
8
Scheduling-Inspired Spectrum

Assignment Algorithms for Mesh
Elastic Optical Networks

Mahmoud Fayez3, Iyad Katib1, George N. Rouskas1,2

and Hossam M. Faheem3,4

1King Abdulaziz University, Jeddah, Saudi Arabia
2North Carolina State University, Raleigh, NC 27695, United States
3Fujitsu Technology Solution, Munich, Germany
4Ain Shams University, Khalifa El-Maamon St‘ Cairo, Cairo

Abstract

Spectrum assignment has emerged as the key design and control problem in
elastic optical networks. We have shown that spectrum assignment in networks
of general topology is a special case of scheduling multiprocessor tasks on
dedicated processors. Based on this insight, we develop and evaluate efficient
and effective algorithms for mesh and chain networks that build upon list
scheduling concepts.

8.1 Introduction

Optical networking technologies are crucial to the operation of the Internet
and its ability to support critical and reliable communication services. In
response to rapidly growing IP traffic demands, 40 and 100 Gbps line rates
over long distances have been deployed, while there is a substantial research
and development activity targeted to commercializing 400 and 1000 Gbps
rates [1]. On the other hand, emerging applications, including IPTV, video-
on-demand, and interdatacenter networking, have heterogeneous bandwidth
demand granularities that may change dynamically over time. Accordingly, it
has been proposed that mixed line rate (MLR) networks [2] may be able

225

Junko
Inserted Text
, Egypt

226 Scheduling-Inspired Spectrum Assignment Algorithms

to accommodate variable traffic demands. Nevertheless, optical networks
operating on a fixed wavelength grid [3] allocate a full wavelength even to
traffic demands that do not fill its entire capacity [4]. This inefficient utilization
of spectral resources is expected to become an even more serious issue with
the deployment of higher data rates [5, 6].

Elastic optical networks [7, 8] have the potential to overcome the fixed,
coarse granularity of existing WDM technology and are expected to support
flexible data rates, adapt dynamically to variable bandwidth demands by
applications, and utilize the available spectrum more efficiently [6]. The
enabling technology for such an agile network infrastructure is orthogonal
frequency division multiplexing (OFDM), a modulation format that has
been widely adopted in broadband wireless and copper-based communication
systems, and is a promising candidate for high-speed (i.e., beyond 100 Gbps)
optical transmission [9]. Other key technologies include distance-adaptive
modulation, bandwidth-variable transponders, and flexible spectrum selective
switches; for a recent survey of optical OFDM and related technologies,
refer to [9].

OFDM, a multiple carrier modulation scheme, splits a data stream into
a large number of substreams [10]. Each data substream is carried on a
narrowband subchannel created by modulating a corresponding carrier with
a conventional scheme such as quadrature amplitude modulation (QAM) or
quadrature phase shift keying (QPSK). The modulated signals are further
multiplexed by frequency division multiplexing to form what is referred
to as multicarrier transmission. The composite signal is a broadband signal
that is more immune to multipath fading (in wireless communications) and
intersymbol interference. The main feature of OFDM is the orthogonality of
subcarriers that allows data to travel in parallel, over subchannels constituted
by these orthogonal subcarriers, in a tight frequency space without interfer-
ence from each other. Consequently, OFDM has found many applications,
including in ADSL and VDSL broadband access, power line communications,
wireless LANs (IEEE 802.11 a/g/n), WiMAX, and terrestrial digital TV
systems.

In recent years, OFDM has been the focus of extensive research efforts
in optical transmission and networking, initially as a means to overcome
physical impairments in optical communications [11, 12]. However, unlike,
with wireless LANs or xDSL systems where OFDM is deployed as a trans-
mission technology in a single link, in optical networks it is considered as the
technology underlying the novel elastic network paradigm [6]. Consequently,

8.1 Introduction 227

in the quest for a truly agile, resource-efficient optical infrastructure, network-
wide spectrum management arises as a key challenge; the routing and spectrum
assignment (RSA) problem has emerged as an essential network design and
control problem [13, 14].

