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Abstract 

We consider the problem of supporting multipoint commuui- 
cation at the media access control (MAC) layer of broadcast- 
and-select WDM networks. We first show that bandwidth 
consumption and channel utilization arise as two conflicting 
objectives in the design of scheduling algorithms for mul- 
tic& traffic in this environment. We then present a new 
technique for the transmission of multicast packets, based 
on the concept of a virtual receiver, a set of physical re- 
ceivers which behave identically in terms of tuning. We 
also show that the number k of virtual receivers naturally 
captures the tradeoff between channel utilization and band- 
width consumption. Our approach decouples the problem 
of determining the virtual receivers from the problem of 
scheduling packet transmissions, making it possible to em- 
ploy existing scheduling algorithms that have been shown to 
successfully hide the effects of tuning latency. Consequently, 
we focus on the problem of optimally selecting the virtual 
receivers, and we prove that it is n/p-complete. Finally, 
we present four heuristics of varying degrees of complexity 
for obtaining virtual receivers that provide a good balance 
between the two conflicting objectives. 

1 Introduction 

Many applications and telecommunication services in future 
high-speed networks will require some form of multipoint 
communication [1, 121. Examples include distributed data 
processing, wide scale information dissemination, video dii 
tribution, and teleconferencing. The problems associated 
with providing network support for multipoint commuuica- 
tion have been widely studied within a number of different 
networking contexts. As current network technologies evolve 
to an all-optical, largely passive infrastructure [6], these 
problems take on new significance, and raise a number of 
challenging issues that require novel solutions. In thii paper 
we consider the problem of supporting multipoint communi- 
cation at the media access control (MAC) layer of broadcast- 
and-select wavelength division multiplexed (WDM) networks 
[‘i’], when tunable receivers are available at all nodes. 
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In optical WDM broadcast-and-select networks, informa- 
tion transmitted on any channel is broadcast to the entire 
set of nodes, but it is only received by those with a re- 
ceiver listening on that channel. This feature, coupled with 
tunability at the receiving end, makes it possible to design 
receiver tuning algorithms [3, 91 such that a single trans- 
mission of a multicast packet can reach all receivers in the 
packet’s destination set simultaneously. Its miniial baud- 
width requirements make this approach especially appealing 
for transmitting multicast traffic. However, the design of ap- 
propriate receiver tuning algorithms is complicated by the 
fact that (a) tunable receivers take a non-negligible amount 
of time to switch between channels, and (b) different mul- 
ticast groups may have several receivers in common. For 
unicast traffic, several scheduling algorithms exist that can 
successfully hide the effects of relatively large (compared 
to the packet transmission time) values of tuning latency 
[2,4, lo]. Although a similar algorithm has been developed 
for multicast traffic [3], the achievable channel utilization 
can be very low. 

In this paper we present a novel solution to the problem 
of scheduling multicast traffic in broadcast-and-select WDM 
networks. Our approach is based on the concept of a virtual 
receiver, a set of physical receivers that behave identically 
iu terms of tuning. By partitioning the set of all physical 
receivers into virtual receivers, we effectively transform the 
original network with multicast traffic, into a new network 
with unicast traffic. Consequently, we can take advantage 
of scheduling algorithms such as the ones in [2, 4, 101 that 
have been shown to work well under non-negligible tuning 
latencies. Hence, our main focus is to select a partit,ion of 
physical receivers into virtual receivers so as to achieve an 
optimal tradeoff between two conflicting objectives: band- 
width consumption and channel utilization. 

In Section 2 we present our multicast transmission model 
and we introduce the concept of a virtual receiver. Lower 
bounds on the schedule length are given in Section 3, and 
some important properties of the bounds are also derived. 
We formulate the problem of optimally selecting a virtual re- 
ceiver set in Section 4, and we show that it is A@-complete. 
Heuristics for thii problem are developed in Section 5. We 
present numerical results in Section 6, and we conclude the 
paper in Section 7. 

2 System Model 

We consider an optical broadcast WDM network with a set 
A! = (1,.-a, N) of nodes and a set C = {Xl, - ‘. , Xc} of 
wavelengths, where C 5 N. Each node is equipped with 
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one fixed transmitter and one tunable receiver. The tunable 
receivers can tune to, and listen on any of the C wavelengths. 
The fixed transmitter at station i is assigned a home channel 
X(i) E C. We let X,, c = 1,. . . , C, denote the set of nodes 
with X, as their home channel: X, = {; : X(i) = X,}. 

The network is packet-switched, with fixed-size packets. 
Time is slotted, with a slot time equal to the packet trans- 
mission time, and all network nodes are synchronized at slot 
boundaries. We only consider multicast traffic in this paper, 
and we let g C N = {1,2,’ 0 ’ , N} represent the destination 
set or multicast group of a packet. We will also use 1 g 1 to 
denote the cardinality of group g. 

Let G represent the number of currently active ’ multi- 
cast groups (that is, each of these G groups receives traffic 
from at least one node in the network). Under the traf- 
fic scenario we are considering, there is a N x G multicast 
traffic demand matrix M = [mis], where mis is the num- 
ber of multicast packets originating at source i and destined 
to multicast group g. We assume that traffic matrix M is 
known to all nodes. Matrix M will be used in this paper 
as the starting point to obtain a transmission schedule that 
specifies when receivers tune to the various channels, and 
when packet transmissions should take place. Information 
about the traffic demands mig may be collected using a dis- 
tributed reservation protocol such as HiPeR-L [II]. 

