
ABSTRACT

TALEBI, SAHAR. On Routing and Spectrum Assignment in Elastic Optical Networks. (Under
the direction of Dr. George Rouskas and Dr. Rudra Dutta.)

In recent years, OFDM has been the focus of extensive research efforts in optical transmission

and networking, initially as a means to overcome physical impairments in optical communications.

However, unlike, say, in wireless LANs or xDSL systems where OFDM is deployed as a

transmission technology in a single link, in optical networks it is being considered as the

technology underlying the novel elastic network paradigm. Hence, we dedicate this work to

study and propose different solution methods for elastic optical networks (EONs) topologies.

In Chapter 1, we discuss the necessity of applying EONs along with all the benefits it brings

to the optical networks. We also review the set of constraints (i.e. spectrum contiguity and

continuity constraints) that must be satisfied during traffic demands allocation to the spectrum.

Then, we classify existing spectrum management techniques for EONs, including offline and

online routing and spectrum assignment (RSA), distance-adaptive RSA, fragmentation-aware

RSA, traffic grooming, survivability, and multi-path RSA problems in Chapter 2.

We then provide a new insight into the spectrum assignment (SA) problem in mesh net-

works in Chapter 3 and show that the SA problem transforms to the problem of scheduling

multiprocessor tasks on dedicated processors. Similarly, we prove that the RSA problem with

fixed-alternate routing in general-topology (mesh) networks (and, hence, in rings as well) is a

special case of a multiprocessor scheduling problem.

Based on this new perspective, we show in Chapter 4 that the SA problem in chain (linear)

networks is NP-hard for four or more links, but is solvable in polynomial time for three links. We

also develop new constant-ratio approximation algorithms for the SA problem in chain networks

with the fixed number of links. Finally, we introduce a suite of list scheduling algorithms that

are computationally efficient and simple to implement, yet produce solutions that, on average,

are within 1-5% of the lower bound.

In Chapter 5, we consider bidirectional ring networks and investigate two problems: (1) the

SA problem under the assumption that each demand is routed along a single fixed path (e.g., the

shortest path), and (2) the general case of the RSA problem whereby a routing decision along

the clockwise and counter-clockwise directions must be made jointly with spectrum allocation.

Based on insights from multiprocessor scheduling theory, we investigate the complexity of these

two problems and develop new constant-ratio approximation algorithms with a ratio that is

strictly smaller than the best known ratio to date.

We also show that the distance-adaptive RSA (DA-RSA) problem in mesh networks is a

special case of a multiprocessor scheduling problem in Chapter 6. We then develop a suite



of efficient and effective DA-RSA algorithms that build upon list scheduling concepts. The

numerical results indicate that as the network size increases beyond a point that depends on the

traffic demand distribution, the spectrum overhead associated with using a long path becomes

sufficiently high that it is always best to use the shortest path. Overall, the best algorithm is

always within 10-20% of the lower bound, indicating that scheduling concepts can be successfully

adapted to address network design problems.

In Chapter 7, we examine the complexity of the DA-RSA problem for general (mesh)

networks and derive a set of conditions that makes this problem either NP-hard or polynomially

solvable. We also develop an efficient and effective algorithm for mesh networks that builds

upon list scheduling concepts in which routing and spectrum allocation decisions are made

jointly. We then run an extensive simulations for DA-RSA in mesh networks to estimate the

required amount spectrum for different size networks. Our work explores the tradeoffs involved

in DA-RSA algorithm design, and opens up new research directions in leveraging the vast

literature in scheduling theory to address important and practical problems in network design.

Finally, we discuss future research directions for the SA and RSA problems in EONs in

Chapter 8.
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Chapter 1

Elastic Optical Networks (EONs)

1.1 Introduction and Related Work

Optical networking technologies are crucial to the operation of the global Internet and its ability

to support critical and reliable communication services. In response to rapidly growing IP traffic

demands, 40 and 100 Gbps line rates over long distances have been deployed, while there is

substantial research and development activity targeted to commercializing 400 and 1000 Gbps

rates [1]. On the other hand, emerging applications, including IPTV, video-on-demand, and

inter-datacenter networking, have heterogeneous bandwidth demand granularities that may

change dynamically over time. Accordingly, mixed line rate (MLR) networks [2] have been

proposed to accommodate variable traffic demands.

Nevertheless, optical networks operating on a fixed wavelength grid [3] necessarily allocate a

full wavelength even to traffic demands that do not fill its entire capacity [4]. This inefficient

utilization of spectral resources is expected to become an even more serious issue with the

deployment of higher data rates [5, 6]. Figure 1.1 compares fixed IUT grid versus flexible grid

optical networks. As it can be seen there, the fixed grid optical networks can only support data

rates of 10, 40, and 100 Gbps with a great portion of bandwidth capacity left unutilized, whereas

flexible grid optical networks can also support 400 and 1000 Gbps rates [7]. Still, some parts of

bandwidth capacity are unusable to transmit data in flexible grid optical networks, in that the

traffic demands associate with them cross the established grids (i.e. black bar).

Elastic optical networks [7,8] have the potential to overcome the fixed, coarse granularity

of existing WDM technology and are expected to support flexible data rates, adapt dynami-

cally to variable bandwidth demands by applications, and utilize the available spectrum more

efficiently [6]. The enabling technology for such an agile network infrastructure is orthogonal

frequency division multiplexing (OFDM), and other efficient transmission techniques including

Nyquist WDM and low-density parity-check (LDPC) based transmission [7]. OFDM, a modula-
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tion format that has been widely adopted in broadband wireless and copper-based communication

systems, is a promising candidate for high-speed (i.e., beyond 100 Gbps) optical transmission [9].

Other key technologies include distance-adaptive modulation, bandwidth-variable transponders

and flexible spectrum selective switches; for a recent survey of optical OFDM and related

technologies, and how they impact network and control algorithm design, we refer the reader

to [9].

OFDM is a multiple-carrier modulation scheme that splits a data stream into a large number

of sub-streams [10]. Each data sub-stream is carried on a narrowband sub-channel created by

modulating a corresponding carrier with a conventional scheme such as quadrature amplitude

modulation (QAM) or quadrature phase shift keying (QPSK). The modulated signals are further

multiplexed by frequency division multiplexing to form what is referred to as multicarrier

transmission. The composite signal is a broadband signal that is more immune to multipath

fading (in wireless communications) and intersymbol interference. The main feature of OFDM

is the orthogonality of subcarriers that allows data to travel in parallel, over sub-channels

constituted by these orthogonal subcarriers, in a tight frequency space without interference from

each other. Consequently, OFDM has found many applications, including in ADSL and VDSL

broadband access, power line communications, wireless LANs (IEEE 802.11 a/g/n), WiMAX,

and terrestrial digital TV systems.

In recent years, OFDM has been the focus of extensive research efforts in optical transmission

and networking, initially as a means to overcome physical impairments in optical communica-

tions [11,12]. However, unlike, say, in wireless LANs or xDSL systems where OFDM is deployed

as a transmission technology in a single link, in optical networks it is being considered as the

technology underlying the novel elastic network paradigm [6]. Consequently, in the quest for a

truly agile, resource-efficient optical infrastructure, network-wide spectrum management arises
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as the key challenge to be addressed in network design and control.

1.2 OFDM-Based Elastic Optical Networks

OFDM technology is the foundation of the elastic optical network (EON) concept [7], also

referred to as ‘‘spectrum-sliced elastic optical path network’’ or SLICE [13]. The major difference

between RWA and RSA lies in the SLICE network architecture as it flexibly adjusts to the

format of the modulation [14]. The main driver of the EON architecture is the ability to allocate

bandwidth at the granularity of an OFDM subcarrier rather than at the coarse unit of a

wavelength in a fixed-grid network, using bandwidth-variable and format-agile transponders

that may be reconfigured dynamically via software [10]. Optical signals are routed along the

path to the destination by multi-granular optical switches that adapt to the data rate and center

frequency of incoming channels via software control [15,16]. Bandwidth-variable transponders

and switches make it possible to support efficiently a range of traffic demands, from sub- to

super-wavelength, by slicing off just a sufficient amount of spectral resources along end-to-end

paths to satisfy the client requirements. OFDM-based EONs have several advantages relative

to existing WDM networks, including [7, 9]:

• Resilience to physical impairments. Since each subcarrier operates at a low symbol rate,

inter-symbol interference is reduced and the effects of physical impairments are alleviated.

• Elastic data rates. The number of allocated subcarriers and the modulation format may

be adjusted dynamically, on a per-connection basis, to account for: 1) demand granularity,

making it possible to support data rates from Gbps to Tbps, 2) path distance, so as

to trade off spectrum utilization for reach, and 3) the time-varying nature of demands.

Therefore, EONs may support multiple data rates, either by grouping together any

number of subcarriers, as shown in Figure 1.2, or by supporting a different data rate per

subcarrier depending on network conditions. Importantly, EONs are highly scalable in

that a transition to higher data rates would not require major changes in system design

• Spectral efficiency. Two features of OFDM enable highly efficient use of spectral resources.

On one hand, adjacent subcarriers may overlap in spectrum due to their orthogonality,

as shown in the bottom part of Figure 1.2. This reuse of spectrum increases the overall

system capacity. On the other hand, adapting the data rate to demand size, path length,

and time variations, achieves better use of existing spectrum.

While the finer granularity of bandwidth allocation is the key feature that makes OFDM

attractive for future optical networks, it also introduces new and formidable challenges in
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the design and control of such networks. These challenges call for new spectrum management

techniques that address effectively and efficiently issues related to:

• Scalability. With an OFDM subcarrier as the unit of bandwidth allocation, the number of

spectral resources to be managed network-wide is significantly larger than the number of

wavelengths in existing WDM networks.

• Spectrum contiguity. If a demand requires t units of spectrum, then t contiguous subcarriers

must be allocated to it. This constraint, not encountered in wavelength-based networks,

may, unless appropriately accommodated, lead to severe fragmentation of the spectral

resources that counters the inherent efficiency of fine-grain allocation. Consider Figure 1.3

to see how adjacent subcarriers slots are allocated for each traffic demand.

• Spectrum continuity. The same t contiguous subcarriers must be allocated on each link

along the end-to-end path of a demand. This constraint is analogous to the wavelength

continuity constraint in WDM networks, and further contributes to potential spectrum

fragmentation across the network links. As it can be seen in Figure 1.3, if a traffic demand

requires to traverse multiple links, then subcarriers associated with this traffic demand

occupy the same indices on each link.
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• Variable data rates. Support for elastic data rates, a core feature of EONs, requires

precise tracking of the spectral width and center frequency of optical signals, and tight

coordination of bandwidth-variable transponders and switches along end-to-end paths.