In offline RSA, the input typically consists of a set of forecast traffic
demands, and the objective is to assign a physical path and contiguous
spectrum to each demand so as to minimize the total amount of allocated
spectrum (either over the whole network or on any link). Several variants
of the RSA problem have been studied in the literature that takes into
account various design aspects including the reach versus modulation level
(spectral efficiency) trade-off [15], traffic grooming [16], and restoration [17].
These problem variants are NP-hard, as RSA is a generalization of the well-
known routing and wavelength assignment (RWA) problem [18]. Therefore,
while most studies provide integer linear program (ILP) formulations for
the RSA variant they address, they propose heuristic algorithms for solving
medium-to-large problem instances. Such ad hoc solution approaches have
two drawbacks. First, they do not provide insight into the structure of the
optimal solution; hence, they cannot be easily adapted to other problem
variants. Second, it is quite difficult to characterize the performance of
heuristic algorithms; our recent work has demonstrated that heuristics for
the related RWA problem produce solutions that are far from optimal even
for problem instances of moderate sizes [19]. For a survey of spectrum
management techniques in elastic optical networks, including a review
of solution approaches to RSA problem variants, we refer to our recent
survey [20].

When the path of each demand is provided as part of the input and
is not subject to optimization, the RSA problem reduces to the spectrum
assignment (SA) problem. The main contribution of this work is that we build
upon well-understood scheduling theory techniques to develop efficient and
effective algorithms for the SA problem in optical networks. We consider two
types of networks: mesh networks of general topology, which are representa-
tive of commercial wide area networks, and chain (linear) networks consisting
of an acyclic sequence of nodes connected in a linear chain. Our results are
important because (1) the SA algorithms for mesh networks may be used
to tackle the RSA problem by applying them in parallel to different routing
configurations (which are independent of each other) and selecting the best
solution; (2) the SA algorithms for chain networks may be used to analyze
approximately large networks of general topology, e.g., by extending path-
based decomposition approaches that we have developed for the case of

228 Scheduling-Inspired Spectrum Assignment Algorithms

wavelength assignment [21]; and (3) these algorithms may be applied to
large-scale task scheduling problems in multiprocessor environments.

Following the introduction, we review our earlier work in Section 8.2 and
provide insight into the properties and structure of the spectrum assignment
problem as a special case of a general multiprocessor scheduling problem,
in which a task must be executed by multiple machines simultaneously. In
Section 8.3, we develop algorithms for multiprocessor scheduling, which can
be used to solve the corresponding spectrum assignment problem; we present
two algorithms—one for general topology (mesh) networks and a faster one
for chain networks. We present numerical results to evaluate the performance
of the algorithms in Section 8.4 and conclude the chapter in Section 8.5.

8.2 SA in Mesh Networks: A Special Case
of Multiprocessor Scheduling

We consider the following general definition of the spectrum assignment (SA)
problem in elastic optical networks:

• SA Inputs: (1) A graph G = (V,A), where V is the set of nodes andA is
the set of arcs (directed edges); (2) a spectrum demand matrix T = [tsd],
such that tsd is the number of spectrum slots required to carry the traffic
from source s to destination d; and (3) a fixed route rsd from node s to
node d.
• SA Objective: For each traffic demand, assign spectrum slots along all

the arcs of its route such that the total required amount of spectrum used
on any arc in the network is minimized.
• RSA Constraints: (1) Spectrum contiguity: each demand is assigned

contiguous spectrum slots; (2) spectrum continuity: each demand uses the
same spectrum slots along all arcs of its route; and (3) non-overlapping
spectrum: demands that share an arc are assigned non-overlapping parts
of the available spectrum.

Now, consider the multiprocessor scheduling problem P |fixj |Cmax, defined
as [22]:

• P |fixj |Cmax Inputs: A set of m identical processors, a set of n tasks,
the processing time pj of task j, and a set fixj of processor sets that will
execute each task j.
• P |fixj |Cmax Objective: Schedule the tasks so as to minimize the

makespan Cmax = maxj Cj of the schedule, where Cj indicates the
completion time of task j.

8.2 SA in Mesh Networks: A Special Case of Multiprocessor Scheduling 229

• P |fixj |Cmax Constraints: (1) No preemption is allowed, (2) all the
processors in the selected set must work on task j simultaneously, and
(3) each processor may execute one task at most at any given time.