Given the assignment of transmit wavelengths {Xc}, me 
construct a new C x G traffic demand matrix A = [a,,], 
where ac, is the total amount of traffic to multicast group 
g carried by channel X,: 

acg = c mig V C,g (1) 

iEXf 

We also let M denote the total traffic demand over all chan- 
nels and groups: 

A4 = 5 Cmig = 2 Cacg (2) 
iA g CSI g 

Finally, we let integer A 2 1 represent the normalized 
tuning latency, expressed in units of packet transmission 
time, Parameter A is the number of slots a tunable receiver 
takes to tune from one wavelength to another. Our work is 
motivated by the observation that, at very high data rates 
and for small packet sizes, receiver tuning latency will be 
si&nifwant compared to a packet transmission time. There- 
fore, unless techniques that can effectively overlap the tuning 
latency are employed, any solutions to the problem of trans- 
mitting multicast traffic in a WDM broadcast-and-select en- 
vironment will be highly inefficient. 

2.1 Multicast Transmission Model 

Given a traffic matrix M, there are several possible ap- 
proaches to delivering the multicast packets to all receivers 
in their corresponding multicast groups. One extreme ap- 
proach would be to separately transmit a copy of a packet to 
each of the packet’s destinations. Thii solution can achieve 
high channel utilization since a number of transmissions may 
take place simultaneously on different channels (using, for 
example, the techniques in [2, 4, lo]). Its obvious drawback 
is high bandwidth consumption, since all packets to a mul- 
ticast group g must be transmitted exactly 1 g 1 times. An- 
other possibility would be to somehow schedule all receivers 

‘Typically, the number G of active groups is significantly smailer 
thnn the total number ZN of possible groups. 

of each multicast group g such that they simultaneously 
tune to a channel with packets for g. This approach has 
minimal bandwidth requirements, since only a single copy 
of each packet needs to be transmitted. However, trans- 
missions to multicast groups with at least one receiver in 
common cannot be scheduled simultaneously, possibly re- 
sulting in low channel utilization. An algorithm based on a 
similar scheduling principle was presented in [3], and it was 
found to utilize only one channel (out of C) on average. 

As we can see, channel utilization and bandwidth con- 
sumption are two conflicting objectives arising in the de- 
sign of multicast traffic scheduling techniques. The two 
approaches just described can be thought of as two oppo- 
site extremes, each optimizing one objective but performing 
poorly in terms of the other. A third possibility that might 
achieve a reasonable performance in terms of both objectives 
would be to split multicast groups with common receivers 
into smaller sets, and transmit packets in multiple phases. 
However, this approach introduces two problems: (a) how 
to split groups with common receivers, and (b) how to co- 
ordinate the tuning of sets of receivers among the various 
channels. Both problems appear to be diflicult to deal with, 
especially in the presence of non-negligible tuning latencies 
and when receivers may belong to multiple multicast groups. 

In this paper we introduce a new technique for the trans- 
mission of multicast packets that achieves a good balance 
between channel utilization and bandwidth consumption. 
Our approach differs from previous solutions to the prob- 
lem of scheduling multicast traffic in that it decouples the 
problem of determining how many times each packet should 
be transmitted, from the problem of scheduling the actual 
packet transmissions. As a result, it can take advantage of 
the scheduling algorithms in [lo] that have been shown to 
successfully hide the effects of tuning latency, allowing us to 
concentrate on the important problem of tradeoff selection 
between the two conflicting goals. 

We define a virtual receiver V C n/ as a set of physical 
receivers that behave identically in terms of tuning. Specif- 
ically, if virtual receiver V must tune, say, from channel X, 
to channel X,1 starting at time t, then all physical receivers 
in V are taken off-line for tuning to ;\=I between t and t $ A. 
Similarly, if virtual receiver V must remain tuned to channel 
X,I for a certain number of slots (packet transmissions), then 
all physical receivers in V listen to X,8 during those slots. 
Thus, from the point of view of coordinating the tuning of 
receivers to the various channels, all physical receivers in 1’ 
can be logically thought of as a single receiver. 

We also define a k-virtual receiver set Vck), 1 ,< k < N, az 
a partition of the set nl of receivers into k virtual receivers, 
Vck) = {v,‘“‘, Qfk), - - -, %$“‘I. Given a k-virtual receiver set 
Vck) and a traffic matrix M, transmission of multicast pack- 
ets proceeds as follows. A schedule (how it is constructed 
will be discussed shortly) specifies when the virtual receivers 

should tune to each channel. When a virtual receiver T/;@) is 
on channel X,, each node in X, (i.e., each node with Xc as its 
transmit wavelength) will transmit all its multicast packets 

to groups g such that gnqk) # 4 (i.e., at least one member 

of g has its receiver in I(,‘“‘). All receivers in I$/“’ will have 
to filter out packets addressed to multicast groups of which 
they are not a member, but they are guaranteed to receive 
the packets for all groups of which they are members. 

Figure 1 shows an example schedule for N = 5 nodes, 
C = 2 channels, three different multicast groups f, g, and 
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Figure 1: Example schedule for a network with N = 5, 
C = 2, A = 2, and 2 virtual receivers 

lb, A = 2, and the following parameters. 