Due to the spectrum continuity constraint, there is a tight coupling between spectrum allo-

cation and routing of a demand. Consequently, routing and spectrum assignment (RSA) [17,18]

has emerged as the essential problem for spectrum management in EONs. Since the performance

of a network depends not only on its physical resources (e.g., transponders, physical links,

usable spectral width, optical switches, etc.) but also on how it is controlled, the objective of

an RSA algorithm is to achieve the best possible performance within the limits of physical

constraints. The RSA problem can be cast in numerous forms. The different variants of the

problem, however, can be classified under one of two broad versions: offline RSA, whereby the

traffic demands are known in advance, and online RSA, in which a sequence of client requests

arrive in some random fashion. Spectrum management techniques for both offline and online

RSA are discussed in Chapter 2.

1.3 Structure of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we review and classify recent

work in spectrum management for EONs. We introduce multiprocessor perspectives for the
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spectrum assignment (SA) and the RSA problems in general topology networks in Chapter 3.

In Chapter 4, we look into the SA problem in chain networks and propose a suit of heuristics

algorithms for this problem. Similarly, we analyze the complexity of the SA and RSA problems

in ring networks and propose constant ratio approximation algorithms for these two problems

in Chapter 5. Then, we develop a suit of heuristic algorithms for ring networks building upon

the multiprocessor scheduling perspective in Chapter 6 such that they either make routing and

spectrum assignment decisions jointly or separately. Similar to the chain and ring networks, we

study the structure of the optimum solutions in mesh networks and propose a fast and efficient

heuristic for this problem in Chapter 7. Finally, we discuss future research directions for this

problem in Chapter 8.
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Chapter 2

Spectrum Management Techniques

for EONs

In Chapter 1, we introduced EONs and reviewed all the advantages and challenges associated

with it. In this chapter, we classify the RSA problem as the offline and online problems. More

specifically, we explore variants of integer linear programming (ILP) formulations and heuristics

for the offline RSA problem in Section 2.1. Then, we classify existing algorithms for the online

RSA problem and discuss performance modeling techniques for this problem in Section 2.2. We

also examine and categorize solution approaches for distance-adaptive RSA (DA-RSA) and

fragmentation-aware RSA (FA-RSA) in Section 2.3 and Section 2.4, respectively. Next, we

present traffic grooming techniques for RSA in Section 2.5 and review survivability mechanisms

for EONs in Section 2.6. Finally, we study multi-path RSA in Section 2.7.

2.1 The Offline RSA Problem

In the offline RSA problem, the input typically consists of a set of traffic demands, and the

objective is to assign a physical path and contiguous spectrum to each demand so as to minimize

the total amount of allocated spectrum (either over the whole network or on any link). Offline

RSA arises whenever the traffic patterns in the network are reasonably well-known in advance

and any traffic variations take place over long time scales. For instance, offline RSA is an

effective technique for provisioning a set of semipermanent connections. Since these connections

are assumed to remain in place for relatively long periods of time, it is worthwhile to attempt

to optimize the way in which network resources (e.g., physical links and spectrum) are assigned

to each connection, even though optimization may require a considerable computational effort.

We consider the following basic definition of the offline problem.
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Definition 2.1.1 (RSA) Given

• a graph G = (V,A) where V is the set of nodes and A the set of arcs (directed links),

• a spectrum demand matrix T = [tsd], where tsd is the number of spectrum slots required

to carry the traffic from source node s to destination node d, and

• k alternate routes, r1sd, . . . , r
k
sd, from node s to node d,

assign a route and spectrum slots to each demand so as to minimize the total amount of spectrum

used on any link in the network, under three constraints:

1. each demand is assigned contiguous spectrum slots (spectrum contiguity constraint);

2. each demand is assigned the same spectrum slots along all links of its path (spectrum

continuity constraint); and

3. demands that share a link are assigned non-overlapping parts of the available spectrum

(non-overlapping spectrum constraint).

RSA is a generalization of the well-known routing and wavelength assignment (RWA)

problem [19]. If a single route for each source-destination pair is provided as part of the input,

and each traffic demand is constrained to follow the given route, the RSA problem reduces to

the spectrum assignment (SA) problem.

Definition 2.1.2 (SA) The RSA problem under the additional constraint that all traffic from

source s to destination d must follow the given physical path rsd, (i.e., k = 1 in the above

definition).

A recent study [20] considered the complexity of the offline SA problem in chain (path)

networks, in which no routing decision is involved. Using results from graph coloring theory, it

was shown in [20] that the SA problem in paths is NP-hard, and that a (2 + ε)-approximation

algorithm (where ε is an arbitrary real number that approaches zero) for computing the interval

chromatic number of an interval graph may be used for solving the SA problem with the same

performance bound. The study also extends this algorithm to solve the SA problem in ring

networks with a performance bound of (4 + 2ε).

2.1.1 ILP Formulations and Heuristics

Several variants of the RSA problem have been studied in the literature, and take into account

various design aspects. Accordingly, a variety of integer linear program (ILP) formulations have
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been proposed, each tailored to a specific problem variant. Since the problem is intractable, these

ILP formulations cannot be solved within a reasonable amount of time for problem instances

corresponding to network topologies encountered in practice. Therefore, an array of heuristic

algorithms have been put forward to obtain reasonably good solutions efficiently.

Link-based ILP formulations of RSA as a multicommodity flow problem have been studied

in [18,21,22]. In addition to the spectrum contiguity, spectrum continuity, and non-overlapping

spectrum constraints, the formulations also impose guard carrier constraints in allocating

frequency slots (i.e., subcarriers) to the traffic demands. These studies consider three main

objectives to minimize: the maximum number of subcarriers allocated on any fiber, the maximum

subcarrier index allocated on any fiber, and the total number of subcarriers over all fibers. Upper

and lower bounds on the optimal solution for ring and mesh networks were presented under both

predetermined and non-predetermined routing. The lower bounds were obtained either using

cut-set techniques or the even-load method, and the latter was shown to provide tighter bounds.

It was also shown that, in ring networks with uniform demands, the lower and upper bounds

are tight. Finally, two heuristic algorithms were developed to solve the RSA problem efficiently.

The first algorithm, referred to as shortest path with maximum spectrum reuse (SPSR), uses

shortest path routing and the first-fit spectrum allocation strategy to assign frequency slots

to demands in decreasing order of their size. The second algorithm, balanced load spectrum

allocation (BLSA), considers the k shortest paths as candidates for each demand, and selects

the one that minimizes the maximum link load, so as to balance the use of spectrum across the

network links.

A similar link-based formulation of an RSA variant referred to as the routing, wavelength

assignment, and spectrum allocation (RWSA) problem was studied in [23,24]. In these studies,

the network was assumed to support only a given set of line rates (e.g., 10/40/100/400/1000

Gbps), and each line rate requires a predetermined amount of spectrum that does not depend

on the path length. The objective was to select a set of line rates for each demand and a

corresponding set of lightpaths (one lightpath per line rate) so as to minimize the total spectrum

width in the network. For each lightpath, the ILP formulation determines the center wavelength,

the spectral width, and the physical route across the network. It was shown that RWSA is a

generalization of the RWA problem in mixed line rate (MLR) optical networks. Due to the

complexity of the problem, the ILP formulation was solved only for a six-node network in [23].

Consequently, the problem is decomposed in [24] into two subproblems: (1) the line rate selection

problem that determines the line rates for each demand, and which is solved using dynamic

programming, and (2) a variant of the routing and wavelength assignment (RWA) problem

that seeks to establish lightpaths at the specific line rates. The latter subproblem is solved using

three greedy heuristic methods.

A different, path-based ILP formulation of the RSA problem was presented in [17]. In a
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path-based formulation, k paths, where k is a small integer, are pre-computed for each demand,

such that the demand may be routed only along one of these paths. The ILP is used to assign

one of the predetermined paths to each demand, while also satisfying the spectrum contiguity

and non-overlapping spectrum constraints; the spectrum continuity constraint is implicitly

satisfied since the assignment of subcarriers is along a whole path. In [17], the objective is to

minimize the number of subcarriers that are used in any link in the network. Although this

path-based formulation is more compact than the link-based ILP of [18], the number of decision

variables and constraints is substantially large that it cannot be solved directly. Accordingly, a

heuristic algorithm called adaptive frequency assignment with collision avoidance (AFA-CA)

was presented to select the path for each demand. The algorithm uses a link metric that captures

the number of subcarriers that may potentially be allocated to a link, based on the paths that

use this link. Then, it processes demands in an adaptive order that depends on previously

allocated demands and the current usage of frequency slots in the network, and uses the link

metric above to avoid selecting paths that will result in congested links.

Another path-based ILP formulation for the RSA problem was presented in [25,26], where

the objective is to minimize the maximum subcarrier index assigned on any link in the network.

In addition to the joint formulation, the study in [26] also presents a decomposition into two

formulations that address the routing (R) and spectrum assignment (SA) aspects of the problem,

respectively, and is referred to as R+SA. The first formulation takes as input a predetermined

set of paths for each demand, and selects one path per demand so as to minimize the amount of

traffic flow (i.e., spectrum use) on any link. In the second phase, the SA formulation assigns

frequency slots to demands so as to minimize the maximum subcarrier index. While each ILP

formulation in the decomposition is more compact and scalable than the joint ILP, such a

sequential solution is not guaranteed to yield an optimal solution to the joint problem. A greedy

heuristic algorithm is also presented, that processes demands in decreasing order of either their

size or their shortest path length; this order is fixed, unlike the heuristic in [17] that adapts the

order as the algorithm progresses. A simulated annealing meta-heuristic that builds upon the

greedy algorithm was also presented. Finally, the spectrum utilization in an elastic network was

compared to that in a fixed-grid WDM network in [25].

The above approaches model the spectrum contiguity constraint by including a set of problem

constraints that increase significantly the complexity of the ILP formulation. To overcome this

difficulty, the concept of a ‘‘channel’’ as a set of contiguous subcarriers of a given width, was

introduced in [27]. For a given spectrum width t, all possible channels with t subcarriers (i.e.,

one starting at the first subcarrier, one starting at the second subcarrier, and so on) are defined

on each link of the network. Then, the RSA problem is transformed to one of ‘‘routing and

channel allocation,’’ in which channel assignment implies allocation of contiguous spectrum, and

no explicit spectrum contiguity constraints are needed. The result is a more compact formulation

10



that achieves a significant speed-up in running time compared to those that directly account for

the spectrum continuity constraints [27].

2.2 The Online RSA Problem

Under a dynamic traffic scenario, clients submit to the network requests for optical paths to be

set up as needed. Thus, connection requests are initiated in some random fashion. Depending

on the state of the network at the time of a request, the available spectral resources may or

may not be sufficient to establish a connection between the corresponding source-destination

node pair. The network state consists of the physical path (route) and spectrum assignment

for all active connections. The state evolves randomly in time as new connections are admitted

and existing connections are released. Thus, each time a request is made, an algorithm must be

executed in real time to determine whether it is feasible to accommodate the request, and, if so,

to perform routing and spectrum assignment. If a request for a connection cannot be accepted

because of lack of resources, it is blocked. Therefore, the blocking probability of connection

requests arises as the key performance metric of interest in an online RSA scenario.

