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Abstract—Quantum entanglement distillation is a process to
extract a small number of high-fidelity entanglement from a
large number of low-fidelity ones, which in essence is to trade
yield (or survival rate) for fidelity. Among existing distillation
approaches, Gisin’s local filtering protocol is commonly adopted
in photonic quantum systems for distilling entangled photons in
polarization basis. Yet, the performance of Gisin’s filter is cursed
by the same fundamental trade-off between fidelity and yield.
To address this challenge, in this work, we propose a protocol
to recycle the disposed photons and improve their fidelity by
a designed (and optimized) local operator. The key parameters
of the proposed protocol are calculated by solving a constrained
optimization problem. In so doing, we achieve significantly higher
yield of high-fidelity entanglement pairs. We further evaluate
the performance of our designed protocol under two common
configurations of Gisin’s filter, namely full filter and partial
filter. Compared with existing distillation protocols, the results
demonstrate that our design achieves as much as 31.2% gain
in yield under the same fidelity, while only incurring moderate
system complexity in terms of invested hardware and extra
signaling for synchronization.

Index Terms—Entanglement distillation, Gisin’s local filter,
POVM, Optimization, Protocol design

I. INTRODUCTION

Quantum entanglement as a physical phenomenon in the mi-
croscopic world once troubled Einstein who called it “spooky
action at a distance,” but it was later validated by the well-
known Bell inequality test. Nowadays, despite many unan-
swered scientific questions around quantum entanglement,
quantum networks have been widely engineered and deployed
around the globe. The common goal of all these quantum net-
works is to distribute entanglement in large volume and high
quality [1], as entanglement is central to numerous applications
in future quantum internet such as quantum teleportation,
quantum computation, and quantum cryptography [2], [3].

When interacting with the environment like quantum mem-
ory and fibre channels, quantum entanglement unavoidably ex-
periences coherence degradation that may lead to entanglement
sudden death [4]. The common way to cope with decoherence
is entanglement distillation, by which a smaller number of
highly entangled states are extracted from a large number
of weakly entangled states [5]. Among existing entanglement
distillation protocols, Bennett’s controlled-NOT (CNOT) oper-
ation [6] and Gisin’s local filtering operation [7] are featured as
mainstream approaches. Compared with Bennett’s approach,
Gisin’s local filter has two appealing merits: (1) only local
operations are needed (i.e., no classical communications); (2)

This work was supported in part by the National Science Foundation under
grant OMA-2304118.

only a single copy of the entangled state is needed (i.e., no
ancilla entanglements are scarified).

Since its inception in 1996, Gisin’s local filter has been
extensively researched in both theory and experiments for en-
tanglement distillation. In principle, a pair of weakly entangled
qubits (and likewise for multipartite (>2 qubits) entanglement,
such as the GHZ state) can become strongly entangled when
passing through Gisin’s filters. Any qubits reflected by the
filter, however, will have their entanglement weakened, or in
some cases, destroyed. Such qubits can either be measured or
discarded as they are deemed useless at that point. While this
uselessness holds true in many (ideal) cases, for some input
states and/or under certain (practical) filter configurations,
these reflected qubits are shown to have non-zero concurrence,
i.e., they are still entangled despite weak strength. A natural
question to ask is whether such reflected qubits can be recycled
and turned into strongly entangled states. One can obviously
anticipate a much higher yield of usable entanglement if the
answer to this question is affirmative.

To this end, we present in this paper a novel protocol
— consisting of a non-unitary transformation and multi-party
agreement on coincidence count — to harvest and improve the
weakly entangled qubits that are reflected by Gisin’s filters.
To search for the optimal non-unitary operator, we formulate
a constrained optimization problem that maximizes the high-
fidelity survival rate, i.e., the total entanglement yield with
the minimum requirement on their fidelity. The protocol is
integrated into and examined under two common filter-based
entanglement distillation setups, namely the full filtering and
partial filtering schemes. Based on numerical simulations, we
demonstrate the superior performance of our qubit-recycling
protocol in terms of high-fidelity survival rate compared to
existing filter schemes.

The paper is organized as follows. To begin with, we survey
the recent advances in entanglement distillation in Section II.
Next, we introduce the basic concepts that are relevant to our
research problem in Section III. We then describe the principle
and design details of our proposed protocol in Section IV.
To evaluate the performance of the protocol, we present the
simulation results in Section V. Lastly, we conclude the paper
in Section VI with an outlook for the future work.