0 3 2 

[ 1 
Xl = {1,2] 

3 0 2 
R/I= 2 0 1 (3) 

0 2 2 
1 1 0 

We now observe that, given the k-virtual receiver set 
Vcr;), a node i E X,, c = 1,. 0.) C, must transmit a number 

of packets to virtual receiver T/;‘“) ,I = 1,. - -, k, equal to the 
sum of its packets for any multicast group g with members 
whose receivers are in V,ck). Let B= [bit] be the N x k matrix 
with 

bjl = c mig 

g:gnV?#+ 

Quantity bil represents the amount of traffic originating at 
source i and destined to virtual receiver V/‘). By spec- 
ifying the &virtual receiver set we have effectively trans- 
formed our original network with multicast traffic matrix 
M, to an equivalent network with unicast traffic matrix B. 
This new network has the same number of transmitters and 
channels, and the same tuning latency as the original one, 
but only b receivers, corresponding to the k virtual receivers 
in V(‘), We can then immediately employ the algorithms in 
[lo] (which were developed for unicast traffic) to construct 
schedules for clearing matrix B in the new network. The 
reader is referred to [lo] for details on the optimality prop- 
erties of these scheduling algorithms. For the rest of thii 
paper we concentrate on the problem of selecting the vir- 
tual receiver set V(“) to use, 

When L = 1, each multicast packet is transmitted only 
once, but there is no transmission concurrency; only one 
channel is utilized at a time. For larger values of k, each 
of the /G virtual receivers can be independently tuned to the 
various channels, and a higher degree of transmission con- 
currency can be achieved. On the short side, multicast pack- 
ets may have to be transmitted multiple times when L > 1, 
since members of a multicast group g may belong to differ- 
ent virtual receivers. When k = N, each virtual receiver 
consists of exactlv one physical receiver, and each multicast 
packet to group g has io be transmitted exactly I g I times. 
Hence. the number k of virtual receivers naturallv captures 
the tradeoff between channel utilization and bandwidth con- 
sumption. The objective of our work is to select L and the 
virtual receivers in a way that strikes a balance between the 
two conflicting goals. 

Next, we obtain lower bounds on the length of schedules 
for clearing matrix M, and we present some properties that 
quantify the effect of the number k of virtual receivers on 
these bounds. 

3 Lower Bounds on the Schedule Length 

Let Vck) = {I$‘“), -. . ,I$“‘} be a k-virtual receiver set. We 
observe that the length of any schedule cannot be smaller 
than the number of slots required to carry all traflic from 
the transmitters of any given channel to virtual receivers, 
yielding the channel bound: 

We can obtain a different lower bound by adopting a vir- 
tual receiver’s point of view. Let Tr, 1 5 Z 2 C, represent 
the number of channels to which virtual receiver 1<(k) must 
tune (these are the transmit channels of nodes that have 
packets for multicast groups with at least one member in 
the virtual receiver I$,‘“‘). Each virtual receiver Vl(k) needs 
a number of slots equal to the number of packets it has to 
receive, plus the number of slots required to tune to each of 
the Tl wavelengths. We call this the receiver bound; it can 
be expressed as: 

We have written the channel and receiver bounds as func- 
tions of the virtual receiver set to emphasize the fact that 
their values depend on the actual receivers comprising each 
virtual receiver, not just on the number L of virtual receivers. 
We now obtain the overall lower bound as: 

P(lAk)) = max {P&(k)), P@‘“‘)} (7) 

To gain some insight into horn the number k of virtual 
receivers may affect the relative values of the two bounds in 
(5) and (6), let us consider the two extreme scenarios, L = 1 
and k = N. For h = 1, there is only one virtual receiver, 
V(l) = n/, which includes all physical receivers, and we can 
rewrite (5) and (6) as follows: 

5 < p&(1)) = c=l,m..,c max < M (8) 

&.(V(‘)) = + CA = N + CA (9) 

In (8) we have assumed that no single channel will carry 
all traffic, and thus the channel bound will be strictly less 
than M, while in (9) we have assumed that at least one 
transmitter at each channel will have traffic for at least one 
multicast group, and thus 2-i = C. Obviously, the receiver 
bound dominates in this case, even if A = 0 or Tl < G. 
On the other hand, for L = N, the virtual receiver set is 
{{11,---I {N}}, and (5) and (6) become: 
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It is not clear from (10) and (11) which bound dominates 
in this case. The channel bound in (10) depends on the 
number of receivers in each multicast group g, since packets 
to g must be individually transmitted to each member of the 
group. On the other hand, the receiver bound depends on 
(a) the value of the tuning latency A, and (b) the amount of 
tratlic destined to each receiver. In general, we expect the 
channel bound (10) to be the dominant one when k = N, 
unless A > 1 and/or there is a hot-spot receiver, i.e., one 
that is a member of a large number of multicast groups. 

The following lemma establishes a lower bound on the 
length of any schedule for matrix M. We note, however, 
that this absolute lower bound is not necessarily achievable. 

Lemma 3.1 Regardless of the method used to transmit mul- 
ticast packets, a lower bound on the length of any schedule 
to clear matrix M, is given by: 

P = max { pr(YcN)), p&Yfl))} (12) 

Proof. The length of any schedule for M cannot be smaller 
than the number of multicast packets to be transmitted on 
any channel, which is given by pch(Ytl)) in (8). Similarly, 
the length of any schedule cannot be smaller than the sum of 
the number of packets destined to a particular receiver plus 
the receiver’s tuning requirements, as expressed by #r(Y(N)) 
in (11). u 