2.2.1 Heuristic Algorithms

Because of the real-time nature of the problem, RSA algorithms in a dynamic traffic environment

must be simple and fast. Since combined routing and spectrum assignment is a hard problem,

most studies devise heuristic algorithms. Online RSA algorithms can be broadly classified in

two categories depending on whether they tackle the routing and spectrum assignment aspects

jointly (i.e., in one step) or separately (i.e., in two steps).

2.2.1.1 Two-Step Algorithms

Two-step online RSA heuristics decompose the problem into two subproblems, the routing prob-

lem and the spectrum assignment subproblem, which are then solved sequentially. Specifically,

such an approach consists of the following steps:

• Compute a number of candidate physical paths for each source-destination node pair and

arrange them in a path list.

• Starting with the path at the top of the corresponding list, use a spectrum allocation

policy to assign a feasible path and set of contiguous slots, if they exist, for the requested

connection.

The routing algorithm may be static, in which case the paths are computed and ordered offline,

or adaptive, in that the paths computed and their order may vary according to the current
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state of the network. The number of path choices is another important parameter. Often, as

in [28], multiple alternate paths are computed for each request. The spectrum allocation policy

determines which set of available contiguous slots are assigned to a request, and is crucial to the

performance of an online RSA algorithm. A first-fit policy [28,29] selects the lowest index set,

a random-fit policy [30] randomly allocates one of the available sets, whereas a best-fit policy

selects the smallest set that can satisfy the request. Note that an improvement in the operation

of the first-fit policy has been proposed in [31]. This study proposed an evolutionary algorithm

to search for the most feasible spectrum ordering for first-fit so as to minimize the blocking

probability; the study showed that the algorithm performs far better than the conventional

first-fit policy.

The study in [29] investigated the optimal slot width for EONs by measuring the blocking

probability under dynamic traffic using Monte Carlo simulations. Each demand was routed on

its shortest path, and the first-fit policy was used for spectrum allocation. The main finding of

the study was that the best performance is achieved when the slot width is equal to the greatest

common factor of the spectrum widths of the data rates supported in the network. On the other

hand, the KSP-based RSA algorithm proposed in [28] first computes k shortest paths for a given

request, and then searches each path to find the required number of contiguous subcarriers

using the first-fit policy.

The two-step online RSA algorithm in [32] proposes an interesting adaptive routing algorithm

to solve the first subproblem. Specifically, routing tables at each node associate a probability

with each (next hop, destination) pair. A dynamic ant colony optimization (ACO) algorithm

is run continuously that updates these probabilities based on spectrum usage information on

each link collected by ants as they traverse the network. When a request arrives, a path is

selected starting at the source and visiting next-hop nodes based on the current values of the

probabilities stored at the routing tables until the destination has been reached. Once the path

has been determined, the first-fit policy is used to assign frequency slots to the request. This

ACO-based online RSA algorithm compares favorably to the KSP-based algorithm in [28].

2.2.1.2 One-Step Algorithms

One-step online RSA heuristics, on the other hand, solve the two subproblems (i.e., routing

and spectrum assignment) simultaneously but sub-optimally, typically using a greedy approach.

In [33], a dynamic version of the RWSA problem studied in [23,24] is considered, and is referred

to as D-RWSA. As with RWSA, D-RWSA was decomposed into a rate selection problem (similar

to the one we discussed earlier), and a dynamic routing and channel selection problem that

is a variant of online RSA (in this work, the notion of a channel is similar to that defined

in [27]). This latter problem was solved using an auxiliary graph that represents the state (i.e.,
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established connections) of the network. With this representation, finding a path and contiguous

spectrum for a new request reduces to finding a shortest path on the auxiliary graph.

Two different one-step online RSA algorithms were introduced in [28]. In the first, a modified

Dijkstra shortest path algorithm is employed, in which, every time a link is considered to extend

the shortest path to the destination node, the link is checked to ensure that it has available

contiguous spectrum in common with links already in the path. If so, the link is added, otherwise

the algorithm considers other links even if they have a higher cost. The second one-step RSA

algorithm builds a path vector tree routed at the source node such that all links along each

path have sufficient contiguous spectrum for the request. The algorithm then searches the path

vectors to find one that has available spectrum and minimum cost; this algorithm is more

computationally demanding but results in better blocking performance. A modified Dijkstra

algorithm similar to the one in [28] was proposed in [34] to solve the online RSA problem in

one step. The main difference is that the spectrum availability along the path is maintained by

keeping track of the channels (as defined in [27]) that may fit the given connection request.

2.2.2 Performance Models

Evaluating the performance (e.g., in terms of blocking probability, spectrum utilization, or

fragmentation rate) of an EON operating under a given online RSA algorithm requires analytical

models that are able to capture accurately the evolution of the system’s state. However,

developing such models is a challenging task due to the nature of the RSA problem. The

spectrum continuity constraint introduces load correlation between subcarriers in adjacent links,

similar to the wavelength continuity constraint in current WDM networks. In addition, the

spectrum contiguity constraint introduces correlation between subcarriers in the same link.

Hence, it is not possible to use multiclass M/M/K/K models directly, as these do not account

for the fact that a new connection must occupy a set of contiguous servers simultaneously.

An exact analytical model for a single link of an EON has been developed in [30]. The model

captures three important features of such a system: the load correlation among subcarriers due

to the contiguity requirement; the fact that subcarriers are not equivalent (e.g., the lowest and

highest index subcarriers are not equivalent to other subcarriers since they have contiguous

subcarriers on one side only); and the existence of multiple classes of calls, each requiring a

different spectral width. Under the assumption of Poisson arrivals, two continuous-time Markov

chain models were developed, one each for the first-fit and random-fit allocation policies. Since

the state space grows exponentially with the number of subcarriers, two heuristic algorithms

were also developed to compute the stationary distribution from which the blocking probability

and other parameters may be obtained.

Exact and approximate Markov chain models for a special version of a spectrum allocation
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problem are developed in [35]. This study considers demands with time-varying requirements

and proposes spectrum extraction and contraction policies to adjust dynamically the amount of

spectrum assigned to each demand in response to these requirements. The analytical models are

used to evaluate the blocking performance of the various policies. These blocking models are

then used within an iterative RSA algorithm to minimize the average blocking probability.

2.3 Distance-Adaptive RSA (DA-RSA)

The design of commercial WDM networks has traditionally focused on optimizing the transmis-

sion performance in the worst case [36]. Specifically, for a given data rate (e.g., 40 Gbps), the

modulation format is determined so as to ensure that the signal is transmitted with sufficient

quality along the worst path (typically, the longest path and/or the one with the most hops) in

the network. Then, the same format is used for every, say, 40 Gbps demand. In other words,

each such demand is assigned the exact same amount of optical spectrum irrespective of its path

length, the number of nodes it traverses, or the level of impairments it encounters. Engineering

for the worst-case scenario leads to low spectrum utilization given that the transmission quality

along most paths is far better than that in the worst case.

In OFDM-based networks, on the other hand, it is possible to adjust the modulation format

and/or number of bits per symbol to account for link impairments (e.g., available signal-to-noise

ratio (SNR)) so that demands with the same data rate are allocated different amounts of spectral

resources depending on the quality of their path [10,37--41]. Distance-adaptive (DA) spectrum

allocation, a concept first introduced in [36], exploits the tradeoff between spectrum width and

reach (for the same data rate) to improve utilization [42] by tailoring the modulation format to

the level of impairments: a high-level modulation format with narrow spectrum and low SNR

tolerance may be selected for a short path, whereas a low-level modulation with a wider spectrum

and high SNR tolerance may be used for a longer path [43]. In fact, it has been argued [36] that

the utilization of spectral resources depends not only on the network size and topology, node

and link characteristics, or traffic pattern, but also on the specific RSA algorithm employed.

An offline version of the DA-RSA problem, referred to as the routing, modulation level, and

spectrum allocation (RMLSA) problem was studied in [44]. In this problem, each demand is

mapped to a modulation level based on the requested data rate and the distance of the path over

which it is routed, with the mapping function provided as input to the problem. A path-based

ILP formulation for RMLSA was first provided, and then the problem was decomposed into

two subproblems, routing and modulation level (RML) and spectrum assignment (SA) and

solved sequentially (RML+SA) using ILPs. Finally, a greedy heuristic and a simulated annealing

meta-heuristic, similar to the ones in [26], were also presented.

Most studies of DA-RSA consider the online version of the problem and develop heuristic
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algorithms to accommodate randomly arriving connection requests. Several algorithms follow

a two-step approach similar to the one we discussed in Section 2.2.1.1 for the basic (i.e., non-

distance-adaptive) online RSA problem. The main difference is that a spectrum allocation model

is used to determine the number of subcarriers as a function of data rate and path length.

Therefore, in the second step of the algorithm, the number of slots that the spectrum allocation

policy must search for varies depending on the length of the path considered.

Two-step heuristics for the online DA-RSA problem were presented in [36, 45]. These

algorithms compute a number of fixed-alternate paths (i.e., they use static routing) for each

source-destination pair, and order them in decreasing length. In the second step, they employ

the first-fit spectrum allocation policy and sequentially consider each path until a number of

contiguous frequency slots that can accommodate the requested data rate over the given path

length is found; if no spectral resources are available on any of the paths in the list, the request

is blocked. The main difference between the two algorithms is that the latter only considers

paths for which the number of slots is the same as for the shortest path. A similar algorithm

was used in [39] for routing of super-wavelength demands.

A version of the online DA-RSA problem referred to as dynamic impairment aware routing

and spectrum allocation (IARSA) was studied in [43]. The objective was to select a feasible

path for each request and allocate subcarriers by using an appropriate modulation format with

the transmission reach for the requested data rate. Two variants of IARSA were investigated,

one in which regenerators may modify the modulation format of the incoming signal, and one

in which the modulation format does not change in the network. The heuristic algorithm used

to solve the IARSA problem works as follows. For each modulation format, each link in the

network is assigned a weight equal to the ratio of the required spectrum over the number of

free slots on this link. For each modulation format, a modified version of Dijkstra’s algorithm

is used to find a minimum cost path with sufficient contiguous spectrum for this request; this

approach is similar to the one-step heuristics for the basic online RSA problem we discussed in

Section 2.2.1.2. Finally, the path and modulation format with the smallest cost (if any is found)

is assigned to the request.

A quality of transmission (QoT) aware online RSA technique was proposed in [14], consisting

of three stages: path calculation, path selection, and spectrum assignment. The Dijkstra and k-

shortest algorithms were adapted for computing paths, while fiber impairments and non-linearity

effects at the physical layer were modeled using a closed-form expression that estimates the

QoT along a given path. For each request, the most feasible route is chosen with respect to

optical signal-to-noise ratio (ONSR), as determined by the physical layer model.
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2.4 Fragmentation-Aware RSA (FA-RSA)

Whereas the ability to allocate variable data rates is an attractive feature of EONs in terms

of supporting heterogeneous applications, two challenges arise in operation when connections

arrive and depart dynamically [46]:

• Fragmentation. Fragmentation of spectral resources emerges as allocation and de-allocation

of blocks of contiguous slots on demand may cause part of the spectrum to become unusable.