II. RELATED WORKS

In this section, we review recent advancements in en-
tanglement distillation that have contributed to the ongoing
development of the field. We organize our discussion into
three subtopics: (1) distillation of multipartite states, which
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extends the scope of entanglement distillation beyond simple
bipartite systems; (2) distillation using hyperentanglement,
an emerging approach that utilizes multiple modes of en-
tanglement to enhance distillation; and (3) distillation using
reset-and-reuse operations in a quantum computer, a novel
methodology that employs the inherent capabilities of quantum
computing hardware to facilitate the distillation process by
recycling and re-entangling ancilla qubits. By examining these
recent developments, we aim to provide an overview of the
current state of entanglement distillation research and highlight
the significance and novelty of our proposed qubit recycling
protocol.

1) Distillation of Multipartite Entanglement States: The
distillation of multipartite entangled states, such as GHZ states,
has garnered attention due to the advantages of entangle-
ment being shared between more than two parties. Huang
et al. [8] proposed a single-copy-based distillation scheme
for amplitude-damped W states and amplitude-damped GHZ
states. De Bone et al. [9] investigated the creation and dis-
tillation of GHZ states out of nonperfect Bell pairs. They
introduced a heuristic dynamic programming algorithm to
optimize protocols for creating and purifying GHZ states.

2) Distillation Utilizing Hyperentanglement: Utilizing hy-
perentanglement has been explored as a promising technique
for enhancing entanglement distillation schemes. Zhou and
Sheng [10] proposed an efficient two-step entanglement pu-
rification protocol for polarization entanglement using a single
copy of states by utilizing hyperentanglement in the time bin
and spatial modes. Ecker et al. [11] experimentally demon-
strated single-copy entanglement distillation using pairs of
single photons entangled in both the polarization and energy-
time domains.

3) Reset-and-Reuse: In recent work by Germain et al. [12],
the authors explore the potential of a reset-and-reuse operation
in quantum computers to substantially reduce yield loss in
entanglement distillation protocols. They implement multi-
pass distillation schemes, specifically BBPSSW and DEJMPS,
and test them on the IBM-Q environment. This reset-and-reuse
feature shows a significant minimization in the number of
qubits required for distillation, bringing the number of qubits
required per pass down from exponential to constant — a
notably large improvement. It should be noted that such a
reset-and-reuse operation, while available in quantum comput-
ers, is not currently available in a quantum network setting,
as there are many challenges associated with re-entangling
distance-separated ancillary qubits after measurement. Our
work proposes a novel single-copy qubit recycling protocol
which does not require any such re-entangling and can thus be
used by a quantum network with currently available hardware.

III. PRELIMINARIES

A. Gisin’s Local Filter

In the demonstrative experiment by Kwiat [13], Gisin’s local
filter was realized by a series of coated glass slabs, tilted
against the vertical axis by the Brewster’s angle, as shown
by an example in Fig. 1. By adjusting the configuration of
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Figure 1: Gisin’s filter implemented by a Brewster plate.

these slabs (e.g., angles and coated materials), the transmission
probability 𝑇𝐻 (resp., 𝑇𝑉 ) for horizontally (resp. vertically)
polarized incident photons can be tuned, owing to the well-
known polarization-dependent reflectivity [14]. As a result,
undesired states (i.e., noises) can be selectively blocked (and
reflected in another direction), thus leaving the surviving
photons to be more concentrated in the desired entangled
states. In theory, the Gisin’s local filter can be modeled
as a positive operator-valued measurement (POVM), namely
{𝑀0, 𝑀1} where 𝑀0 =

(
𝛼 0
0 𝛽

)
and 𝑀1 = 𝐼 − 𝑀0 are positive

semi-definite Hermitian. 𝑀0 (𝑀1 likewise) is realized by the
projector 𝑚0 =

√
𝛼 |0⟩⟨0| +

√
𝛽 |1⟩⟨1| and 𝑀0 = 𝑚0 ∗𝑚†

0. When
implementing the POVM (or Gisin’s filter) in photonic sys-
tems, 𝛼 and 𝛽 respectively denote the transmission probability
𝑇𝐻 and 𝑇𝑉 of the glass slabs. That is to say, the design of
Gisin’s local filter is boiled down to the construction of 𝛼′s
and 𝛽′s.

B. Channel Decoherence Model

In this work, we consider a (photonic) quantum network
that distributes EPR pairs between any two arbitrary nodes. An
entanglement source (ES) generates EPR pairs by directing a
laser beam at a BBO (beta-barium borate) crystal. Without loss
of generality, the EPR pair in the state of |Φ+⟩ = 1√

2
( |00⟩+|11⟩)

or 𝜌 = |Φ+⟩⟨Φ+ | is assumed.
Then, each qubit of the EPR pair is distributed to Alice and

Bob through independent decoherence channels. We consider
the amplitude damping model in which state |1⟩ may decay
into |0⟩. Mathematically, an amplitude damping channel E
is described by the following super-operators, a.k.a, Kraus
operators:

𝐸 𝑖
0 =

[
1 0
0

√
𝛾𝑖

]
, 𝐸 𝑖

1 =

[
0 √

𝛾𝑖
0 0

]
, (1)

where 𝑖 ∈ {𝐴, 𝐵}, 𝛾𝑖 = 1−𝑒−𝑡𝑖/𝑇1 is a time-dependent damping
factor in which 𝑇1 is defined as the time it takes for the |1⟩
state to settle into the |0⟩ (vice versa). Denote 𝛾𝑖 = 1−𝛾𝑖 . After
channel decoherence, the received state at Alice and Bob is

𝜌′ = E(𝜌) =
1∑︁
𝑗=0

1∑︁
𝑘=0

(
𝐸𝐴

𝑗 ⊗ 𝐸𝐵
𝑘

)
𝜌

(
𝐸𝐴

𝑗 ⊗ 𝐸𝐵
𝑘

)†
. (2)

For the sake of notation simplicity, in the remainder of this



paper, we consider the same fading channel for ES-A and ES-
B, i.e., 𝛾 = 𝛾𝐴 = 𝛾𝐵.

IV. DESIGN PRINCIPLES OF QUBIT RECYCLING

In this section, we consider two common entanglement
distillation setups in the literature, with one being that both
Alice and Bob implement Gisin’s local filters (coined as “full
filtering”) while the other being that either Alice or Bob
implements a Gisin’s local filter (coined as “partial filtering”).
While both setups have their merits, we will investigate the
best use case of our proposed qubit-recycling idea and how
much gain it can offer.

A. Qubit Recycling under Full Filtering

1) Typical full filtering design: To offset the decoherence
incurred by the amplitude damping channel and restore the
received state 𝜌′ closer to its original entanglement state
𝜌, Alice and Bob implement Gisin’s local filters, which
are mathematically defined as the POVMs {𝑀𝐴,0, 𝑀𝐴,1} and
{𝑀𝐵,0, 𝑀𝐵,1} respectively, for entanglement distillation. We
consider the local filters performed by Alice and Bob described
by the operation:

𝑀𝑖,0 =

[
𝛼𝑖 0
0 𝛽𝑖

]
, 𝑀𝑖,1 =

[
𝛽𝑖 0
0 𝛼𝑖

]
, (3)

where 𝛼𝑖 , 𝛽𝑖 ∈ (0, 1) and 𝛼1 + 𝛽𝑖 = 1 complying with the
POVM’s property. In existing work, full filtering schemes
have been widely explored, wherein Alice and Bob each
distills her/his respective qubit independently. This process is
mathematically described by applying POVMs on both qubits.
We refer to the state after undergoing both filters, i.e., the state
Alice and Bob want to keep, as

𝜌̃11 =
1
𝑆11

(
√︁
𝑀𝐴,1 ⊗

√︁
𝑀𝐵,1)𝜌′ (

√︁
𝑀𝐴,1 ⊗

√︁
𝑀𝐵,1)†. (4)

where 𝑆11 is the normalization factor that is 𝑆11 =

Tr{(
√︁
𝑀𝐴,1 ⊗

√︁
𝑀𝐵,1)𝜌′ (

√︁
𝑀𝐴,1 ⊗

√︁
𝑀𝐵,1)†}. The value of 𝑆

represents the likelihood that both Alice’s and Bob’s qubits
pass through the Gisin’s local filters, thus can be considered
as the success probability, or survival rate, of the distillation
process. Note that as we consider indentical channels for ES-A
and ES-B, that is 𝛾𝐴 = 𝛾𝐵, Alice’s and Bob’s filter will have
the same configurations. Therefore, we can drop the subscript
for A and B and simply let 𝛼 = 𝛼𝐴 = 𝛼𝐵 (likewise for 𝛽).

The calculation of the POVM parameters {𝛼, 𝛽} is usually
performed by solving a constrained optimization problem that
seeks to maximize the high-fidelity yield, i.e. the success
probability while meeting a minimum requirement on the
entanglement fidelity. The reason for posing a hard constraint
on fidelity is because some quantum applications (e.g., QKD)
have a stringent requirement on the minimum fidelity to be
considered usable (e.g., satisfying a minimum secret key rate)
[15]. Mathematically,

{𝛼∗, 𝛽∗} = arg max
{𝛼,𝛽}

𝑆11; s.t. Tr
[√︃√

𝜌𝜌̃11
√
𝜌

]2
≥ 𝐹𝑡ℎ . (5)

This problem is a typical multivariate quadratic optimization
problem, which can be easily proven to be convex by checking
the second order derivatives of the objective and constraint
functions. By Slater’s condition, the necessary and sufficient
conditions for a solution {𝛼∗, 𝛽∗} to be the optimal solution
are the KKT conditions.