3.1 Monotonicity Properties of the Lower Bounds 

Let us now study the behavior of the receiver and channel 
bounds as a function of the number k of virtual receivers. In- 
tuitively, the smaller (larger) the number of virtual receivers, 
the larger (smaller) the number of physical receivers within 
each virtual receiver, and the larger (smaller) the number of 
multicast groups with members within each virtual receiver. 
Consequently, we expect the receiver bound to increase as 
the number of virtual receivers decreases, and vice versa. 
By applying a similar argument we expect that the channel 
bound move in the opposite direction, that is, it should de- 
crease as the number of virtual receivers decreases, and vice 
versa. Returning to expressions (8) - (ll), we note that the 
two special cases k = 1 and k = N appear to confirm our 
intuition, since we immediately obtain that 

pc,,(Yfl)) < pch(Y’N)) and p’(YtN)) ,< pr(Y(‘)) (13) 

In the general case, however, the lower bounds in (5) and 
(6) are strongly dependent on the actual virtual receiver set 
Y@), As a result, the qualitative arguments we presented 
above cannot be used to draw similar conclusions for virtual 
receiver sets with an arbitrary number k, 1 < k < N, of 
virtual receivers. In fact, it is possible that there exist two 
virtual receiver sets, one with k and one with k’ > k virtual 
receivers, such that the receiver bound of the k-virtual re- 
ceiver set is smaller than the receiver bound of the k’-virtual 
receiver set; similarly for the channel bound. 

Although given two arbitrary virtual receiver sets there 
is no way to reach a priori any conclusions regarding the 
relative ordering of their channel and receiver bounds, the 
two bounds do exhibit behavior that is in agreement with 
the intuitive arguments discussed above when two special 
operations are applied to virtual receiver sets. The two op 
crations are: 

s JOIN(W), n), 1 2 n c k 5 N. JOIN creates a (k - 
n)-virtual receiver set by replacing any n f 1 of the 

0 

virtual receivers in Ytt) with their union, and keeping 
the other k - n - 1 virtual receivers the same. 

SPLIT(Y(“), n), 1 5 k < k + n 5 N. SPLIT creates 
a (k + n)-virtual receiver set by arbitrarily splitting 
any virtual receiver in Y(‘) with at least n -+ 1 physical 
receivers into n $1 virtual receivers, and keeping the 
other k - 1 virtual receivers the same. 

The following lemma states the monotonic behavior of 
the channel and receiver bounds when the JOIN operation 
is applied. 

Lemma 3.2 (Monotonicity Property of JOIN) Let 
Ytk) be a k-virtual receiver set, and let Y(k-“), 1 < n < I, 
be the (k - n)-virtual receiver set obtained by appl&g the 
JOIN(Y _ ck),n), 1 < n < k < N, operation. Then, we have 
that 

Lpk-“)) 2 Pck(Y(k)); l%(V( k-y 3 Pr(Y(“)) (14) 

Proof. Let Ytk) = {V,‘“‘, - - - , V,‘“‘} be the initial k-virtual 
receiver set. Without loss of generality, we assume that the 
(k - n)-virtual receiver set is formed by taking the union of 
the last n+l virtual receivers of Yck) (if that is not the case, 
we can always relabel the virtual receivers). Hence, me hatre 
that 

v(k-) = vtk) . . . , J/-p’, = vjk)n 1, 
1 

&;4 = v(k) 
k-n 

IJ . . . ;+ (15) 

Then, the relative values of the channel and receiver bounds 
for the k- and (k-n)-virtual receiver sets depend only on the 
contributions of virtual receivers Vi!;, - - - , Vik) and VliGn), 
respectively, to these bounds. 

Let us first consider the receiver bound in (6). By con- 
struction, the value of the term within the brackets in (6) 

for *iin) is at least equal to the value of the same term 

for any of V,(EL,. . -, V:“‘. Also, the number of channels to 

which virtual receiver V$ti”) has to tune is at least equal to 
the maximum number of channels to which any of the vir- 
tual receivers V&e - - , Vi’) have to tune. Therefore , the 

receiver bound for Y(‘-“) cannot be smaller than that for 
Yck). Thus, the second inequality in (14) holds. For the first 
inequality in (14), note that the nodes in X,, c = 1,. . - , C, 

will transmit a number of packets to virtual receiver Vii,“) 
which is at most equal to the sum of the packets they would 

transmit to virtual receivers Vj!~,-.-,V~k’ (refer to (5)). 
Therefore, the first inequality in (14) also holds true. 0 

As a consequence of the monotonicity property of JOIN, 
if we start with the N-virtual receiver set YtN) and apply 
an arbitrary sequence of JOIN operations, we will obtain a 
sequence of virtual receiver sets, each with a smaller number 
of virtual receivers, such that the channel (receiver) bound 
of any virtual receiver set in the sequence is no greater 
(smaller) than the channel (receiver) bound of the previ- 
ous set in the sequence. A similar monotonicity property 
holds for the SPLIT operation and is stated in the following 
lemma. Lemma 3.3 is in a sense the inverse of Lemma 3.2. 
Its proof is omitted since it is very similar to that of Lemma 
3.2. 

Lemma 3.3 (Monotonicity Property of SPLIT) Let 
Yck) be a k-virtual receiver set, and let Y(k+n), 1 <: n < k, 
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be the (k + n)-virtual receiver set obtained by applying the 
SPLI’J?(Y(“),n), 1 5 k < k + n 5 N, operation. Then, we 
have that 

&,,(y(“+“)) 2 fidh(Y(‘$ Pr(Y (“+n)) < i’r(yck)) _ (16) 

4 The Virtual Receiver Set Problem 

Our objective is to determine a virtual receiver set such that 
the length of the schedule to transmit the multicast demand 
matrix M is minimum over all virtual receiver sets. unfor- 
tunately, given a virtual receiver set, the length of the corre- 
sponding schedule is not known until after me run the algo- 
rithms in [lo]. However, we have found that the lower bound 
accurately characterizes the scheduling efficiency of our al- 
gorithms, since, on the average, the schedules produced by 
the algorithms in [lo] are very close to (and in many cases 
equal to) the lower bound. Based on thii observation, we 
will instead seek a virtual receiver set that minimizes the 
lower bound in (7), a known quantity, rather than the ac- 
tual schedule length. This problem, which we will call the 
Virtual Receiver Set Problem (VRSP) arises naturally as a 
decision problem, and can be formally expressed as follows. 