There are two sources of stranded spectrum in EONs [46]. The spectrum continuity

constraint causes horizontal fragmentation in that the same block of spectrum may not

be available along successive links of a path despite the fact that each link may have

sufficient bandwith for a request; this issue is similar to wavelength fragmentation in

WDM networks. Variable data rates along with the spectrum contiguity constraint, on

the other hand, are the cause of vertical fragmentation, a situation whereby the spectral

resources on a single link are fragmented into small non-contiguous blocks that cannot be

allocated to a single large demand.

• Fairness. If spectral resources become fragmented across the network links, heterogeneous

connection requests will experience blocking rates that depend strongly on their data rate

and/or path length. Due to vertical fragmentation, large contiguous blocks of slots may

become sparse, hence high-rate connections will be more likely to be rejected than low-rate

ones. On the other hand, for a given amount of spectrum, horizontal fragmentation makes

it more difficult to find continuous blocks on long paths compared to short ones. Therefore,

if left unchecked, fragmentation may lead to starvation of high-rate and/or long-path

connections.

Fragmentation-aware RSA algorithms attempt to improve the blocking performance, fairness,

and spectrum utilization of EONs by minimizing the extent of spectrum fragmentation. Figure 2.1

schematically tries to depict how these algorithms are working. Figure 2.1(a) shows that the

number of subcarrier indices could be reduced if another path with sufficient number of

slots is taken to transmit a traffic demand. On the other hand, Figure 2.1(b) displays that

defragmentation can be performed by squeezing all the subcarriers with regard to SLICE features

(i.e. spectrum continuity and contiguity constraints).

The first step in such an approach is to develop metrics that quantify the degree of

fragmentation in the network. The utilization entropy concept introduced in [47] assesses the

spectrum fragmentation of a link by counting the number of neighboring pairs of slots that have

different status (i.e., one slot is used but the other is free), and normalizing this number to

get a value in (0, 1) such that low (respectively, high) values represent low (respectively, high)

vertical fragmentation. A similar concept was defined to capture horizontal fragmentation along
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Figure 2.1: Defragmentation in EONs; a) moving subcarriers; b) shifting subcarriers

a path by considering the status of a given slot on pairs of successive links in the path. The

fragmentation ratios proposed in [48,49] to measure the bandwith fragmentation of a link or

path are inspired by similar ratios proposed for storage systems, and take into account not only

the status of neighboring slots or that of a slot on adjacent links, but also the size of free blocks

of slots. In [46], each contiguous block of unused slots is assigned a value equal to the maximum

data rate that it can support, and the fragmentation index of a path is computed by taking the

ratio of the sum of the value of available blocks to the value of the sum of the slots in all blocks;

the latter sum represents the value of these slots as if they were contiguous. The fragmentation

index concept is extended to capture spectrum fragmentation over the whole network by taking

the average of the fragmentation indices of the shortest paths between every source-destination

pair.

Fragmentation-aware RSA algorithms may be classified as proactive or reactive [46], as we

discuss next.

2.4.1 Proactive FA-RSA

Proactive FA-RSA techniques attempt to prevent or minimize spectrum fragmentation at the

time a new request is admitted to the network. Since support for variable data rates is a main

contributor to fragmentation, [46] identifies four spectrum management techniques for allocating

spectrum to connections of different data rates. With ‘‘complete sharing,’’ all connections share
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the whole spectrum using the first-fit policy. With ‘‘pseudo partition,’’ low-rate connections are

allocated bandwidth from one end of the spectrum (using first-fit), while high-rate connections

are allocated from the other end (again using first-fit). Under the ‘‘dedicated partition’’ scheme,

spectrum is partitioned and each partition is dedicated to serving connections of a given data

rate; hence, vertical fragmentation due to variable rates is eliminated and each partition reduces

to a wavelength-routed network. Finally, ‘‘shared partition’’ is a generalization of the previous

scheme in that spectrum is partitioned but higher data rate connections may access partitions

assigned to lower data rate ones. It was shown in [46] that the dedicated and shared partition

schemes improve both fairness and fragmentation compared to complete sharing or pseudo

partition.

A similar concept of spectrum reservations is studied in [50]. Instead of partitioning spectrum

such that each partition is shared only among connections with the same rate, [50] proposes

that a block of contiguous subcarriers be reserved for each source-destination pair. In addition,

subcarriers that are not reserved may be shared on demand among all connections. This study

assumes that demands vary with time, but as long as a demand stays within its reservation,

it can always be accommodated. However, if a connection requires additional bandwidth, an

FA-RSA algorithm is executed to allocate shared subcarriers along one of a set of candidate

paths.

Two FA-RSA algorithms that make spectrum allocation decisions based on the current

state of fragmentation were introduced in [49]. The first algorithm assigns each new request

to a path that minimizes a network-wide fragmentation ratio defined in the same study. The

second algorithm attempts to utilize slots that are already used the most in the network. The

maximize common large segment (MCLS) algorithm in [51] generates a number of candidate

paths for a request. For each candidate path, the algorithm considers all the links in the path

(i.e., candidate links), as well as links that are adjacent to the candidate links at any node on

the path. The algorithm then computes a metric that captures the availability of contiguous

slots between candidate and adjacent links after spectrum for this request has been allocated.

Finally, it selects the path and spectrum allocation that has the smallest value for this metric,

so as to maximize the probability that future requests will find a sufficient number of contiguous

slots to be accepted.

We also note that all the FA-RSA algorithms above [49--51] can be classified as two-step

heuristics based on our discussion in Section 2.2.1.1.

2.4.2 Reactive FA-RSA

Recognizing that fragmentation may not be completely eliminated in a dynamic environment,

reactive FA-RSA algorithms employ defragmentation techniques to restore the network’s ability
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to accommodate high-rate and long-path connections. The objective of defragmentation is to

rearrange the spectrum allocation of existing traffic demands so as to consolidate available

slots into large contiguous and continuous blocks that may be used to establish future requests.

Defragmentation strategies may be broadly classified as periodic or path-triggered [34]. Periodic

defragmentation runs at long time scales and is initiated either at regular intervals or whenever a

metric indicative of network-wide fragmentation exceeds a certain threshold. The process tackles

the fragmentation of spectral resources across the whole network, and hence it is computationally

expensive and may disrupt ongoing connections along large parts of the network. The scope

of path-triggered defragmentation, on the other hand, is more narrow. It is invoked when the

online RSA algorithm is unable to find adequate resources to satisfy a new traffic demand, with

the objective of assembling continuous/contiguous blocks of spectrum sufficient for this demand.

Therefore, path-triggered defragmentation is executed at shorter time scales but only disrupts

connections sharing a link with the new request. With either strategy, a make-before-break

rerouting (MBBR) [40] scheme may be used to minimize the disruption to existing connections

as they are moved to a new spectrum block. Spectrum defragmentation has been demonstrateed

experimentally in [52].

The network-wide defragmentation problem was studied in [53] under two objectives. The

problem was defined as one of rearranging existing connections so as to minimize the total

spectrum required for these connections (and, hence, maximize spectrum consolidation for future

connections). However, this objective may be achieved with an offline RSA approach, and does

not take into account the disruption to connections caused by the rearrangement. Therefore,

the study also considered the secondary objective of minimizing the number of connections

interrupted during the reconfiguration process. The problem was formulated as an ILP, and

two heuristics were proposed to solve it.

A path-triggered defragmentation strategy was proposed and investigated in [34]. When

a new request arrives, an online RSA algorithm is first run to accommodate it. If a path

with sufficient spectrum cannot be found, then a defragmentation algorithm is triggered that

consists of the following steps. First, the number of available (but not necessarily continuous or

contiguous) slots along each of a set of candidate paths is computed. If a path with a sufficient

number of free slots does not exist, then the request is blocked. Otherwise, an attempt is made

to create a block of continuous and contiguous slots along the shortest path with sufficient

available resources. To this end, connections that share links with this shortest path must be

reallocated a different block of spectrum. The problem of identifying the connections to be

rearranged and the new spectrum allocation (for the old connections and the new request)

was formulated as an ILP. The objective was to minimize the number of connections to be

rearranged, under the constraint that the routes of existing connections are not modified. In

order to solve the problem for large networks, a greedy randomized adaptive search (GRASP)
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meta-heuristic was proposed.

The spectral defragmentation algorithm in [54] consists of two phases. When a new request

arrives but cannot be accommodated, a greedy heuristic is executed in the first phase to identify

the spectrum block for the new request that minimizes the number of ongoing connections that

will be affected. In the second phase, the problem of assigning new spectrum to the affected

connections is formulated as a bipartite matching problem. If a perfect matching (i.e., one that

satisfies all connections) exists, then existing connections are moved to the new spectrum and

the request is assigned the spectrum block selected in the first phase; otherwise, the request is

blocked or the algorithm repeats from the first phase to determine a new spectrum block for the

request.

A set of reactive defragmentation strategies that capitalize on hitless optical path shift

(HOPS) were described in [55]. HOPS technology, assessed in [56] where it is referred to as

‘‘push-pull defragmentation,’’ allows a connection to shift to a new block of spectrum as long

as the route of the connection does not change and the move to the new spectrum does not

affect other established connections. A simple technique was proposed in [55] to consolidate

the spectrum freed by a terminated connection with other blocks of spectrum available along

the links of its path. Specifically, upon the departure of a connection, ongoing connections that

share a link with the just terminated connection are shifted, whenever possible, to the lower end

of the spectrum, thus creating larger available blocks at the higher end for future connections. A

more complex algorithm was proposed to create continuous and contiguous blocks of spectrum

for new requests whenever they cannot be accommodated by a basic online RSA algorithm that

is applied first.

2.5 Traffic Grooming with RSA (TG-RSA)

Traffic grooming [57] is an optimization problem that arises in the design and control of networks

with multigranular traffic. In conventional WDM networks, the main objective is to aggregate

sub-wavelength demands onto lightpaths of fixed capacity so as to improve the utilization of

wavelengths and reduce the number of add/drop ports that represents a major cost for the

network [58]. The aggregation of traffic takes place at specific grooming nodes that are analogous

to hub airports where passengers are ‘‘groomed’’ onto fixed-capacity airplanes.