In earlier work [23], we have proved that the SA problem in mesh networks
transforms to the P |fixj |Cmax multiprocessor scheduling problem; however,
the reverse is not true. In other words, SA is a special case of P |fixj |Cmax;
hence, any algorithm for the latter problem may also solve the former. A
formal proof of the transformation is available in [23]. In the transformation,
the various entities of the elastic network domain transform to entities in
the task scheduling domain as shown in Table 8.1. Specifically, each arc
in the SA problem maps to a processor in the scheduling problem, each
traffic demand to a task, the number of spectrum slots of a demand to the
processing time of the corresponding task, and the maximum number of
spectrum slots used on any link to the makespan of the schedule. Accordingly,
minimizing the maximum spectrum allocation on any arc of the SA problem is
equivalent to minimizing the makespan of the schedule in the corresponding
problem P |fixj |Cmax. Furthermore, the spectrum contiguity constraint of SA
is equivalent to the no preemption constraint of P |fixj |Cmax; the spectrum
continuity constraint maps to the constraint that all required processors must
execute a task simultaneously; and the non-overlapping spectrum constraint
maps to the constraint that a processor works on at most one task at a time.

8.2.1 Illustrative Example

As an example, Figure 8.1(a) shows an instance of the SA problem on a
mesh network with five directed links, L1, L2, L3, L4, and L5. There are six
demands (shown as dotted lines) with the number of slots required by each
demand shown next to the corresponding line. These demands are the inputs
to the SA problem and are also listed in the left three columns of Table 8.2,
which provides the transformation from traffic demands and corresponding
paths in the elastic optical network domain to tasks and sets of processors in the
task scheduling domain under the assumption that link L1 maps to processor

Table 8.1 Transformation of entities between the elastic network and task scheduling domains
Elastic Network Domain Task Scheduling Domain
Arc Processor
Traffic demand Task
Spectrum slots of a demand Processing time of a task
Path of a demand Set of processors for a task
Highest assigned slot on an arc Completion time of a processor

230 Scheduling-Inspired Spectrum Assignment Algorithms

Figure 8.1 (a) Instance of the SA problem on a mesh network with five directed links (arcs).
(b) Optimal schedule of the corresponding P |fixj |Cmax problem.

Table 8.2 Mapping from the elastic network domain to the task scheduling domain
Elastic Network Domain Task Scheduling Domain

Demand # Path Spectrum Slots Task # Processors Time Slots
1 L1 4 1 P1 4
2 L1, L2 3 2 P1,P2 3
3 L5 2 3 P5 2
4 L5, L4 5 4 P5, P4 5
5 L2, L3 2 5 P2, P3 2
6 L3, L4 2 6 P3, P4 2

P1, link L2 to processor P2, and so on. Figure 8.1(b) shows the optimal
schedule for the P |fixj |Cmax problem corresponding to this SA instance. As
we can see, the demand of size 3 that follows the path L1–L2 is mapped to a
task that is scheduled in the time interval [4, 7] on the corresponding processors
P1 and P2, similarly for the other demands. The schedule is optimal in that
Cmax = 7 is equal to the total processing time required for processors P1, P4,
and P5. Also, the value of Cmax is equal to the total number of spectrum slots
required for links L1, L4, and L5.

8.2.2 Complexity Results

It has been shown [22] that the three-processor problem P3|fixj |Cmax is
strongly NP-hard for general processing times, but if the number of processors

8.3 Scheduling Algorithms for Spectrum Assignment in Mesh Networks 231

m is fixed and all tasks have unit times, i.e., Pm|fixj , pj = 1|Cmax, then
the problem is solvable in polynomial time. Approximation algorithms and/or
polynomial time approximation schemes (PTASs) have been developed for
several versions of the problem [24].

By building upon this new perspective, it was shown in [23] that (1)
P3|fixj|Cmax transforms to the SA problem in a unidirectional ring with
three links; hence, the latter is NP-hard, and (2) the SA problem is solvable in
polynomial time on chain networks with at most three links, but is NP-hard
on chains with four or more links. The latter result confirms the conclusion in
[25] that the SA problem is harder than the wavelength assignment problem
which can be solved in polynomial time on chains of any length. In [23], we
also developed a set of list scheduling algorithms specifically designed for the
SA problem in chains; the algorithms are both fast and effective, in that they
produce solutions that are within 5% of the lower bound on average.