Problem 4.1 (VRSP) Given N nodes, C channels, trans- 
mitter sets XC, tuning latency A, G multicast groups, a mul- 
ticast trafic demand matrix M, and a real number F, does 
there exist a k-virtual receiver set Yck), 1 5 k 5 N, such 
that the lower bound in (7) P(Y(“)) 5 F? 

We proceed to show that the following simpler version of 
VRSP, whereby the value of k is fixed to 2, is J\IP-complete. 

Problem 4.2 (a-VRSP) Given N nodes, C channels, 
tran.Bmitter sets XC, tuning latency A, G multicast groups, 
a multicast traffic demand matrix M, and a real number F, 
doe8 there exist a &virtual receiver set Y(‘) such that the 
lower bound in (7) P(Y(*)) 5 F? 

Theorem 4.1 2-VRSP is JO-complete. 

Proof. It is easy to see that %VRSP is in the class J\Ip, 
since a nondeterministic algorithm need only guess a 2- 
virtual receiver set and verify in polynomial time that the 
lower bound in (7) is at most F. 

We now transform the PARTITION problem [5] to 2- 
VRSP. Let S = (1,2, e. e , k}, k > 3, be the set of elements 
ofwei@sw,, n=l,... , k, ma&g up an arbitrary instance 
of PARTITION, and let W = C”= w,,. We construct an 
instance of 2-VRSP as follows. F& network has N = k 
nodes, C = 3 channels, G = k groups gn = {n}, n = 1. -. , k, 
and the tuning, latency A = 0. We let the transmitter sets 
be Xl = {l,.., 

p~l;‘tl:,~ 1 

,[~~},X2={[~l+l,~~~,[~l},andXs= 
k), The multicast demand matrix M= [rn~J 

WI 
mi,9, = - , k 

i,n= l,=..,k (17) 

Finally, we let P = 5. 
It is obvious that thii transformation can be performed in 

polynomial time, We also note that, for k 2 3, the channel 
bound in (5) becomes 

R,‘(Y(*)) = [;lkF= [fl;s; (18) 
n=l 

independently of the actual virtual receiver sets. As a result, 
a feasible 2-virtual receiver set will exist for this instance 
of %VRSP as long as the receiver bound in (6) satisfies 
&(Y(‘)) < p. Hence, we only consider the receiver bound 
in the followmg discussion. 

We now show that a feasible a-virtual receiver set e.xists 
for the above instance of 2- VRSP if and only if set S has a 
partition. If S has a partition &, S2, then xnEsl wn = 

c n&s2 
= f. 

v;(p) =T and V12) 

Then, the 2-virtual receiver set with 

= 5’2, is a feasible receiver set for 2- 
VRSPsince the r&eiver bound in (6) evaluates to: 

= m-{~wnlp} = $ (19) 

Conversely, let Y c2) = {V.‘,V.‘} be a feasible virtual 
receiver set for 2-VRSP. We have that 

Fr(Y(‘)) = max t20) 
Since the sum of all wn is equal to W, (20) can only hold 
with equality in which case we have that &+9 wn = 

. 

c I@) wn = w Hence, VP), Vi*) is a partition of S. 2 * 
q 

4.1 Special Cases 

Although VRSP is MP-complete in the general case, there 
do exist two interesting special cases for which the optimal 
solution can be obtained in polynomial time. These are 
discussed in the following two subsections. 

4.1.1 All-to-All Broadcast 

The first special case we study is the all-to-all broadcast 
problem, whereby there is a single multicast group g = n/ 
encompassing all nodes in the network. We let mi denote 
the number of broadcast packets originating at node i, and 

M=C;N=, mi. For a k-virtual receiver set, the two bounds 
(5) and (6) can be rewritten as 

pch(Yck)) = k max 
Cl,...,C (21) 

N 
k(Y(“)) = c mi + CA = M + CA (22) 

i=l 

We note that the bounds are independent of the actual vir- 
tual receiver sets, and that only the channel bound depends 
on the number k of virtual receivers. Therefore, for the all- 
to-all broadcast case, VRSP reduces to obtaining the num- 
ber k of virtual receivers that minimizes the overall lower 
bound. 

To obtain the optimal value for k, we observe that the 
channel bound depends on the assignment of transmit wave- 
lengths {Xc}, but that it cannot be less than kg. Let E 
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be a real number such that the channel bound in (21) is 
equal to kg + E. Since the receiver bound is independent of 

E, the overall lower bound is minimized when $&Y@)) 5 
j,(Yc’;)), or equivalently, if 

lM C’A- CE 
:Z+e<M~CA # k<C+ M (23) 

Let us now further suppose that c = 0, that is, the broad- 
cast traffic is completely balanced across the C channels. 
Then, after some algebraic manipulation of the first expres- 
sion in (23) (with the equality sign), we obtain: 

Relationship (24) is fundamental in that it represents the 
point at which wavelength concurrency balances the tuning 
latency. Indeed, if the last quantity in (23) is integer for 
c = 0, and we set k to this value, then the resulting schedule 
will have length equal to the lower bound, and it will be 
such that exactly C (respectively, lc - C) virtual receivers 
are in the receiving (respectively, tuning) state within each 
slot, Consequently, all EA tuning slots will be overlapped 
with the LM slots containing packet transmissions, and vice 
versa. 