In EONs, lightpaths (or ‘‘LambdaFlex connections’’ [59]) may be set up with the exact

amount of spectrum to meet the data rate and reach for a traffic demand. Nevertheless, traffic

grooming in EONs has the potential to improve spectrum utilization as well as yield significant

cost reduction in terms of transponders. Specifically, aggregating demands for transport on

a single lightpath presents two opportunities for spectrum savings. First, depending on the

modulation format, transporting a single high-rate (e.g., 400 Gbps) connection is generally more
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Figure 2.2: Traffic grooming in EONs

spectrum efficient than transporting a number of low-rate connections with the same total data

rate (e.g., 4×100 Gbps) [60]. Second, a smaller number of independent lightpaths results in a

smaller number of guard bands around these lightpaths, hence reducing the spectrum required

to support a given set of demands (or, equivalently, increasing the amount of spectrum available

to carry client traffic). Importantly, in EONs it is possible to perform traffic grooming at the

optical layer thereby eliminating expensive O/E/O operations. Figure 2.2 illustrates how traffic

grooming works in EONs where both nodes A and B send two distinct traffic demands to node

C (i.e. 20G and 50G from A and 30G and 40G from B). The optical cross-connect (OXC) at

node C figures out that incoming traffics of 20G and 40G must be transmitted to node E,

whereas demands of size 50G and 30G must be sent to node F . Hence, it combines the demands

with the same destination into a one such that there is no guard band between them. Finally,

an OXC installed at node D routes these combined traffics to their final destinations. Optical

traffic grooming involves setting up an optical tunnel [59] that carries several LambdaFlex

connections in a contiguous block of spectrum; the bandwidth-variable transceiver and switch

requirements to implement such optical tunnels are discussed in [61].

Once grooming considerations are included in the RSA problem (whether online or offline),

the new TG-RSA problem becomes significantly more difficult to tackle optimally. Mixed integer

linear programming (MILP) formulations of offline TG-RSA variants have been presented

in [61--63]. The objective in [61, 62] was to minimize the total amount of spectrum used on any

link, whereas the objective function of [63] is an average spectrum utilization rate weighted by
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fiber length. The formulations in [61, 62] are path-based, and, in fact, the formulation presented

in [61] leverages the formulation of the basic offline RSA in [25] and adds grooming-specific

constraints. Two TG-RSA heuristics are presented in [61] to solve the problem efficiently on

realistic networks. The least spectrum grooming (LSG) heuristic attempts to minimize the

spectral resources by grooming demands with the same source and paths that share the most

links. The minimum transmitter grooming (MTG) algorithm is similar to LSG but its goal is to

minimize the number of transponders.

The online TG-RSA problem has been addressed in [64], and an auxiliary graph was used to

model the problem. Specifically, each physical node is represented using several layers in the

auxiliary graph: the transponder layer captures the O/E/O conversion (i.e., grooming) ability

and the spectrum layers represent the available spectrum resources. The spectrum continuity

constraint is enforced by having edges between the same spectrum layers of adjacent nodes.

The spectrum contiguity constraint is enforced by deleting edges between spectrum layers if the

amount of contiguous spectrum is not sufficient to carry a demand. A path for a demand is

found by running a shortest path algorithm on the auxiliary graph representing the state of the

network at the time a request arrives, as well as the data rate requirement of the request. This

auxiliary graph approach makes it possible to apply a range of grooming policies (e.g., minimize

the number of transponders, the number of physical or logical links, etc.) by setting the weights

of the edges appropriately.

The auxiliary graph model of [64] was used in [65] to find both a working and a backup

lightpath in a dynamic traffic grooming scenario under shared protection. The working path is

selected among the k shortest paths in the auxiliary graph, while the backup path is link-joint

with the working path. This study proposes a protection scheme referred to as elastic separate-

protection-at-connection (ESPAC) that allows the backup lightpaths of two connections to

share spectrum if the respective working lightpaths are link-disjoint. ESPAC maximizes the

opportunities for spectrum sharing by using the first-fit policy to assign spectral resources,

starting with one end of the spectrum for working lightpaths and on the other end for backup

lightpaths. Protection and restoration schemes for EONs are discussed in more detail in the

following section.

2.6 Survivability and RSA

OFDM lays the foundation for EONs to support individual data rates of 400-1000 GBps [1] and,

hence, aggregate throughput per fiber of potentially tens to hundreds TBps. Since the failure of

even a single network element (e.g., a fiber link) is likely to affect numerous connections and

result in immense data loss, network survivability assumes critical importance. Survivability

refers to the ability of the network to reconfigure itself so as to restore the connections affected

22



by a failure. In an optical network, three types of failures are generally considered: link failures

(e.g., caused by cable cuts), node failures (e.g., due to equipment malfunction at a switch or

router), and channel failures (e.g., caused by the failure of transmitting or receiving equipment

specific to that channel).

Several survivability mechanisms have been explored in WDM networks [66] and can be

classified in one of two broad categories: protection or restoration. Protection schemes are

carried out at the network design or planning phase in anticipation of a network failure. Backup

resources reserved by these schemes may be dedicated to a single connection or shared among

multiple connections. During normal network operation, reserved resources remain idle. Upon

occurrence of a failure, affected connections are redirected to reserved resources according to

the plan determined at the planning phase (typically, at the time a connection was set up).

Figure 2.3(a)-(b) illustrate the case where a dedicated path is considered as a backup path

(BP) for each connection request (CR), while these BPs may use a common path. However,

Figure 2.3(c)-(d) represent shared backup path for several CRs such that these CRs may use

the same path as their primary path in EONs.

A restoration scheme, on the other hand, does not reserve resources for a connection at the

time of establishment. Instead, resources for recovering a connection are discovered dynamically

immediately after the occurrence of a failure affecting the connection. With either protection or

restoration, a recovery scheme may be either failure-independent (also referred to as path-based)

or failure-dependent (also referred to as link-based). In failure-independent recovery, the source

and destination nodes of each affected connection take action to switch to a backup path that

is disjoint with the corresponding failed working path, regardless of the location or type of

failure. In contrast, with failure-dependent recovery, it is the nodes at either side of the failure

(e.g., the endpoints of a failed link) that redirect all affected connections around the failure

without intervention of the various source and destination nodes. As was remarked in [67],

similar survivability mechanisms may be applied to EONs.

2.6.1 Protection

The problem of ensuring dedicated or shared protection of established connections in an EON

may be viewed as a variant of the offline and online RSA problems with additional constraints

to account for the backup paths and the sharing (if any) of backup spectrum. The following

studies all consider failure-independent mechanisms. Note that the ESPAC algorithm [65] we

discussed in Section 2.5 also implements a failure-independent shared-protection scheme in a

traffic grooming context.

Two-fiber ring networks with 1+1 dedicated and 1:1 shared protection were considered

in [68], and DA-RSA algorithms were proposed to assign spectrum to the working and backup
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Figure 2.3: Dedicated versus shared path survivability in EONs

paths. In both cases, the shortest (respectively, alternate) path around the ring was assigned

as working (respectively, backup). With 1+1 dedicated protection, the same set of frequency

slots are assigned to the working and backup paths of a connection independently of other

connections. With 1:1 shared protection, on the other hand, the algorithm assigns the same set

of slots to the working paths of several connections as long as they are pair-wise disjoint, and

similarly for the backup paths of the same set of connections.

The offline RSA problem was considered in [69] under the additional constraint that all

demands be assigned two disjoint paths, one working and one backup, and that spectral resources

on backup paths be shared among connections with disjoint working paths. A MILP formulation

of the problem was developed with the objective of minimizing the amount of spectrum allocated

on the most congested link. Furthermore, a heuristic algorithm was proposed. The algorithm

finds the k shortest cycles for each demand, and processes demands in decreasing order of

shortest cycle length. It uses the first-fit policy to assign spectrum for the demand on each cycle

(hence, on the working and backup paths), and selects the one that yields the lowest congestion

on any link of the cycle.

The online RSA problem with dedicated protection was studied in [70]. The objective in

this case is to find a working and backup path for each arriving connection request that are

link-disjoint; the two paths are assumed to share transponders, hence they must be assigned the

exact same spectrum block. The problem is solved by first constructing a set of auxiliary graphs
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that represent the network state, and then running Suurballe’s algorithm on each graph to find

the shortest pair of disjoint paths for the request. The i-th auxiliary graph includes an edge

between two nodes if the corresponding fiber link has a number of contiguous slots starting at

slot i that may satisfy the demand. The algorithm selects the shortest pair of paths among the

ones constructed.

The study in [71] considered the online RSA problem with shared protection, and introduced

two policies for spectrum sharing among backup paths. Under the conservative policy, sharing

is allowed only if the backup paths have the same bandwidth, whereas under the aggressive

policy, sharing is allowed even if the backup paths have different bandwidth. Of course, with the

aggressive policy, the number of resources allocated to the backup path equals the maximum

bandwidth on the working paths that share this backup path. It is noted that, while the

aggressive policy leads to more sharing opportunities, it may fragment the spectrum along

backup paths. A heuristic algorithm was proposed that first computes the working path and

then the backup path (each selected from respective k shortest paths), and allocates spectrum

using the first-fit policy.

A recent study [72] considered three types of networks (single- and multi-rate WDM networks,

and EONs) and compared them in terms of cost and energy efficiency under dedicated (1+1 or

1:1) and shared protection. The respective RWA and RSA problems were solved using heuristics.

The heuristics are similar to ones discussed earlier in this section in that candidate pairs of

working/backup paths for each connection were computed using a k-shortest path algorithm.

The main difference is that each candidate pair was evaluated using a metric that accounts for

power consumption on both paths.

2.6.2 Restoration

A new survivability scheme called bandwidth squeezed restoration (BSR) was first proposed

in [73] and was further refined in [74]. BSR takes advantage of the variable, fine-granularity

spectrum allocation possible in EONs, and may be adapted for operation under either a pre-

planned protection or a dynamic restoration mechanism. In its original form [73], BSR assumes

that the data rate assigned to a connection is the sum of a committed rate and an excess rate.

Consequently, recovery does not start until a failure causes the data rate of a connection to

fall below the committed rate. At that time, a new backup path is selected (either from an

existing protection plan or discovered dynamically) that can support the committed rate of the

connection. As part of the recovery process, the bandwidth allocated to some connections that

are not affected by the failure (e.g., connections with a working path that overlaps with the

backup path of an affected connection) may be squeezed to the corresponding committed rate,

so as to provide maximum survivability for the given failure.
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The BSR scheme was extended in [74] to allow for three recovery scenarios: (i) full bandwidth

guaranteed recovery (FBGR), (ii) partial bandwidth guaranteed recovery (PBGR), or (iii) best-

effort recovery (BER). FBGR is a conventional recovery scheme, while PBGR is akin to restoring

the committed rate as in [73]. The BER scheme is unique to EONs and makes it possible to

allocate any amount of spectral resources available at the time of failure so that a connection

may proceed even at a low rate. Since the amount of available resources must be discovered

after the failure, even if the backup path has been pre-planned, BSR may be classified as a

dynamic restoration scheme.

The dynamic load balancing shared-path protection (DLBSPP) algorithm presented in [67,75]

is a hybrid protection/restoration algorithm. Similar to shared protection schemes we discussed

in the previous subsection, DLBSPP protects from single failures by allocating a working and

backup path to each connection at setup time. An interesting feature of the algorithm is that, for

the purpose of path computation, link weights are set proportional to the number of available

frequency slots, in an attempt to balance the load across the network links. On the other hand,

DLBSPP adopts a restoration strategy to recover from the simultaneous failure of multiple

links. In the event of a multi-link failure, the algorithm attempts to restore all connections for

which both the working and backup paths become unavailable. To this end, affected connections

are prioritized in decreasing order of their spectrum demands, and the algorithm computes,

on the fly, a new path for each connection, starting with the connection with the highest

priority (i.e., the highest data rate). The motivation for this approach, referred to as traffic

adaptive restoration (TAR), is based on the observation that it is more difficult to find paths

for high-rate connections, hence these should be accommodated before allocating resources to

low-rate connections.