8.3 Scheduling Algorithms for Spectrum Assignment
in Mesh Networks

We now present a new efficient scheduling algorithm for the P |fixj |Cmax

problem, which may also be used to solve the SA problem in mesh networks.
The input to the algorithm is a list of n tasks, j = 1, . . ., n, along with their
corresponding processing times, pj , and sets of processors, fixj . Tasks in the
list may be sorted in differently; in this work, we consider and compare the
following two distinct orders:

• Longest First (LF): Tasks appear in the list in decreasing order of their
processing time pj .
• Widest First (WF): Tasks are listed in decreasing order of the size |fixj |

of their processor set.

In either case, we assume that ties are broken arbitrarily. We also define two
processor sets as compatible if they are disjointed, in which case the two
processor sets can be scheduled simultaneously.

Figure 8.2 presents a pseudocode description of the scheduling algorithm
for the P |fixj |Cmax| problem. Depending on whether the tasks are listed in
longest first or widest first order, we will refer to the scheduling algorithm as
SA-LF or SA-WF, respectively1.

1In this notation, we use the acronym “SA” to emphasize both that this is a scheduling
algorithm for the P |fixj |Cmax problem and the fact that this algorithm solves the spectrum
assignment problem.

232 Scheduling-Inspired Spectrum Assignment Algorithms

Scheduling Algorithm (SA-LF/WF) for P |fixj |Cmax

Input: A list L of n tasks on m processors, each task j having a processing
time pj and a set fixj ⊆ {1, 2, . . ., m} of required processors
Output:Aschedule of tasks, i.e., the time Sj when each task j starts execution
on the multi-processor system

begin
1. Sort the tasks in list L based on longest-first or widest-first

criteria
2. Lp[1, . . ., n]← false //The list of in-progress tasks
3. t← 0 //Scheduling instant
4. Fp ← m //Counter of free processors
5. Counter ← 0 //Counter of finished tasks
6. F [1, . . ., m]← true //The list of idle (free) processors
7. while Counter �= n do
8. j ← 0
9. ScheduleTasks(L, Lp, F, t, j)
10. AdvanceTime(Lp, F, t, Counter)
11.end while
12.return the task start times Sj

end

Procedure ScheduleTasks(L, Lp, F, t, j)
Operation: Schedules as many tasks from the input list L to start execution
at time t, and moves these tasks from L to the list of in-progress tasks Lp

begin
1. while j �= n and Fp > 0 do
2. if Lpj = false and Ffixj

= true then
3. Sj ← t // Task j starts execution at time t
4. Lpj = true
5. Ffixj

= false

6. Fp ← Fp − count(fixj)
7. ScheduleTasks(L, Lp, F, t, j + 1)
8. break
9. endif
10. j ← j + 1
11.end while //no more tasks may start at time t

end

8.3 Scheduling Algorithms for Spectrum Assignment in Mesh Networks 233

Procedure AdvanceTime(Lp, F, t, Counter)
Operation: Finds the first task or tasks to complete after time t, removes them
from the list of in-progress tasks, and advances time to the time these tasks
end

begin
1. j ← 0
2. jmin ← –1 //Index of earliest task to finish
3. tmin ←∞ //the default value to find minimum finish time
4. while j �= n do
5. if Lpj = true and Sj + pj > t and Sj + pj < tmin then
6. jmin ← j
7. tmin ← Sj + pj

8. endif
8. j ← j + 1
9. end while
10.Ffixjmin

← true //Set processors to free again
11.Fp ← Fp + count(fixjmin

)
12.t← tmin //Advance time

end

Figure 8.2 The scheduling algorithm SA-LF/WF for P |fixj |Cmax and the corresponding
spectrum assignment problem.

The algorithm maintains an array of m Booleans to keep track of the set
of free processors, initialized to all processors, and a list of in-progress tasks
initialized to the empty set. Initially, the tasks in the input list L are sorted by
the longest first or widest first order. The algorithm then repeatedly calls two
procedures, ScheduleTasks() and AdvanceTime(), until all the tasks in list L
have been scheduled (i.e., until L becomes empty).

The ScheduleTasks() procedure takes the list L of unscheduled tasks, the
list Lp of in-progress tasks, and the set F of free processors at time t as
arguments. It then considers tasks in L one at a time in an attempt to schedule
them starting at time t; note that a task j can be scheduled if all processors in
fixj are free at time t; i.e., it is pairwise compatible with all in-progress tasks.
Every task that can be scheduled is marked as running in list Lp of in-progress
tasks. This process continues until either the end of list L is reached or all
processors become busy. At that point, procedure AdvanceTime() is called.
This procedure finds the first in-progress task that ends and advances the time

234 Scheduling-Inspired Spectrum Assignment Algorithms

to the time t
′
this task ended. It then frees all involved processors for this task.