The Greedy JOIN (G-JOIN} Heuristic 
Input: N; C, X,; c = 1, ... - ,C, G multicast groups, and 
multicast trafl’ic matrix M 
Output: A virtual receiver set 

1. begin 
2. Set k = N 
3. Set Y@) = {(l}, .-. , {N)} 
4. Set PC, = &#(i;)) 
5. Set pr = p@)) // Because of (10) and (111, 

// we expect that p=t, > $r at thii step 
6. while p=:h > p* do 
7. Set k = k - 1 
8. Select two virtual receivers in Y (Wl) using 

the greedy rule described in Section 5.1 
9. Set V@) to the set resulting from Y@+‘) by 

joining the two virtual receivers in Step 8 
10. Set Pch = F*(W) 
11. Set pr = p#k)) 
12. end while 
13. Return the virtual receiver set with the 

smallest overall bound among Y@) and V@+‘) 
14. end of algorithm 

4.12 Disjoint Multicast Groups 

Let us now consider the case when there are G < N disjoint 
multicash grOUpS gl," ',gG. Obviously, we also have that 
g1 u 1.’ U go U f = H, where f is the (possibly empty) set 
of nodes which are not members of any group. Let VcG) 
denote the G-virtual receiver set {gl, . . . , go). The channel 
bound of Y(‘) is equal to the sum of the traffic demands 
on the dominant channel, which is a lower bound on any Ir, 
virtual receiver set. Similarly, the receiver bound of VcG) 
is determined by the traffic and tuning requirements of the 
dominant multicast group; again, the latter is a lower bound 
on any k-virtual receiver set. We conclude that, when the 
G multicast groups are disjoint, the G-virtual receiver set 
where each virtual receiver corresponds to a different multi- 
cast group, is an optimal solution to VRSP. 

5 Optimization Heuristics for VRSP 

In this section we develop four heuristics for the optimization 
problem corresponding to VRSP. Specifically, our objective 
is to obtain a k-virtual receiver set, 1 5 L 5 N, such that 
the overall bound in (7) for the given instance of VRSP is 
minimized. Our heuristic approaches exploit the monotonic- 
ity properties stated in Lemmas 3.2 and 3.3. Although it is 
not guaranteed that the heuristics will find the virtual re- 
ceiver set with the minimum bound, we will prove that they 
do converge to a local minimum. 

5.1 The Greedy JOIN (G-JOIN) Heuristic 

Our first approach is to start with the N-virtual receiver set 

t 

{l), *a 0, {N)} for which we expect the channel bound in 
10) to be greater than the receiver bound in (11). We then 

repeatedly apply the JOIN(Y(“), 1) operation to obtain a se 
quence of virtual receiver sets, each with one fewer virtual 
receiver, Because of the monotonicity property (14) of the 
JOIN operation, we expect the channel (receiver) bound to 

In essence, the heuristic linearly searches over all possible 
values of I;, starting wivith L = N, in an attempt to find a 
virtual receiver set with a low overall bound. Because of 
the greedy rule it uses when applying the JOIN operation, 
we call it the Greedy JOIN (G-JOIN) heuristic. A detailed 
description of the G-JOIN heuristic is provided in Figure 
2. Regarding its complexity, we note that, for a k-virtual 
receiver set, Step 8 of the heuristic takes O(k’) time, since 

one of a possible v pairs of virtual receivers must be 
selected. Since the while loop will be esecuted at most N 
times, the overall complexity is O(N3). 

We now state and prove the optimality property of the 
G-JOIN heuristic. 

Lemma 5.1 The G-JOIN heuristic in Figure 2 returns a 
virtual receiver set that achieves a local minimum with re- 
spect to the lower bound in (7). 

Proof. We first observe that, because of (8) and (91, if 
the value of k in the G-JOINheuristic becomes 1, then the 
receiver bound will be greater than the channel bound, the 
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Figure 2: The G-JOIN heuristic for VRSP 

decrease (increase) after each JOIN, yielding a virtual re- 
ceiver set with a lower overall bound. When the virtual 
receiver set is Ylk), we select the two (out of A) virtual re- 
ceivers to join into a single virtual receiver V by employing 
the following greedy rule: 

Select the pair of virtual receivers such that the 
quantity corresponding to V’s term in the re- 
ceiver bound (6) for Y(r;-‘) is minimum over all 
pairs of virtual receivers in Yta). If there are 
more than one pairs that achieve the minimum, 
select the pair that minimizes the channel bound 
(5) for V@-‘). If again there is a tie, then break 
it arbitrarily. 



condition of the while loop in Figure 2 will become false, 
and the algorithm will terminate. Therefore, the heuristic 
Jvill always return a valid virtual receiver set. 