A pure restoration scheme for EONs was presented in [42] as part of a study to evaluate

the benefits of elastic bandwidth allocation relative to fixed-grid optical networks. Initially,

only a working path is provisioned for each connection; however, if a single working path

that can support the requested data rate is not available, at most two working paths of lower

data rates may be assigned to a connection. Upon occurrence of a link failure, new routes are

dynamically computed for all connections affected by the failure. Furthermore, if there are

multiple connections with the same source and destination with failed working paths, they are

all aggregated into a single connection so as to minimize the amount of resources required for

restoration.

Recall that restoration schemes do not reserve backup resources for each connection. A key

challenge, therefore, is to provision backup resources to ensure that all connections affected by a

single failure can be fully recovered. This problem is referred to as the spare capacity allocation

(SCA) problem, and it has been addressed in the context of EONs in [76]. This study considered

span restoration, a failure-dependent restoration scheme whereby all connections affected by a
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span failure are redirected over a different path that connects the two endpoints of the failed

span. A MILP formulation of the SCA problem was presented in [76] under the assumption that

each node supports spectrum conversion; hence, the formulation did not include the continuity

constraints that were included in variants of the RSA problem that we discussed earlier. The

MILP uses a path-based formulation with the dual objective of minimizing spare capacity and

maximizing restorable traffic capacity. The study showed that both working and spare capacity

increase linearly with the traffic load, but that spare capacity redundancy improves (i.e., drops)

due to more opportunities for spare capacity sharing.

2.7 Multi-Path RSA

Multi-path routing is a technique widely used in SONET networks to improve both the

network-wide utilization of link capacity and the survivability of individual connections [77--79].

Multi-path routing introduces flexibility in the design and operation of the network by allowing

operators to split traffic demands into multiple streams that are routed independently of each

other to the destination. It also affords more options in recovering from network failures. These

features can be useful in addressing and overcoming the fragmentation of spectal resources in

an elastic optical network.

An algorithm that uses a hybrid single-/multi-path routing (HSMR) scheme to provision

a request was presented in [48]. The algorithm considers a set of candidate paths in order of

increasing weight, and takes into account fragmentation as follows. For each path, it allocates

bandwidth to the request based on the number of contiguous slots (if any) available on the path

and the modulation level (which depends on path distance). If the allocated bandwidth is not

sufficient for the requested data rate, the algorithm proceeds to allocate bandwidth on the next

path, and so on, until a sufficient number of slots has been assigned; the request is blocked if the

sum of the available slots on the candidate paths is not sufficient to support its data rate. This

technique overcomes the limitations of fragmentation by using multi-path routing whenever

the request cannot be provisioned along a single path. Two versions of HSMR were studied,

a static one in which paths are computed in advance and an adapative one that computes

paths at the time a request arrives. In the latter case, the link weights were calculated using

a metric that captures their fragmentation status. Similar single-/multi-path routing schemes

are presented in [80]. The two algorithms in [80] differ in the way they compute paths. The

first algorithm computes the paths at the time the request arrives, and in doing so, it takes

into account the availability of sufficient bandwidth. The second algorithm uses pre-computed

paths, and considers them in order of increasing delay when assigning bandwidth to a request.

A main difference between the algorithms in [80] and the ones in [48] is that the former take the

differential delay into account when allocating paths.
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The dynamic multi-path service scheme presented in [81] selects the paths on which to

provision a request such that the maximum differential delay along these paths does not exceed

a given threshold. The algorithm also imposes a minimum bandwidth allocation granularity on

each path, so as to avoid splitting the service across a large number of routing paths.

An offline version of the multi-path RSA problem was studied in [82] in the context of

spporting high-speed Ethernet in EONs. The problem of establishing a set of connections, each

potentially using more than one path, is formulated as a path-based ILP; in addition to the

usual spectrum continuity and contiguity constraints, this ILP also imposes differential delay

constraints on the multiple paths for a given connection. An efficient two-step heuristic is also

presented. The heuristic first computes a set of fiber-level paths for each source-destination

pair. The second phase takes these paths as input, and first attempts to find a single path for

each request. If a single path is not found, then the algorithm proceeds to compute a parallel

transmission solution across multiple paths.

Multi-path solutions in EONs have also been investigated in the context of protection

and restoration. The single-path provisioning, multi-path recovery (SPP-MPR) scheme in [83]

provisions a demand on a single primary path. However, it provides for a multi-path squeezed

recovery mechanism that utilizes two backup paths and allows for bandwidth squeezing similar

to [73,74]. The problem is formulated as an MILP, but a genetic algorithm-based meta-heuristic

is also presented.

An offline multi-path provisioning scheme for OFDM-based EONs was first introduced

in [84]. The problem, referred to as the ‘‘static survivable multi-path routing and spectrum

allocation’’ (SM-RSA) was first formulated as a path-based ILP. A three-step heuristic was also

developed. In the first step, Bhandari’s algorithm [85] is used to compute the largest number of

disjoint paths between each source-destination pair. In the second step, requests are considered

either in order of decreasing demands or decreasing path length, and are assigned paths and

spectrum blocks. In the third step, requests on paths that use the maximum number of spectral

slots are rerouted in an attempt to reduce the use of spectral resources. An online version of the

same problem is studied in [86] and again an ILP formulation and a heuristic algorithm are

presented. Both the ILP and heuristic limit the number of paths allocated to each connection to

at most three; they also allow for connections that require partial (not full) protection.
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Chapter 3

A Multiprocessor Scheduling

Perspective for SA & RSA in EONs

As we discussed in Chapter 2, although there exist different versions of ILP formulations such

as link-based, path-based, and channel-based for the RSA problem, these formulations have

shortcomings in solving practical network topologies’ instances. Hence, heuristic algorithms are

developed to tackle the RSA problem. In this chapter, we provide a new insight into the SA

problem in mesh networks in Section 3.1 by showing that this problem can be transformed to

the scheduling multiprocessor tasks on dedicated processors denoted as P |fixj |Cmax. Similarly,

we show in Section 3.2 that the RSA problem with fixed-alternate routing in general-topology

(mesh) networks is a special case of multiprocessor scheduling problem P |setj |Cmax.

3.1 The SA Problem in General Topology Networks

Considering the definition 2.1.2 of the SA in Chapter 2, we now show that the SA problem

can be viewed as a problem of scheduling tasks on multiprocessor systems in which tasks may

require more than one processor simultaneously. Consider the following scheduling problem that

has been studied extensively in the literature [87,88]:

Definition 3.1.1 (P |fixj |Cmax) Given

• a set of m identical processors,

• a set of n tasks with processing time pj , j = 1, . . . , n, and

• a prespecified set fixj of processors for executing each task j, j = 1, . . . , n,

schedule the tasks so as to minimize the makespan Cmax = maxj Cj, where Cj denotes the

completion time of task j, under the constraints:
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1. preemptions are not allowed;

2. each task must be processed simultaneously by all processors in set fixj; and

3. each processor can work on at most one task at a time.

We denote by Pm|fixj |Cmax the special case of P |fixj |Cmax in which the number of

processors m is considered to be fixed. It has been shown [88] that the three-processor problem

P3|fixj |Cmax is strongly NP-hard for general processing times, but that if the number of

processors m is fixed and all tasks have unit times, i.e., Pm|fixj , pj = 1|Cmax, then the problem

is solvable in polynomial time. Approximation algorithms and/or polynomial time approximation

schemes (PTAS) have been developed for several versions of the problem [89].

The next two lemmas show that the SA problem in networks of general topology is a special

case of the P |fixj |Cmax scheduling problem, but the reverse is not true.

Lemma 3.1.1 SA on general (mesh) networks transforms to P |fixj |Cmax.

Proof. Consider an instance of the SA problem on a network of general topology represented

by graph G = (V,A), demand matrix T = [tsd], and path set {rsd}. Construct an instance of

P |fixj |Cmax as follows. For each arc ak ∈ A, k = 1, · · · , |A|, there is a processor k. For each

spectrum demand tsd, there is a task j with pj = tsd and fixj = {k : ak ∈ rsd}. In other words,

the amount of spectrum of a demand transforms to the processing time of the corresponding task,

and the links of its path to the processors that the task requires. Due to the non-overlapping

spectrum constraint, each processor may work on at most one task at a time, due to the spectrum

continuity constraint, each task must be processed simultaneously by all its processors, whereas

due to the spectrum contiguity constraint, preemptions are not allowed. By construction, the

amount of spectrum assigned to any arc of G in a solution of the SA instance is equal to the

completion time of the last task scheduled on the corresponding processor, hence minimizing

the spectrum on any link in the SA problem is equivalent to minimizing the makespan of the

schedule in the corresponding problem P |fixj |Cmax.

The above lemma shows that any instance of the SA problem can be transformed into an

instance of the P |fixj |Cmax problem, and hence, an algorithm for solving the latter problem

may be used for solving the former one. However, the reverse of Lemma 3.1.1 is not true. In

other words, there exist instances of P |fixj |Cmax for which there is no corresponding instance

of the SA problem, as we now show.

Lemma 3.1.2 There exist instances of P |fixj |Cmax for which there is no corresponding in-

stance of the SA problem.
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Proof. By counterexample. Consider an instance of P4|fixj |Cmax with these five tasks whose

processing times can be arbitrary:

task fixj

τ1 {1, 2}
τ2 {2, 3}
τ3 {3, 4}
τ4 {4, 1}
τ5 {2, 4}

Because of the first four tasks, the graph of the corresponding SA instance would have to be the

four-link unidirectional ring network such that link 1 is adjacent to 2, 2 is adjacent to 3, 3 to 4,

and 4 to 1. But then, there is no path rsd for the spectrum demand corresponding to the last

task, hence an instance of SA does not exist.

In conclusion, Lemma 3.1.1 and Lemma 3.1.2 state the SA problem is a subset of the

P |fixj |Cmax scheduling problem. As an example, Figure 3.1(a) shows an instance of the SA

problem on a mesh network with five directed links, L1, L2, L3, L4, and L5. There are five

demands, shown as dotted lines, with the number of slots required by each demand shown

next to the corresponding line. Figure 3.1(b) shows the optimal schedule for the P |fixj |Cmax

problem corresponding to this SA instance, whereby link L1 maps to processor P1, link L2 to

processor P2, and so on. As we can see, the demand of size 3 that follows the path L1-L2 is

mapped to a task that is scheduled in the time interval [4, 7] on the corresponding processors

P1 and P2; similarly for the other demands. The schedule is optimal in that Cmax = 7 is equal

to the total processing time required for processors P1, P4 and P5. Also, the value of Cmax is

equal to the total number of spectrum slots required for links L1, L4, and L5.

The following lemma shows that the SA problem in unidirectional rings with as few as three

links is NP-hard.

Lemma 3.1.3 The SA problem in unidirectional rings is NP-hard.