2) Residue entanglement in reflected qubits: When Alice’s
and Bob’s local filters are configured using the parameters
{𝛼∗, 𝛽∗}, a photon pair passing through both filters is guaran-
teed to have a desired fidelity level. Yet, with such optimal
filter configuration, the reflected qubit(s) could still be usable
in the sense that there is a certain degree of entanglement
remained.

Proposition 1. Suppose an EPR pair passes through an
amplitude damping channel with parameter 𝛾 and is filtered
using Gisin’s local filter with a POVM with parameters {𝛼, 𝛽}.
The resulting state of the reflected photons, 𝜌̃00, is entangled
when 𝛼, 𝛽 ≠ 0 and 𝛾 ≠ 1.

Proof. Note that 𝜌̃00 =
𝛼2

(
1
2 + 𝛾2

2

)
0 0 1

2𝛼𝛽 (1 − 𝛾)
0 1

2𝛼𝛽 (1 − 𝛾) 𝛾 0 0
0 0 1

2𝛼𝛽 (1 − 𝛾) 𝛾 0
1
2𝛼𝛽 (1 − 𝛾) 0 0 1

2 𝛽
2 (1 − 𝛾)2


.

This density matrix is separable if and only if its partial
transpose is positive [16]. This is called the PPT condition,
which is equivalent to the condition that its partial transpose
has exclusively non-negative eigenvalues. In other words, if at
least one of its eigenvalues is negative, then the state 𝜌̃00 is
entangled. Note that its partial transpose1 is the density matrix
𝛼2

(
1
2 + 𝛾2

2

)
0 0 0

0 1
2𝛼𝛽(1 − 𝛾)𝛾 1

2𝛼𝛽(1 − 𝛾) 0
0 1

2𝛼𝛽(1 − 𝛾) 1
2𝛼𝛽(1 − 𝛾)𝛾 0

0 0 0 1
2 𝛽

2 (1 − 𝛾)2


which has eigenvalues

𝜆1 = −1
2
𝛼𝛽(−1 + 𝛾)2, 𝜆2 =

1
2
𝛽2 (−1 + 𝛾)2,

𝜆3 =
1
2
𝛼2 (1 + 𝛾2), 𝜆4 =

1
2
𝛼𝛽(1 − 𝛾2).

(6)

Note that 𝜆2, 𝜆3 and 𝜆4 all take on non-negative values for
all 𝛼, 𝛽, 𝛾 ∈ [0, 1]. The eigenvalue 𝜆1, however, takes on a
negative value except when 𝛼 = 0, 𝛽 = 0 or 𝛾 = 1. Therefore,
𝜌̃00, is entangled when 𝛼, 𝛽 ≠ 0 and 𝛾 ≠ 1. ■

3) Recycling reflected qubits: In light of the remaining us-
able entanglement in the reflected qubits, we propose a second

1The partial transpose generally is taken with respect to one qubit, corre-
sponding to either Alice’s or Bob’s qubit. However, the eigenvalues of the
partial transpose are invariant under which qubit the partial transpose is taken
on, because the partial transpose with respect to Alice’s qubit is equal to
the transpose of the partial transpose taken with respect to Bob’s qubit. In
this case, then, since the partial transpose is symmetric, it is the same partial
transpose matrix for both Alice’s and Bob’s qubits.
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Figure 2: Qubit recycling under the full filtering setup.

Gisin’s local filter, denoted as FilterA/B,2, to harvest them.
The basic idea is shown in Fig. 2, in which the reflected
qubits are distilled by another filter. Then, the two light paths
are integrated and analyzed by a single-photon avalanche
detector (SPAD). Note that a small portion of the reflected
qubits from Filter*,1 will be reflected by Filter*,2
again. While they can be looped back for further recycling,
we choose to measure them as their entanglement strength
becomes much weaker than that observed when they are only
reflected once. Technically, by calculating the concurrence
following Proposition 1, we can show that the entanglement
strength progressively deteriorates as qubits are reflected by
each subsequent filter.