Let L* 2 1 be the value of k upon termination of the 
G-JOIN heuristic. Because of the monotonicity property 
of the JOIN operation, the sequence of virtual receiver sets 
constructed by G-JOIN are such that: 

&,,(y’“)) > *. . > pc’ch(Y(‘c*+l)) 1 Pch(Y(“*)) - - (25) 

and 

r;r(YCN)) < . . . < f,.(y(“‘+‘)) 5 j’,.($“*)) (26) 

Since the heuristic terminates when the condition of the 
while loop becomes false, we also have that 

&,,(Y(“*+‘)) > &(Y VW); j5ch(yw)) < r;@k’)) (27) 

Prom (25) - (27) it immediately follows that (a) the over- 

all lower bound of Y(“*+‘) is minimum among virtual re- 

ceiver sets YtN), 0 * * @*+l) since the channel bound de- 

creases from pch(y")st hh(v * t’ +l)) and the receiver 

bound increases from pr(GN)j to pr(Y(B*tl)), but the lat- 

ter is not greater than ~&(Y”“t”), and (b) any virtual 
receiver set obtained from Y(‘*) will not have a smaller 
overall lower bound since pr(Y(“‘)) >_ p&(Y(k*)) and the 
monotonicity property of JOIN guarantees that the receiver 
bound of any subsequent virtual receiver set may not de- 
crease, Therefore, we cannot do any better by using JOIN 
operations, and the heuristic terminates by returning the 
virtual receiver set with the smallest lower bound among 
y(“‘tl) and y(“‘), cl 

S,2 The Random JOIN (R-JOIN) Heuristic 

This heuristic is very similar to G-JOIN. The main difference 
is that, when the virtual receiver set is Yt”), we randomly 
select two of the B virtual receivers to join into a single vir- 
tual receiver. As a result, the complexity is U(CN), since 
Step 8 of the R-JOIN heuristic (compare to Figure 2) takes 
constant time, and the execution time of the while loop is 
dominated by the computation of the new channel bound at 
Step 10. Because of its low running time requirement, this 
heuristic allows us to study the tradeoff between speed of 
execution and the quality of the final solution. An optimal- 
ity property similar to the one in Lemma 5.1 also holds for 
R-JOIN. 

6.3 The Greedy SPLIT (G-SPLIT) Heuristic 

The Greedy SPLIT (G-SPLIT) heuristic is similar to G- 
JOIN, but it works in the opposite direction, searching from 
smaller to larger values of k. Specifically, it starts with the 
l-virtual receiver set N = {1,2,. . . , N), and repeatedly ap- 
plies the SPLIT@“), 1) operation to obtain a sequence of 
virtual receiver sets, each with one more virtual receiver. 
Recall that the receiver bound (9) is greater than the chan- 
nel bound (8) when L = 1. The heuristic continues until (a) 
a virtual receiver set is found such that its channel bound 
is greater than or equal to its receiver bound, or (b) I; = N, 
whichever occurs first, When the virtual receiver set is YtB), 
we apply the following greedy rule for splitting one of its 

, virtual receivers into two sets. 

Let I$@) be a virtual receiver with cardinality 
n > 1 such that the quantity corresponding to 
I$(% term in the receiver bound (6) is maximum 
over alI virtual receivers in Ytk) with cardinality 
greater than one. Select two receivers in V$‘) 
that have the least number of multicast groups 
in common, say, i and i. Repeat the following for 

alI other receivers in Vi(k). Find a receiver m that 
has the most multicast groups in common with i 
or i. If m has more multicast groups in common 
with i (respectively, j), put it in a virtual receiver 
set with i (i). If m has the same number of 
groups in common with i and j (or it has nothing 
in common) then compute the receiver bound (6) 
for the virtual receiver set of i and j if m was 
added to the set, and add m to the set that has 
the smaller bound. 

Selecting and splitting one of the virtual receivers of a I;- 
virtual receiver set takes time U(GN2], and thus, the overall 
complexity of this heuristic is U(GN ). 

Because of the monotonicity property of SPLIT, the G- 
SPLITheuristic has the following optimality property, stated 
without proof. 

Lemma 5.2 The G-SPLIT heuristic returns a virtual re- 
ceiver set that achieves a local minimum with respect to the 
lower bound in (7). 

5.4 The Random SPLIT (R-SPLIT) Heuristic 

The Random SPLIT (R-SPLIT) heuristic operates esactly 
like G-SPLIT, but uses a different rule for splitting a virtual 
receiver when the virtual receiver set is Ytk), B < N. Let 
V$;(k) be a virtual receiver with cardinality n > 1 such that 

the quantity corresponding to V$% term in the receiver 
bound (6) is maximum over all virtual receivers in Y@) with 
cardinality greater than one. A random integer between 1 
and n - 1 is chosen, say, p, and then p elements of I$tk) are 
randomly selected to form a new virtual receiver. Since, in 
the worst case, the value of p \vill be one for all k, and the 
heuristic may not terminate until k = N, its complexity is 
0(N2). An optimality property similar to the one in Lemma 
5.2 also holds for R-JOIN. 

6 Numerical Results 

We now study the relative performance of the four heuris- 
tics for VRSP presented in the previous section, namely, 
G-JOIN, R-JOIN, G-SPLIT, and R-SPLIT. Let P in (12) 
be the lower bound on an instance of VRSP, and let P(Y(‘;)) 
be the lower bound in (7) corresponding to the l-virtual re- 
ceiver set Ytk) returned by one of the heuristics. Quantity 
P(v’~‘,-“loo~ o represents how far the k virtual receiver set 

Y@)f from the lower bound. We are interested in the av- 
erage performance of the four heuristics, therefore, in this 
section we plot the above quantity (averaged over twenty 
random instances of VRSP) for various values of the num- 
ber N of nodes, the number C of channels, and the number 
G of multicast groups. 

We have generated random instances of VRSP, i.e., ran- 
dom matrices A 2 and random multicast groups, as follows. 