Proof. The P3|fixj |Cmax problem can be transformed to the SA problem on a unidirectional

three-link ring, where each processor corresponds to a link, and each task j corresponds to the

traffic demand on the segment of the ring defined by the links in fixj . Since P3|fixj |Cmax is

NP-complete [88], the same is true for the SA problem on the three-link ring.
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Figure 3.1: (a) Instance of the SA problem on a mesh network with five directed links (arcs). (b) Optimal
schedule of the corresponding P |fixj |Cmax problem

3.2 The RSA Problem in General Topology Networks

Consider the general definition 2.1.1 of the RSA problem with fixed-alternate routing in elastic

optical networks. We now show that the RSA problem with fixed-alternate routing in networks of

general topology can also be viewed as P |setj |Cmax problem. Consider the following scheduling

problem that has been studied in the literature [90--92]:

Definition 3.2.1 (P |setj |Cmax) Given

• a set of m identical processors,

• a set of n tasks with processing time

• and a prespecified set setj = {fix1j , . . . , fixkj } of k alternative processor sets to which task

j can be assigned,

schedule the tasks so as to minimize the makespan Cmax = maxj Cj, where Cj denotes the

completion time of task j, under the constraints:

1. preemptions are not allowed,

2. each task must be processed simultaneously by all processors in only one of the processor

sets in setj, and

3. each processor can work on at most one task at a time.
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Clearly, P |fixj |Cmax is a special case of P |setj |Cmax with k = 1 processor set for each

task. It has been shown that, in the general case, there can be no constant-ratio polynomial

time approximation algorithm for P |setj |Cmax unless P = NP [93]. The two-processor problem

P2|setj |Cmax has been proven in [94] to be NP-hard. Approximation algorithms with ratio

m and m/2 have been developed in [90] and [91], respectively, for problem Pm|setj |Cmax, in

which the number m of processors is considered to be fixed and is not part of the input (as it

is for P |setj |Cmax). Also, polynomial time approximation schemes (PTAS) for Pm|setj |Cmax

were introduced in [92,95].

The following two lemmas show that the RSA problem with fixed-alternate routing in mesh

networks is a special case of P |setj |Cmax.

Lemma 3.2.1 RSA with fixed-alternate routing in mesh networks transforms to P |setj |Cmax.

Proof. Consider an instance of RSA with fixed-alternate routing on a network with a general

topology graph G = (V,A), demand matrix T = [tsd] and set {r1sd, . . . , rksd} of alternate routes

for source-destination pair (s, d). Construct an instance of P |setj |Cmax such that:

• for each directed arc al ∈ A, there is a processor l, and

• for each spectrum demand tsd, there is a task j with pj = tsd and setj = {fix1j , . . . , fixkj },
where fixij = {q : aq ∈ {risd}}.

Hence, the amount of spectrum of a demand transforms to the processing time of the corre-

sponding task, the set of alternate paths to the set of alternate processor sets for that task, and

the links of each alternate path to the corresponding set of alternate processors for the task. Due

to the spectrum contiguity constraint, preemptions are not allowed. The spectrum continuity

constraint guarantees that each task will be processed simultaneously by all processors in the

alternate set assigned to the task, whereas the non-overlapping spectrum constraint requires

that each processor work on at most one task at a time.

By construction, the amount of spectrum assigned to any arc of G in a solution of the

RSA instance is equal to the completion time of the last task scheduled on the corresponding

processor, hence minimizing the spectrum on any link in the RSA problem is equivalent to

minimizing the makespan of the schedule in the corresponding problem P |setj |Cmax.

We now show that the reverse of Lemma 3.2.1 is not true. In other words, there exist

instances of P |setj |Cmax for which there is no corresponding instance of the RSA problem.

Lemma 3.2.2 There exist instances of P |setj |Cmax for which there is no corresponding in-

stance of the RSA problem.
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Proof. We prove this statement by providing a counterexample. Consider an instance of

P |setj |Cmax with eight processors {1, 2, 3, 4, 1′, 2′, 3′, 4′}, and these five tasks whose processing

times can be arbitrary:

task fix1j fix2j

τ1 {1, 2} {4′, 3′}
τ2 {2, 3} {1′, 4′}
τ3 {3, 4} {2′, 1′}
τ4 {4, 1} {3′, 2′}
τ5 {2, 4} {4′, 2′}

Because of the first four tasks, the graph of the corresponding RSA instance would have to be

the four-node, eight-link bidirectional ring network such that: (1) links l and l′, l = 1, 2, 3, 4, are

links in the clockwise and counter-clockwise direction, respectively, between adjacent nodes in

the ring, (2) in the clockwise direction, link 1 is adjacent to 2, 2 is adjacent to 3, 3 to 4, and 4

to 1, and (3) similarly for links in the counter-clockwise direction. Since there are no feasible

paths for the spectrum demand corresponding to the last task τ5, an instance of RSA does not

exist.

From our discussion in Lemma 3.2.1 and Lemma 3.2.2, we conclude that the RSA problem

is a subset of the P |setj |Cmax scheduling problem.
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Chapter 4

The SA Problem in Chain EONs

We now analyze the SA problem in chain EONs in Section 4.1 using the multiprocessor scheduling

perspective introduced in Chapter 3. Then, we show in Section 4.2 that the SA problem in

chain (path) networks is NP-hard for four-link networks, but it is solvable in polynomial time

for three-link networks. In Section 4.3, we develop new constant-ratio approximation algorithms

for the SA problem in chain (path) networks in which the number of links is fixed. We also

introduce a suite of list scheduling algorithms in Section 4.4. Finally, we present numerical

results to demonstrate the effectiveness of the algorithms in Section 4.5.

4.1 The SA Problem in Chain Networks

In chain (linear) networks, the route rsd of each traffic demand is uniquely determined by its

source and destination nodes. Let us define the following special case of problem P |fixj |Cmax:

Definition 4.1.1 (P |linej |Cmax) The P |fixj |Cmax problem under the additional constraint

that the identical processors are labeled 1, 2, 3, . . . , and the prespecified set linej of processors

for each task j consists of processors with consecutive labels.

The following result states that the SA problem on a chain with m links is equivalent to

P |linej |Cmax, hence an algorithm for solving P |linej |Cmax may be used to solve SA, and vice

versa.

Lemma 4.1.1 The SA problem on a graph G that is a chain with m links is equivalent to

P |linej |Cmax.

Proof. First consider an instance of the SA problem on a chain G with m+ 1 nodes labeled

1, 2, . . . ,m+ 1, and m arcs a1 =<1, 2>, a2 =<2, 3>,. . . , am <m,m+ 1>, and spectrum demand

matrix T = [tsd] such that tsd = 0 if s ≥ d. Given this SA instance, the steps of the proof
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Figure 4.1: (a) An instance of the offline RSA problem on a directed path; (b) The optimal schedule for the
corresponding P3|linej |Cmax problem

of Lemma 3.1.1 will construct a valid instance of P |linej |Cmax since the sets fixj consist of

processors with consecutive labels.

Given an instance of P |linej |Cmax, we construct an instance of the SA problem on a chain

graph G as follows. The graph has m + 1 nodes labeled 1, 2, . . . ,m + 1, and m arcs, such

that for each processor k, k = 1, . . . ,m, there is an arc ak =<k, k + 1>. For each task j with

linej = {s, . . . , d − 1}, there is a traffic demand with tsd = pj and route rsd = {<s, s + 1 >

, . . . , < d− 1, d>}. It is not difficult to verify that the three constraints of P |linej |Cmax ensure

that the three constraints of SA are satisfied, and that minimizing the makespan Cmax minimizes

the maximum amount of spectrum on any arc of G.

In theory, algorithms developed for P |fixj |Cmax may be applied to schedule instances of

P |linej |Cmax. Due its difficulty, however, there are limited results for the former problem, and

even algorithms for a small number of processors (e.g., m = 3, 4, 5) can be quite complex and

not practical for a network operator.

In the following section, we determine the complexity of Pm|linej |Cmax. Following that,

we present approximation algorithms for the most general version of the problem, i.e., for any

number of processors and any task sizes.

4.2 Complexity Results for Pm|linej|Cmax

We first show that there is a polynomial time algorithm for P3|linej |Cmax. Recall that problem

P3|fixj |Cmax is strongly NP-hard [88], hence the additional constraint that the set of processors

in linej have consecutive labels makes the problem tractable for three processors. Furthermore,

note that whereas it was stated in [20] that the SA problem in chains is NP-hard, this result

implies that the problem is in fact polynomial on three-link chains.

Lemma 4.2.1 P3|linej |Cmax may be solved in polynomial time.
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Proof. The proof is by construction of the optimal schedule. Tasks that require all three pro-

cessors cannot be executed in parallel with any other task, and hence they may be simply added at

the beginning or end of the schedule without affecting optimality. Therefore, we focus our atten-

tion on tasks requiring either one or two processors, i.e., tasks with linej = {1}, {2}, {3}, {1, 2},
or {2, 3}. Without loss of generality, let processor 1 be the dominant processor, i.e., the one

that requires the most processing time; the case where either processor 2 or processor 3 are

dominant can be handled in a very similar manner. Construct the following schedule. Tasks

with linej = {1, 2} are executed back-to-back without any idle time, followed by tasks with

linej = {1}. Let t be the time when the last task with linej = {1} completes. Schedule tasks

with linej = {2, 3}, without any idle time between them, at the end of the schedule and in

parallel with tasks with {linej = 1}, so that the last one finishes at time t. Then, schedule

tasks with linej = {2} and linej = {3} before tasks with linej = {2, 3}. Clearly, these tasks

can fit in the schedule since processors 2 and 3 are not dominant. The schedule is optimal since

the dominant processor is never idle, and hence the makespan Cmax = t, the time required to

execute the tasks on the dominant processor.

As an example, consider the RSA problem instance on a chain network with 4 nodes and

3 links, as shown in Figure 4.1(a). For this instance, the spectrum demand matrix is:

T =


0 3 4 1

0 0 1 1

0 0 0 2

0 0 0 0

 .

The corresponding P3|linej |Cmax instance has six tasks:

task pj linej

τ1 1 {1, 2, 3}
τ2 4 {1, 2}
τ3 3 {1}
τ4 1 {2, 3}
τ5 1 {2}
τ6 2 {3}

The optimal schedule constructed as described in the proof of Lemma 4.2.1 is shown in Fig-

ure 4.1(b). In this schedule, tasks requiring all three processors are executed first.

The following theorem shows that the problem Pm|linej |Cmax is NP-complete for four or

more processors. The proof is based on a reduction from the PARTITION problem [96] which is
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defined as:

Definition 4.2.1 (PARTITION) Given a set of k integers A = {a1, a2, . . . , ak} such that

B =
∑k

j=1 aj, does there exist a partition of A into two sets, A1 and A2, such that
∑

aj∈A1
aj =∑

aj∈A2
aj = B

2 ?

Theorem 4.2.1 P4|linej |Cmax is NP-complete.

