 16-node statistically uniform
traffic matrices with characteristics load around 50%, the
normalized grooming effectiveness values as described above
are plotted. Only the ¥, values which produce apprecia-
ble improvements over the previous ones are labeled for im-
proved readability. Similarly, only the highest ®,, value ob-
tained is plotted. The 2-hop lower bound is also plotted.

The ensemble results confirm the detailed results we ob-
tained earlier. Because we have obtained bound values upto
a smaller value of n, we do not see the low values of grooming
effectiveness we encountered in the detailed results, but the
values of the earlier bounds indicate that the same charac-
teristics are likely to emerge. We note from the normalized
graphs that ¥, is likely to achieve a grooming effectiveness
of around 0.5, and this is likely to be the case irrespective of
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the characteristic load or traffic pattern at least in the range
we have varied them. Later ¥, values produce decreasing
benefits. We note both from the detailed as well as ensem-
ble results that several ¥,, values before (but not including)
Wy_1 are likely to produce little incremental benefit. The
ensemble results also confirm that ¥, is likely to outperform
the two hop optimal topology heuristic for most cases.

6. CONCLUDING REMARKS

We have considered the problem of grooming traffic in vir-
tual topology design for wavelength routed optical networks.
We have created a framework of bounds, both upper and
lower, on the optimal value of the amount of traffic elec-
tronically routed in the network. The bounds are obtained
based on the idea of decomposing the ring network a few
nodes at a time. We specify the decomposition method and
derive a result showing that solving the decompositions is a
considerably more tractable problem than solving the com-
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plete problem. We present a method of combining these
partial solutions into a sequence of bounds, both upper and
lower, in which every bound is at least as strong as the last
one. Numerical results indicate that the expectations from
theoretical considerations are fulfilled.
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