2Recall that if the multicast traffic matrix M and the sets X, are 
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Figure 3: Heuristic comparison for C = 3 channels, G = 10 
(uniform case) 

The elements of each matrix A were selected as integers uni- 
formly distributed in the range [0,20]. To construct the G 
multicast groups, we assigned a probability pj to receiver i, 
representing the probability that the receiver would belong 
to a particular group. Each multicast group was determined 
by drawing N random numbers qJ uniformly distributed in 
(OJ), and including all receivers for which pj < pj in the 
group, We have used two sets of values for pj. In the uni- 
form case, we let pj = 0.5 for all j, that is, each receiver 
is equally likely to belong to a multicast group. To study 
how the existence of hot spots affects the behavior of the 
llcurist&~fi 1;~ have also used pj = 0.6, j = 1, -* *, 5, and 

l?i = *,j = G,..., N. In other words, the first five 
receivers were more likely to belong to a multicast group 
than the other N - 5 receivers; however, the average size of 
a multicast group was 3, the same as for the uniform case. 
Finally, we have let the tuning latency A = 2 in all test 
cases. 

In Figure 3 we plot the performance of the four heuristics 
for a small number of nodes N < 12 and for C = 3, G = 10. 
The figure also shows how far the optimalsolution is from 
the lower bound in (12); the optimal was obtained through 
a branch-and-bound technique we developed for VRSP [S]. 
Our first observation is that the lower bound does not accu- 
rately characterize the optimal solution to VRSP, since the 
value at the optimal can be up to 15% higher than the lower 
bound, Although we could not obtain the optimal solution 
for larger values of N, it seems reasonable to assume that the 
performance of our heuristics relative to the optimal solu- 
tion is significantly better than what the comparison against 
the lower bound (in the following figures) suggests. This as- 
sumption is further supported by the fact that the behavior 
of the optimal solution in Figure 3 appears to be similar to 
that of the four heuristics. 

Regarding the relative performance of the heuristics, the 
behavior emerging in Figure 3 is typical of the results that 
follow. We first note that the greedy heuristics perform bet- 
ter than the random ones; thii is simply a reflection of the 
level of sophistication of the two types of heuristics. The 
R-SPLIT heuristic has a slight edge over R-JOIN, probably 
because in R-JOIN the two virtual receivers to be joined are 

&en, matrix A is completely specified. We have decided to gen- 
&te.mntrix A directly-to reduce the number of parameters to be 
controlled. 

chosen completely at random, while in R-SPLIT the virtual 
receiver to be split is not chosen randomly (although it is 
split randomly). On the other hand, the higher complexity 
of G-SPLIT does not pay off in terms of performance com- 
pared to G-JOIN, which shows the best behavior among all 
four heuristics. 

The three Figures 4 - 6 plot the behavior of the heuris- 
tics against the number of nodes N for three values of the 
number of multicast groups, G = 10,20,30 (C = 10 in all 
cases). We note that the behavior of our heuristics is very 
similar in all cases, and that the difference from the lower 
bound ranges from 2% to 45%. We also note that R-JOIN, 
R-SPLIT, and G-SPLIT appear to perform identically for 
large values of N, while G-JOINemerges as the clear winner, 
although not by a large margin. Similar observations can be 
drawn from Figure 7 where we keep the number of nodes and 
the number of multicast groups constant (N = 100, G = 50) 
and vary the number of channels. 

In all our results so far, we have considered the situation 
where all receivers are equally likely to belong to a multicast 
group. To study how the existence of hot spot receivers 
affects our heuristics, in Figure 8 we plot the difference from 
the lower bound against N for C = 10, G = 10. Comparing 
the results to Figure 4 we see that the behavior is similar. 
Finally, in Figure 9 we again plot a hot spot case with C = 
10, G = 10, but this time the traffic matrix A is generated as 
follows. For each multicast group g, only 2 channels (chosen 
randomly for each group) have packets to transmit to g. 
The number of packets is chosen uniformly from (1,104). In 
other words, each multicast group only receives traffic from a 
small number of channels, while in previous trafllc matrices 
each multicast group would receive traffic from almost all 
channels. Comparing Figure 9 to Figures 4 and 8, however, 
reveals no significant differences in the behavior of the four 
heuristics. 

Overall, our results indicate that the four heuristics can 
obtain virtual receiver sets with values close to the lower 
bound for a wide range of system and traffic parameters, and 
receiver characteristics. In all cases, G-JOIN has shown the 
best performance among the four heuristics, although the 
performance of the other three heuristics is not significantly 
different. Therefore, for systems with a large N over C 
ratio, the simplest and fastest R-JOIN heuristic (U(CN) 
complexity) may be the one that provides the best tradeoff 
between speed and quality of the final solution. 

7 Concluding Remarks 

We considered the problem of scheduling multicast packet 
transmissions in a broadcast WDM network with tunability 
provided at the receiving end only, and with non-negligible 
receiver tuning latencies. We introduced the concept of a 
virtual receiver as a set of physical receivers that behave 
identically in terms of tuning. The trafk demands between 
any source-virtual receiver pair is equal to the sum of the 
traffic originating at the source and destined to any of the 
multicast groups with members in the virtual receiver. A 
partition of the set of physical receivers into virtual receivers 
transforms our original network into one with the same num- 
ber of transmitters but a smaller number of receivers, and 
unicast traffic only. Any of a number of existing algorithms 
can then be employed to schedule the packets transmis- 
sions in a way that hides the effects of tuning latency. We 
then studied the problem of optimally partitioning the set of 
physical receivers into virtual receivers. We proved that this 
problem is n/P-complete, and we showed that channel uti- 
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lization and bandwidth consumption arise as two confiicting 
objectives in the selection of a virtual receiver set. We also 
developed a number of heuristics which exhibit good average 
performance. 
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