To determine the optimal configurations of Filter*,2,
let us first define an outcome space for Filter*,1 as Ω1
= {𝑇𝐴,1𝑇𝐵,1, 𝑇𝐴,1𝑅𝐵,1, 𝑅𝐴,1𝑇𝐵,1, 𝑅𝐴,1𝑅𝐵,1}. For example, the
outcome 𝑤 = 𝑅𝐴,1𝑇𝐵,1 implies that Alice’s qubit is reflected
while Bob’s is transmitted. In the traditional full filtering
scheme, this outcome would be considered a failure because
no coincidence click is observed. In addition, we can define the
outcome space for the second-tier local filters Ω2 = { ∅𝐴,2∅𝐵,2,
𝑇𝐴,2∅𝐵,2, 𝑅𝐴,2∅𝐵,2, ∅𝐴,2𝑇𝐵,2, ∅𝐴,2𝑅𝐵,2, 𝑇𝐴,2𝑇𝐵,2, 𝑇𝐴,2𝑅𝐵,2,
𝑅𝐴,2𝑇𝐵,2, 𝑅𝐴,2𝑅𝐵,2} in which ∅ is an null event that implicitly
tells that no qubit arrives at this filter. Among these possible
outcomes, we collect the outcomes which result in the final
distilled entanglement in a set Ω✓ = {𝑇𝐴,1𝑇𝐵,1 ∧ ∅𝐴,2∅𝐵,2,
𝑇𝐴,1𝑅𝐵,1∧∅𝐴,2𝑇𝐵,2, 𝑅𝐴,1𝑇𝐵,1∧𝑇𝐴,2∅𝐵,2, 𝑅𝐴,1𝑅𝐵,1∧𝑇𝐴,2𝑇𝐵,2}
which gives us the survival rate 𝑃✓ =

∑4
𝑖=1 Pr(𝜔𝑖 ∈ Ω✓).

Specifically, the survival rates for the four cases in Ω✓ are
respectively calculated as follows

Pr(𝑇𝐴,1𝑇𝐵,1 ∧ ∅𝐴,2∅𝐵,2) = 𝑆11

Pr(𝑇𝐴,1𝑅𝐵,1 ∧ ∅𝐴,2𝑇𝐵,2) =
Tr{(

√︁
𝑀𝐴,1 ⊗

√︁
𝑀𝐵,0)𝜌′ (

√︁
𝑀𝐴,1 ⊗

√︁
𝑀𝐵,0)†}

× Tr{(𝐼 ⊗
√︃
𝑀

′
𝐵,1) 𝜌̃10 (𝐼 ⊗

√︃
𝑀

′
𝐵,1)

†}

Pr(𝑅𝐴,1𝑇𝐵,1 ∧ 𝑇𝐴,2∅𝐵,2) =
Tr{(

√︁
𝑀𝐴,0 ⊗

√︁
𝑀𝐵,1)𝜌′ (

√︁
𝑀𝐴,0 ⊗

√︁
𝑀𝐵,1)†}

× Tr{(
√︃
𝑀

′
𝐴,1 ⊗ 𝐼) 𝜌̃01 (

√︃
𝑀

′
𝐴,1 ⊗ 𝐼)†}

Pr(𝑅𝐴,1𝑅𝐵,1 ∧ 𝑇𝐴,2𝑇𝐵,2) =
Tr{(

√︁
𝑀𝐴,0 ⊗

√︁
𝑀𝐵,0)𝜌′ (

√︁
𝑀𝐴,0 ⊗

√︁
𝑀𝐵,0)†}

× Tr{(
√︃
𝑀

′
𝐴,1 ⊗

√︃
𝑀

′
𝐵,1) 𝜌̃00 (

√︃
𝑀

′
𝐴,1 ⊗

√︃
𝑀

′
𝐵,1)

†}

where the second-tier filter’s POVM operator is captured by
{𝑀 ′

𝐴/𝐵,0, 𝑀
′

𝐴/𝐵,1}. Moreover, for any cases in 𝜔𝑖 ∈ Ω✓,
we denote the output quantum state as 𝜌̂11,𝜔𝑖

which can be
calulated similar to Eq. (4).

Then, the search of optimal {𝛼′, 𝛽′} for the POVM operator
{𝑀 ′

𝐴/𝐵,0, 𝑀
′

𝐴/𝐵,1} of Filter*,2 is formulated as the follow-
ing optimization problem.

{𝛼′∗, 𝛽′∗} =

arg max
{𝛼′ ,𝛽′ }

4∑︁
𝑖=1

Pr(𝜔𝑖 ∈ Ω✓) · 1(Tr
[√︃√

𝜌𝜌̂11,𝜔𝑖

√
𝜌

]2
≥ 𝐹𝑡ℎ),

(7)
in which 1(·) is the indicator function that is 1 if its provided
statement is true; and 0 otherwise.

B. Qubit Recycling Under Partial Filtering

Partial filtering is another widely adopted configuration in
entanglement distillation for its higher survival rate. In its
setup, depending on which channel has stronger decoherence,
only one of Alice or Bob implements a local filter. This setup
naturally gives rise to a higher survival rate without losing
too much of the fidelity. Since this paper considers identical
channel decoherence on ES-A and ES-B, there is no difference
of placing a filter on Alice’s or Bob’s end. Therefore, without
loss of generality, we consider the setup in which Alice filters
her qubit, while Bob does not.