Consequently, the procedure ScheduleTasks() is called again to schedule any
remaining tasks starting at time t

′
, and this process repeats until all tasks have

been scheduled.
Each of the two procedures ScheduleTasks() and AdvanceTime() is called n

times in the worst case, where n is the number of tasks. In worst-case scenarios,
the ScheduleTasks() will consider all n tasks in list L, and for each task, it will
check whether its processor set is a subset of the set F of free processors
(line 2), and if so, it will remove these processors from the set (line 5);
these operations take time O(m) in the worst case, where m is the number
of processors. Since all other operations are constant, the running time of this
procedure is O(nm). Procedure AdvanceTime() checks all in-progress tasks
to identify the ones with minimum finish time and frees their processors;
therefore, its worst-case running time is O(m + n). Therefore, the overall
running time complexity of the algorithm is O(mn2).

8.3.1 Scheduling Algorithm for Chain Networks

In the special case of chain networks, the corresponding scheduling problem
is such that the m processors, each corresponding to a link of the chain, can
be labeled linearly as 1, . . ., m. Furthermore, the processors required by each
task are contiguous and may be represented as a range, a fact that has two
implications. First, checking whether a task’s processors are free at some
time t can be performed in constant time, rather than in time O(m) as in
the general case of mesh networks. Second, assigning processors to a task
naturally divides the previous free range of processors into (at most) two
parts: one part consisting of free processors with labels smaller than that of the
processor with the lowest label required by the task and one consisting of free
processors with labels larger than that of the processor with the highest label
required by the task. Therefore, it is possible to schedule tasks by recursively
searching the (at most) two free ranges of processors created when a task is
scheduled.

The recursive version of ScheduleTasks() for chain networks is shown
in Figure 8.3. Since, as we mentioned above, the operations in Steps 2 and
5 now take constant time, the worst-case running time of the procedure for
chain networks is O(n). Therefore, the overall running time of the scheduling
algorithm is O(n2) and is independent of the number m of processors (or links
of the chain).

8.4 Numerical Results 235

Procedure ScheduleTasks(L, Lp, F, t)
Operation: Schedules as many tasks from the input list L to start exe-
cution at time t, and moves these tasks from L to the list of in-progress
tasks Lp

begin
begin

1. while j �= n and Fp > 0 do
2. if Lpj = false and Ffixj

= true then
3. Sj ← t // Task j starts execution at time t
4. Lpj = true
5. Ffixj

= false

6. Fp ← Fp − count(fixj)
8. Fl ← new left range of free processors
9. Fr ← new right range of free processors
7. ScheduleTasks(L, Lp, Fl, t, j + 1)
7. ScheduleTasks(L, Lp, Fr, t, j + 1)
8. break
9. endif
10. j ← j + 1
11. end while // no more tasks may start at time t

end

Figure 8.3 A specialized version of the ScheduleTasks() procedure for the P |fixj |Cmax

problem corresponding to a chain network.

8.4 Numerical Results

In this section, we present the results of simulation experiments we carried out
to evaluate the performance of the scheduling algorithms for mesh and chain
networks. We assume that the elastic optical network supports the following
data rates (in Gbps): 10, 40, 100, 400, and 1000. For each problem instance,
we generate random traffic rates between each pair of nodes based on one of
the three distributions:

1. Uniform: Traffic demands may take any of the five discrete values in the
set {10, 40, 100, 400, 1000} with equal probability;

2. Skewed low: Traffic demands may take one of the five discrete values
above with probabilities 0.30, 0.25, 0.20, 0.15, and 0.10, respectively
(i.e., the lower data rates have higher probability to be selected); or

236 Scheduling-Inspired Spectrum Assignment Algorithms

3. Skewed high: Traffic demands may take one of the five discrete values
above with probabilities 0.10, 0.15, 0.20, 0.25, and 0.30, respectively
(i.e., the higher data rates have higher probability to be selected).

In our experiments, we also used various other probability values the skewed
low and high distributions, but the results are very similar to those shown
below.