First of all, examining the single-filter case, we call the state
transmitted by FilterA,1, i.e., the state Alice and Bob want
to keep in a traditional partial filtering design without qubit
recycling, as

𝜌̃1 =
1
𝑆1

(
√︁
𝑀𝐴,1 ⊗ 𝐼)𝜌′ (

√︁
𝑀𝐴,1 ⊗ 𝐼)†, (8)

where 𝑆1 is a the normalization factor. The goal is find the
optimized parameters for FilterA,1 by solving a fidelity-
constrained yield-maximization problem similar to (5). Math-
ematically,

{𝛼∗, 𝛽∗} = arg max
{𝛼,𝛽}

𝑆1; s.t. Tr
[√︃√

𝜌𝜌̃1
√
𝜌

]2
≥ 𝐹𝑡ℎ . (9)

Moreover, we define the outcome space of FilterA,1
as Ω′

1 = {𝑇𝐴,1, 𝑅𝐴,1}, and that of FilterA,2 as Ω′
2 =

{∅𝐴,2, 𝑇𝐴,2, 𝑅𝐴,2}. Analogously to the full filter case, we
collect the outcomes which result in a distilled entanglement
pair, giving us the set Ω′

✓
= {𝑇𝐴,1 ∧ ∅𝐴,2, 𝑅𝐴1 ∧𝑇𝐴,2} and the

survival rate 𝑃′
✓
=
∑2

𝑖=1 Pr(𝜔𝑖 ∈ Ω′
✓
). This similarly leads us



to the following analogous constrained optimization problem.

{𝛼′∗, 𝛽′∗} =

arg max
{𝛼′ ,𝛽′ }

2∑︁
𝑖=1

Pr(𝜔′
𝑖 ∈ Ω′

✓) · 1(Tr
[√︃√

𝜌𝜌̂1,𝜔′
𝑖

√
𝜌

]2
≥ 𝐹𝑡ℎ),

(10)
.

V. PERFORMANCE EVALUATION

A. Simulation Methodology

In order to evaluate the performance of our proposed qubit
recycling protocol, we developed a simulation model which
solves the constrained optimization problems (5), (7), (9), and
(10). The simulation is implemented in Python, and consists
of the following steps:

1) Initialization: At the beginning of the simulation, the
initial parameters and constraints of the problem are
defined. The quantum system 𝜌 is prepared, we define a
range of 𝛾 values to evaluate, and we fix our 𝐹𝑡ℎ value.
Specifically, 𝐹𝑡ℎ values of 0.7 and 0.9 were selected.

2) First filter parameter optimization: The simulation
first assumes a single filter model as a benchmark,
and refines the parameters of the local POVM operator
Filter*,1 through an iterative optimization algorithm.
The optimization process iterates through the given 𝛾

value range for our given 𝐹𝑡ℎ value and finds the {𝛼, 𝛽}
values which respectively maximize (5) and (9).

3) Second filter parameter optimization: Given the opti-
mized {𝛼, 𝛽} value corresponding to a given 𝛾 and 𝐹𝑡ℎ
for Filter*,1, a second filter Filter*,2 is optimized
using similar iterative methods to solve (7) and (10).

4) Evaluation: The optimized local operators are then
applied to the prepared quantum system, and the survival
rate and fidelity of the resulting entanglement pairs
are calculated, both for the normal filtering case (i.e.,
benchmark), and for filtering with recycling case, for
comparison. Specifically, the normal filtering case is
separately instantiated with full filtering and partial
filtering schemes.

By following the aforementioned simulation methodology,
we are able to determine the optimal design of our local
operator for recycling the disposed photons, achieving a signif-
icant increase in high-fidelity survival rate over the optimized
benchmark scheme. In the following subsections, we will
discuss the specific results obtained for the full filtering and
partial filtering schemes.

B. Full Filter Results

Our simulation results demonstrate that the full filtering
scheme with qubit recycling shows a significant improvement
in survival rate compared to the benchmark single filter
protocol, shown in Fig. 3a and Fig. 3b. For the 𝐹𝑡ℎ = 0.7
case, our design adds 20.8% to 31.2% additional survival
rate compared to the benchmark, for 𝛾 ∈ (0.3676, 0.4059).
Similarly, for the 𝐹𝑡ℎ = 0.9 case we observe a survival rate
addition between 30.6% and 31.2%, for 𝛾 ∈ (0.1056, 0.1085).

The limited range of 𝛾 values is easily interpreted, as the
values lower than this produce states with fidelity above the
threshold with no filtering necessary, thus the optimal choice
is to not use Gisin’s local filter. In other words, the channel
introduces such an insignificant amount of noise that the
entanglement can simply pass through the channel without
any filtering and still maintain high fidelity. For 𝛾 values above
this range, the amplitude damping effect is so strong that there
does not exist a {𝛼, 𝛽} values such that filtering will achieve a
fidelity greater than 𝐹𝑡ℎ. To achieve high-fidelity entanglement
in the high 𝛾 range, one could cascade filters in series with
Filter*,1 which constitutes an orthogonal research topic.

An analysis of the contributions of different filtering events
to the final survival rate reveals that the improvement comes
mostly from the 𝜌̃10 and 𝜌̃01 cases — implying that one
photon is reflected in one arm while its entangled counterpart
is transmitted in the other arm, as shown in the histogram in
Fig. 3c. This indicates that our proposed qubit recycling pro-
tocol effectively recycles the disposed photons in these cases,
leading to a higher overall survival rate without compromising
the fidelity of the entangled photon pairs.

C. Partial Filter Results

Our simulation results for the partial filtering scheme show
an improvement in the survival rate of similar degree to the
full filtering scheme, which can be seen in Fig. 3d and Fig.
3e. Specifically, for the 𝐹𝑡ℎ = 0.7 case, the partial filtering
scheme adds between 20.5% and 25.0% to the benchmark
survival rate, for 𝛾 ∈ (0.3676, 0.3824). For the 𝐹𝑡ℎ = 0.9 case,
we similarly observe an additional 24.3%-25.0% increase in
survival rate, for 𝛾 ∈ (0.1056, 0.1079).

We note an observed tradeoff between the full and partial
filtering schemes. The partial filtering scheme has 𝛾 ranges
for which it is a viable design which are proper subsets of
the corresponding full filter’s 𝛾 ranges, however the overall
survival rates are significantly higher for the partial filtering
scheme within those ranges. For the 𝐹𝑡ℎ = 0.7 case, the highest
survival rate using the full filtering scheme is 56.1%, while the
corresponding partial filtering scheme has a 74.9% survival
rate. A similar difference is observed in the 𝐹𝑡ℎ = 0.9 case,
where the full filtering scheme has a maximum survival rate
of 56.2%, and the corresponding partial filtering scheme has
a survival rate of 75.0%.

This tradeoff can be explained by the increase in the
probability of photons being initially transmitted through the
first filter. Given that the filter is on only one side of the
entanglement pair in the partial filtering scheme, compared
to both sides in the full filtering scheme, the probability of
being transmitted is much greater. This allows for less filtering
being possible, though, which explains the smaller 𝛾 ranges
for which we see a gain in survival rate. These differences
in contribution of the transmitted photons can be seen by
comparing the histograms Fig. 3c and Fig. 3f.
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Figure 3: (a, b) The survival rates with respect to 𝛾 for given 𝐹𝑡ℎ values for the full filtering scheme and (d, e) for the partial filtering
scheme. A breakdown of which outcomes contribute to survival rate for a given 𝛾 and 𝐹𝑡ℎ is plotted for (c) the full filtering and (f) the

partial filtering schemes.

D. Synchronization and Multi-party Agreement
The results confirm the effectiveness of our qubit recycling

protocol in enhancing the performance of entanglement distil-
lation in both the full filtering and partial filtering schemes.
However, both the full filtering scheme as well as the partial
filtering scheme suffer from a potential synchronization chal-
lenge, which occurs in the 𝜌̃10 and 𝜌̃01 cases in the full filtering
scheme, or the 𝜌̃0 case in the partial filtering scheme, where
one photon in an entangled pair passes through its first filter
(or is not filtered in the case of the partial filtering scheme),
while the corresponding photon reflects off of its respective
first filter, and subsequently passes through its second filter. As
a result, the arrival times of the photons at Alice’s and Bob’s
detectors will be different, leading to a discrepancy in their
timesheets. When Alice and Bob compare their timesheets to
identify photon coincidences, this discrepancy may cause diffi-
culties in recognizing these events as coincidences, potentially
leading them to be incorrectly discarded.

This time discrepancy can be avoided if Alice and Bob
each measure the distance of their respective recycled light
paths and share this information with each other, as well as
the entanglement source. Alice and Bob can then compensate
for the time difference for the recycled photons. In addition,
the entanglement source can also use this information to emit
photons only at intervals which are not equal to the interval
between the arrivals of the entangled photons in these cases.
This allows Alice and Bob to be certain that any photons
arriving with such an interval between them can in fact be
labeled a coincidence pair.

Furthermore, it is important to note that in the full filtering
scheme, even if the 𝜌̃10 and 𝜌̃01 cases are excluded, the
inclusion of the 𝜌̃00 case alone still results in a benefit in
survival rate, albeit at a lower amount. Specifically, we see a
6.06% increase in survival rate for 𝐹𝑡ℎ = 0.7, and a 6.24%
increase for 𝐹𝑡ℎ = 0.9. This is illustrated by Fig. 3c.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel qubit recycling
protocol for improving the yield of high-fidelity entangled
qubits in photonic quantum systems. By employing a second
local filter, our approach effectively reclaims discarded en-
tangled qubits, resulting in a substantial increase in the yield
of high-fidelity entanglement pairs. Our proposed protocol
achieves up to a 31.2% gain in high-fidelity survival rate
while incurring only moderate system complexity in terms of
invested hardware and extra signaling for synchronization. Our
work demonstrates the potential of qubit recycling in quantum
entanglement distillation, which could have implications for
the development of scalable and robust quantum communica-
tion networks.