Once the traffic rates between every source–destination pair have been
generated, we calculate the corresponding spectrum slots as follows. We
assume that the slot width is 12.5 GHz and that there is a 16-QAM modulation
format, such that demands of size 10, 40, 100, 400, and 1000 Gbps require 1,
1, 2, 8, and 20 slots, respectively, consistent with the values used in [26,
Table 8.1]. We then transform the SA problem instance to the equivalent
instance of P |fixj |Cmax and run the scheduling algorithm described in the
previous section to schedule the tasks.

In order to evaluate the performance of our algorithms, and since the
optimal solution is not known due to the fact that P |fixj |Cmax is NP-
complete, we compute the lower bound as follows. Consider an instance
of P |fixj |Cmax, and let Tk denote the set of tasks that require processor
k, i.e., Tk = {j : k ∈ fixj}. Clearly, all the tasks in Tk are pairwise
incompatible; hence, they have to be executed sequentially. Let Πk denote
the sum of processing times of tasks that require processor k:

Πk =
∑

j∈Tk

pj , k = 1, . . ., m. (8.1)

Then, a lower bound LB for the problem instance can be obtained as follows:

LB = max
k=1,...,m

{Πk}. (8.2)

We then compute the ratio of the makespan produced by the algorithm to this
lower bound. It should be noted that the lower bound is not tight, as it ignores
any gaps introduced by the scheduling of incompatible tasks in the optimal
solution.

Each point in the figures shown in the remainder of this section is
the average of 200 randomly generated problem instances for the specified
parameters. We also estimated confidence intervals using the method of batch
means, but they are so narrow that they are omitted. All the experiments were
carried out using the resources of the high-performance computing cluster
installed by Fujitsu at King Abdulaziz University, Jeddah, Saudi Arabia.

8.4 Numerical Results 237

8.4.1 Mesh Networks

We have carried out simulation experiments on three network topologies2:
(1) a 10-node, 32-link network; (2) the 32-node, 108-link network shown in
Figure 8.4; and (3) a 75-node, 200-link topology. For each network topology,
we generate random traffic demands between each source–destination pair3

using each of the three distributions described earlier. Each demand is routed
over the shortest path between its source and destination nodes.

The results for the 10-node network are shown in Figure 8.5. In four
problem instances, the SA-LF algorithm found solutions with a makespan of
about 10% higher than the lower bound, while for the remaining instances,
the solutions constructed by the algorithm had a makespan equal to the lower
bound, and hence, they are optimal. For the 32- and 75-node networks, the
SA-LF produced optimal solutions for all three traffic distributions and all
random problem instances we generated.

Figures 8.6 and 8.7 show the performance of the SA-LF and SA-
WF algorithms, respectively, on complete mesh networks of varying sizes,
in which traffic between each pair of nodes is routed over a randomly
chosen path.

Figure 8.4 The 32-node, 108-link topology used in the experiments.

2The number of links of each network topology refers to directional links (arcs) since each
direction of a link is considered independently for the purpose of spectrum assignment.

3The number of traffic demands for the 10-node, 32-node, and 75-node networks are 90,
992, and 5550, respectively.

238 Scheduling-Inspired Spectrum Assignment Algorithms

Figure 8.5 Average ratio of makespan to lower bound for 10-node network.

Figure 8.6 Average ratio of makespan to lower bound, complete mesh with SA-LF.

8.4 Numerical Results 239

Figure 8.7 Average ratio of makespan to lower bound, complete mesh with SA-WF.

The performance of the two algorithms is similar and is not affected
significantly by the traffic distribution (uniform, skewed high, or skewed low).
The reason that the ratio of makespan to lower bound increases with the size
of the network is due to the fact that, for a complete mesh, the optimal solution
would be for each demand to take the single-link shortest path to its destination.
However, since each demand is routed along a randomly selected path, and
the lengths of these random paths increase with the size of the network, such
a solution will move further from the lower bound (optimal) as the network
size increases. The performance of the algorithms in the two figures simply
reflects this observation.

8.4.2 Chain Networks

Figures 8.8 and 8.9 show results for chain networks of varying sizes and
the SA-LF and SA-WF algorithms, respectively. We observe that the SA-
LF algorithm performs better for all three traffic distributions and produces
results that are within 5% of the lower bound. The SA-WF algorithm, which
considers tasks for scheduling based on the number of processors they require,

240 Scheduling-Inspired Spectrum Assignment Algorithms

Figure 8.8 Average ratio of makespan to lower bound, chain networks with SA-LF.

Figure 8.9 Average ratio of makespan to lower bound, chain networks with SA-WF.

8.4 Numerical Results 241

may pair long tasks with short ones, thus creating gaps that result in a longer
makespan.

8.4.3 Running Time Scalability

Let us now turn our attention to the scalability of the SA-LF and WA-LF
algorithms in terms of running time. Figure 8.10 plots the running time of
the two algorithms, in seconds, as a function of the number of tasks in
the multiprocessor scheduling problem. Two plots are shown in the figure.
For the curve labeled “general scheduling,” the processors assigned to a
particular task were randomly selected from the set of all processors without
any restrictions; consequently, these problem instances correspond to the
general version of the P |fixj |Cmax problem. For the curve labeled “chain
scheduling,” on the other hand, processors were labeled from 1 to m. For
each task, an integer k and start processor p, 1 ≤ p ≤ m − k were selected
randomly, and the set of k sequentially labeled processors, p, . . ., p + k − 1,
were assigned to execute the task. These problem instances correspond to the
special case of the P |fixj |Cmax problem derived from chain networks.

Figure 8.10 Running time, in seconds, of the scheduling algorithms as a function of the
number of tasks.

242 Scheduling-Inspired Spectrum Assignment Algorithms

As Figure 8.10 indicates, the scheduling algorithms scale to large instances
of the two types of P |fixj |Cmax problem. For the most general variant of
the problem, instances of up to 16,000 tasks may be scheduled in less than
one minute. Note that 16,000 tasks roughly correspond to the number of
bidirectional traffic demands in a network with 125 nodes. For the special
case of “chain scheduling,” 16,000 tasks may be scheduled in less than seven
seconds, due to the recursive nature of the corresponding algorithms. These
results provide a strong indication that our algorithms may be used to tackle
efficiently and effectively large instances of the spectrum assignment and
corresponding task scheduling problems.

8.5 Concluding Remarks

We have developed scheduling algorithms that efficiently solve the spectrum
assignment problem in mesh networks with good performance, under the
assumption that the routing path of each traffic demand is fixed, i.e., it is part of
the input to the problem and not subject to optimization. Our current research
efforts are directed toward algorithms that jointly tackle the routing and
spectrum assignment problems. More specifically, we are developing parallel
algorithms for the RSA problem that applies the scheduling algorithms we
presented in this chapter to a large number of reasonable routing configurations
simultaneously.

Acknowledgments

This work was supported in part by the National Science Foundation under
Grant CNS-1113191 and by the High-Performance Computing Project at King
Abdulaziz University.

References

[1] Winzer, P. J. (2010). Beyond 100G Ethernet. IEEE Commun. Mag.,
48(7), 26–30.

[2] Nag, A. and Tornatore, M. (2009). Optical network design with mixed
line rates. Opt. Switch. Netw., 6(3), 227–237.

[3] ITU-T G.694.1. Spectral grids for WDM applications: DWDM frequency
grid, February 2002.

[4] Shen, G. and Zukerman, M. (2012). Spectrum-efficient and agile CO-
OFDM optical transport networks: architecture, design, and operation.
IEEE Commun. Mag., 50(5), 82–89.

References 243

[5] Jinno, M., Ohara, T., Sone, Y., Hirano, A., Ishida, O., and Tomizawa,
M. (2011). Elastic and adaptive optical networks: possible adoption
scenarios and future standardization aspects. IEEE Commun. Mag.,
49(10), 164–172.

[6] Jinno, M., Takara, H., and Kozicki, B. (2009). Dynamic optical mesh
networks: Drivers, challenges and solutions for the future. In Proceed-
ings of 35th European Conference on Optical Communication (ECOC),
page 7.7.4, September.

[7] Gerstel, O., Jinno, M., Lord, A., and J B Yoo, S. (2012). Elastic optical
networking: a new dawn for the optical layer? IEEE Commun. Mag.,
50(2), s12–s20.

[8] Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Yoshimatsu, T.,
Kobayashi, T., Miyamoto, Y., Yonenaga, K., Takada, A., Ishida, O., and
Matsuoka, S. (2008). Demonstration of novel spectrum-efficient elastic
optical path network with per-channel variable capacity of 40 Gb/s to
over 400 Gb/s. In Proceedings of 34th European Conference on Optical
Communication (ECOC), page Th.3.F.6, September.