An avenue for future work is to examine the applications of
qubit recycling in different network models (e.g. multipartite
entanglement, non-symmetric noise channels.) Another avenue
is examining the local filter with a zero-valued parameter
which breaks entanglement in the reflected photons. In some
network models, using such a filter can be optimal, so finding
use of these photons could lead to improvement over our
proposed protocol.



REFERENCES

[1] L. Chen, K. Xue, J. Li, N. Yu, R. Li, J. Liu, Q. Sun, and J. Lu, “A
heuristic remote entanglement distribution algorithm on memory-limited
quantum paths,” IEEE Transactions on Communications, 2022.

[2] R. Yu, R. Dutta, and J. Liu, “On topology design for the quantum
internet,” IEEE Network, vol. 36, no. 5, pp. 64–70, 2022.

[3] Z. Li, K. Xue, Q. Jia, J. Li, D. S. Wei, J. Liu, and N. Yu, “A cluster-
based networking approach for large-scale and wide-area quantum key
agreement,” Quantum Information Processing, vol. 21, no. 5, p. 192,
2022.

[4] M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. Walborn,
P. S. Ribeiro, and L. Davidovich, “Environment-induced sudden death
of entanglement,” Science, vol. 316, no. 5824, pp. 579–582, 2007.

[5] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Con-
centrating partial entanglement by local operations,” Physical Review A,
vol. 53, no. 4, p. 2046, 1996.

[6] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters,
“Mixed-state entanglement and quantum error correction,” Physical
Review A, vol. 54, no. 5, p. 3824, 1996.

[7] N. Gisin, “Hidden quantum nonlocality revealed by local filters,” Physics
Letters A, vol. 210, no. 3, pp. 151–156, 1996.

[8] Y.-S. Huang, H.-B. Xing, M. Yang, Q. Yang, W. Song, and Z.-L. Cao,
“Distillation of multipartite entanglement by local filtering operations,”
Physical Review A, vol. 89, no. 6, p. 062320, 2014.

[9] S. de Bone, R. Ouyang, K. Goodenough, and D. Elkouss, “Protocols
for creating and distilling multipartite ghz states with bell pairs,” IEEE
Transactions on Quantum Engineering, vol. 1, pp. 1–10, 2020.

[10] L. Zhou and Y.-B. Sheng, “High-efficient two-step entanglement pu-
rification using hyperentanglement,” arXiv preprint arXiv:2101.09006,
2021.

[11] S. Ecker, P. Sohr, L. Bulla, M. Huber, M. Bohmann, and R. Ursin,
“Experimental single-copy entanglement distillation,” Physical Review
Letters, vol. 127, no. 4, p. 040506, 2021.

[12] J. Germain, R. Dantu, M. Thompson, and M. Dockendorf, “Quantum
networks: Reset-and-reuse can be a game-changer for entanglement
via distillation,” in 2022 IEEE International Conference on Quantum
Computing and Engineering (QCE). IEEE, 2022, pp. 855–858.

[13] P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental
entanglement distillation and ‘hidden’non-locality,” Nature, vol. 409, no.
6823, pp. 1014–1017, 2001.

[14] M. Born and E. Wolf, Principles of optics: electromagnetic theory of
propagation, interference and diffraction of light. Elsevier, 2013.

[15] W. Zhang, T. van Leent, K. Redeker, R. Garthoff, R. Schwonnek,
F. Fertig, S. Eppelt, W. Rosenfeld, V. Scarani, C. C.-W. Lim et al., “A
device-independent quantum key distribution system for distant users,”
Nature, vol. 607, no. 7920, pp. 687–691, 2022.

[16] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, “Complete family
of separability criteria,” Physical Review A, vol. 69, no. 2, p. 022308,
2004.


	Introduction
	Related Works
	Distillation of Multipartite Entanglement States
	Distillation Utilizing Hyperentanglement
	Reset-and-Reuse


	Preliminaries
	Gisin's Local Filter
	Channel Decoherence Model

	Design Principles of Qubit Recycling
	Qubit Recycling under Full Filtering
	Typical full filtering design
	Residue entanglement in reflected qubits
	Recycling reflected qubits

	Qubit Recycling Under Partial Filtering

	Performance Evaluation
	Simulation Methodology
	Full Filter Results
	Partial Filter Results
	Synchronization and Multi-party Agreement

	Conclusion and Future Work
	References