[9] Zhang, G., De Leenheer, M., Morea, A., and Mukherjee, B. (2013). A
survey on OFDM-based elastic core optical networking. IEEE Commun.
Surv. Tutor. 15(1), 65–87, First Quarter.

[10] Shieh, W. (2011). OFDM for flexible high-speed optical networks. J.
Lightwave Technol., 29(10), 1560–1577.

[11] Lowery, A. J. and Armstrong, J. (2006). Orthogonal-frequency-division
multiplexing for dispersion compensation of long-haul optical systems.
Opt. Express, 14(6), 2079–2084.

[12] Lowery, A. J., Du, L. B., and Armstrong, J. (2007). Performance of
optical OFDM in ultralong-haul WDM lightwave systems. J. Lightwave
Technol., 25(1), 131–138.

[13] Klinkowski, M. and Walkowiak, K. (2011). Routing and spectrum assign-
ment in spectrum sliced elastic optical path network. IEEE Commun.
Lett., 15(8), 884–886.

[14] Wang, Y., Cao, X., and Pan, Y. (2011). A study of the routing and
spectrum allocation in spectrum-sliced elastic optical path networks. In
Proceedings of IEEE INFOCOM, pages 1503–1511.

[15] Christodoulopoulos, K., Tomkos, I., and Varvarigos, E. A. (2011). Elas-
tic bandwidth allocation in flexible OFDM-based optical networks. J.
Lightwave Technol., 29(9), 1354–1366.

[16] Zhang, Y., Zheng, X., Li, Q., Hua, N., Li, Y., and Zhang, H. (2011). Traffic
grooming in spectrum-elastic optical path networks. In Proceedings of

244 Scheduling-Inspired Spectrum Assignment Algorithms

Optical Fiber Communication Conference and the National Fiber Optic
Engineers Conference (OFC/NFOEC), page OTuI1, March.

[17] Wei, Y., Shen, G., and You, Sh. (2012). Span restoration for CO-
OFDM-based elastic optical networks under spectrum conversion. In
Proceedings of Asia Communications and Photonics Conference (ACP),
page AF3E.7, Novomber.

[18] Rouskas, G. N. (2001). Routing and wavelength assignment in opti-
cal WDM networks. In J. Proakis (Editor), Wiley Encyclopedia of
Telecommunications. John Wiley & Sons.

[19] Liu, Z. and Rouskas, G. N. (2012). A fast path-based ILP formulation
for offline RWA in mesh optical networks. In Proceedings of IEEE
GLOBECOM 2012, pages 2990–2995, December.

[20] Talebi, S., Alam, F., Katib, I., Khamis, M., Khalifah, R., and Rouskas,
G. N. (2014). Spectrum management techniques for elastic optical
networks: A survey. Opt. Switch. Netw., 13, 34–48.

[21] Zhu, Y., Rouskas, G. N., and Perros, H. G. (2000). A path decomposition
approach for computing blocking probabilities in wavelength routing
networks. IEEE/ACM Trans. Netw., 8(6), 747–762.

[22] Hoogeveen, J. A., Van de Velde, S. L., and Veltman, B. (1994). Com-
plexity of scheduling multiprocessor tasks with prespecified processor
allocations. Discrete Appl. Math., 55, 259–272.

[23] Talebi, S., Bampis, E., Lucarelli, G., Katib, I., and Rouskas, G. N. (2014).
Spectrum assignment in optical networks: A multiprocessor scheduling
perspective. J. Opt. Commun. Netw., 6(8), 754–763.

[24] Bampis, E. and Kononov, A. (2001). On the approximability of schedul-
ing multiprocessor tasks with time dependent processing and processor
requirements. In Proceedings of the 15th International Parallel and
Distributed Processing Symposium, San Francisco.

[25] Shirazipourazad, S., Zhou, Ch., Derakhshandeh, Z., and Sen, A. (2013).
On routing and spectrum allocation in spectrum-sliced optical networks.
In Proceedings of IEEE INFOCOM, pages 385–389, April.

[26] Jinno, M., Kozicki, B., Takara, H., Watanabe, A., Sone, Y., Tanaka, T.,
and Hirano, A. (2010). Distance-adaptive spectrum resource allocation
in spectrum-sliced elastic optical path network. IEEE Commun. Mag.,
48(8), 138–145.