Proof. Given an instance of PARTITION, we create an instance of P4|linej |Cmax as follows.

For each aj ∈ A we create a task τj with processing time pj = aj and linej = {3}. Moreover,

we create the following gadget tasks:

task pj linej

Ta B/2 {1, 2, 3}
Tb B/2 {1, 2}
Tc B/2 {2, 3}
Td 3B/2 {3, 4}
Te B/2 {2, 3, 4}
T1 3B {1}
T2 2B {2}
T3 2B {4}

If there is a partition of A into A1 and A2 such that
∑

aj∈A1
=
∑

aj∈A2
= B/2, then we can

schedule the jobs as shown in Figure 4.2 and get a feasible schedule with Cmax = 4B.

Let us now assume that there exists a feasible schedule S with Cmax ≤ 4B. Without loss of

generality, assume that Ta is executed before Te in S; otherwise, we can use similar arguments
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and reach the same conclusion. Then, it must be that T3 is executed before both Td and Te.

Moreover, Td must be executed before Te, otherwise it would not be possible to schedule task T2

for the schedule to have length at most 4B. Hence, tasks Ta, T3, Td, and Te must be scheduled

in the order shown in Figure 4.2. Moreover, tasks Ta and Tb must be scheduled before T1,

while task Tc must be scheduled before T2 for the schedule length to be at most 4B. If Ta is

scheduled before Tb (as shown in Figure 4.2), then on processor 3, only the intervals [B/2, B]

and [3B/2, 2B] are available for the execution of the PARTITION jobs. If Tb is scheduled

before Ta, then on processor 3, only the intervals [0, B/2] and [3B/2, 2B] are available for the

PARTITION jobs. In both cases, a partition exists.

As stated in [20], the above result confirms that the SA problem on chains with four or more

links is harder than the wavelength assignment problem which can be solved in polynomial time

on chains.

4.3 Approximation Algorithms for P |linej|Cmax

We first show that there exist 1.5-approximation algorithms for four and five processors.

Lemma 4.3.1 There exists a 1.5-approximation algorithm for P4|linej |Cmax.

Proof. The proof is by construction and discussed in Appendix A.

Lemma 4.3.2 There exists a 1.5-approximation algorithm for P5|linej |Cmax.

Proof. The proof is by construction and discussed in Appendix B.

4.3.1 Two-Stage Approximation Algorithms

We now introduce a two-stage algorithm for P |linej |Cmax, and show that it yields a constant

approximation ratio for any number of processors m ≥ 6. The algorithm, described in Figure 4.3,

considers three sets of processors based on their labels: a set consisting of the k < m processors

with low index labels 1, . . . , k, a set of l processors, l+ k < m, with labels k+ 1, . . . , k+ l, and a

set of m− k − l processors with the high index labels k + l + 1, . . . ,m. We partition the set of

tasks into three sets:

• set Tmid consists of tasks that require at least one of the l middle processors (and may

also require processors from one or both of the other sets);
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• set Tlo contains tasks requiring only processors in the set of k low index processors (and

no other processor); and

• set Thi is composed of tasks that require only processors in the set of m− k− l high index

processors (and no other processor).

The key idea is based on the observation that the set of tasks Tlo may be scheduled in parallel

with the set of tasks Thi. Therefore, we use an optimal or approximation algorithm to schedule

the tasks in each set separately, creating three schedules, Smid, Slo, and Shi, respectively. The

final schedule for the original problem consists of two stages: in the first stage, schedule Smid is

executed individually, while in the second stage, schedules Slo and Shi are executed in parallel.

We have the following result.

Lemma 4.3.3 Let αmid, αlo, and αhi be the approximation ratio of the algorithms used to

schedule tasks in sets Tmid, Tlo, and Thi, respectively (the approximation ratio is 1 if an optimal

algorithm exists). Then the two-stage algorithm of Figure 4.3 is an approximation algorithm for

the original problem with ratio:

α = αmid + max{αlo, αhi}. (4.1)

Proof: The proof follows from the fact that the makespan of an optimal schedule for each of

the three sets of tasks is no longer than the makespan of an optimal schedule for the original set

of tasks.

Figure 4.4 shows a two-stage schedule for m = 9 processors in which k = l = m− k − l = 3.

Due to Lemma 4.2.1, the P3|linej |Cmax problem can be solved optimally in polynomial time,

hence αmid = αlo = αhi = 1. Therefore, the two-stage algorithm is a 2-approximation algorithm

for m = 9 processors (and also for problems with m = 6, 7, 8 processors).

For problems with m = 10 − 13 processors, we consider the middle three processors to

obtain task set Tmid, and apply the 1.5-approximation algorithm for four or five processors to

schedule the other two tasks sets, resulting in an approximation ratio of 2.5. For problems with

m = 14, 15 processors, we obtain an approximation ratio of 3 by considering tasks sets on four

or five processors. Finally, we note that for m > 15, we may apply the two-stage algorithm

recursively to schedule each set of tasks. For instance, for m = 19, we can schedule the tasks

that require at least one of the middle nine processors with a makespan that is no more than

twice the optimal, as in Figure 4.4. Applying the 1.5-approximation algorithm to schedule the

tasks requiring at least one of the five lower (respectively, higher) index processors, the overall

approximation ratio of the two-stage algorithm is 3.5.
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Two-Stage Approximation Algorithm for P |linej |Cmax, m ≥ 6
Input: A set T of n tasks on m processors, each task j having a processing time pj and a set linej ⊆
{1, 2, . . . ,m} of required processors
Output: A two-stage schedule of tasks

begin
// Sets of low, mid, and high index processors

1. lo← {1, . . . , k} // k < m
2. mid← {k + 1, . . . , k + l} // k + l < m
3. hi← {k + l + 1, . . . ,m}

// Set of tasks T for each subproblem
4. Tmid ← {j ∈ T : {k + 1, . . . , k + l} ∩ linej 6= ∅}
5. Tlo ← {j ∈ T \ Tmid : {1, . . . , k} ∩ linej 6= ∅}
6. Thi ← {j ∈ T \ Tlo \ Tmid}
7. Schedule tasks in Tmid using an optimal or approximation

algorithm for the corresponding Pl|linej |Cmax problem
8. Schedule tasks in Tlo using an optimal or approximation

algorithm for the corresponding Pk|linej |Cmax problem
9. Schedule tasks in Thi using an optimal or approximation

algorithm for the corresponding
P (m− k − l)|linej |Cmax problem

10. return a schedule of two stages:
the first stage consists of the schedule for tasks Tmid

the second stage consists of the schedule for tasks Tlo
and Thi executed in parallel

end

Figure 4.3: A two-stage scheduling algorithm for P |linej |Cmax

More generally, the approximation ratio α(m) for any number m of processors can be

computed using the recurrence relationship:

α(m) =


1 m = 1, 2, 3

1.5 m = 4, 5

min
l=1,··· ,m−2

{
α(l) + α

(
dm−l2 e

)}
m ≥ 6

(4.2)

The recursive expression can be explained by making two observations. First, for a given number

l of processors in the set Tmid, the approximation ratio in (4.1) is minimized when the number

of processors in the sets Tlo and Thi differ by at most one; in this case, the number of processors

in the larger of the two sets is dm−l2 e), and determines the result of the maximum operation

in expression (4.1). Second, all three sets of processors must be non-empty, hence the range

of values of l in the expression. Therefore, the approximation ratio for a given value of l is

α(l) + α(dm−l2 e) and the best ratio can be obtained by taking the minimum over all possible
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lower three processors

Proc 1

Proc 3

Proc 2

Proc 4

Proc 5

Proc 6

Proc 7

Proc 8

Proc 9

Time
Schedule of tasks requiring at least
one of the three middle processors

Schedule of tasks requiring only the
upper three processors

Schedule of tasks requiring only the

Figure 4.4: 2-approximation schedule for m = 9 processors

values of l.

4.4 List Scheduling Algorithms for Pm|linej|Cmax

In this section, we present a suite of list scheduling algorithms for solving the Pm|linej |Cmax

problem; due to Lemma 4.1.1, these algorithms may also be used to solve the SA problem on

chains. The algorithms attempt to minimize the makespan Cmax by identifying compatible tasks,

i.e., sets of tasks that may be executed simultaneously on the multi-processor system. More

formally, we have the following definition.

Definition 4.4.1 A set T of tasks for the Pm|linej |Cmax problem are said to be compatible

if and only if their prespecified sets of processors are pairwise disjoint, i.e., linej ∩ linei =

∅,∀ i, j ∈ T .

We present two broad classes of algorithms that differ in the granularity at which they

make scheduling decisions. The first class of algorithms assemble compatible tasks into blocks,

and schedule a whole block of tasks at a time. The second class of algorithms operate at finer

granularity and make scheduling decisions at the level of individual tasks and at finer time

scales.

4.4.1 Block-Based Scheduling Algorithms

These algorithms proceed by constructing blocks of compatible tasks. Specifically, blocks of

compatible tasks are scheduled such that:

• all tasks in a block begin execution at the same time t, and
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• there is no idle time between the completion of the longest task in a block and the beginning

of the next block.

The input to the algorithm is a list of tasks. The algorithm assembles a block by selecting the

first task in the list, and then scanning the remaining tasks (in the order listed) to identify

tasks compatible with the ones already in the block. A block is considered complete if no

additional compatible tasks exist; the algorithm removes all the tasks of the block from the list

and continues to build the next block, until all tasks have been scheduled.

A pseudocode description of a block-based scheduling algorithm is presented in Figure 4.5.

The running time complexity of the algorithm is determined by the two while loops. In the

worst case, each loop is executed at most n times, where n is the number of tasks. Hence,

the overall running time of the algorithm is O(n2). This overall complexity is not affected by

accounting for the time it takes to create the list of tasks given as input to the algorithm, as

creating this list would typically involve sorting the n tasks according to some attribute.

We identify two block-based scheduling algorithms that differ in the order in which the

tasks are sorted in the initial list of tasks passed to the algorithm.

• Longest First Block-based Algorithm (LFB). Tasks are sorted in decreasing order

of their processing times pj .

• Widest First Block-based Algorithm (WFB). Tasks are sorted in decreasing order

of the number |linej | of processors they require.

4.4.2 Compact Scheduling Algorithms

Block-based schedules are simple to create and implement in that each task in a block starts

execution at exactly the same time. However, the fact that tasks within a block have varying

processing times may result in long idle times for some processors. Consequently, the makespan

of the final schedule may be longer than necessary. We now present a class of scheduling

algorithms that attempt to minimize the makespan by eliminating or reducing such idle times.

Rather than assembling blocks of tasks and making scheduling decisions at the end of each

block, these algorithms select individual tasks for execution at finer scheduling instants resulting

in more compact schedules. The scheduling instants consist of:

• the start time of the schedule (i.e., t = 0), and

• the instant each task completes execution.

The input to a compact algorithm is a list of tasks. The algorithm maintains a list of idle

processors. At each scheduling instant t, the algorithm scans the list to identify tasks that are
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Block-Based Scheduling Algorithm for Pm|linej |Cmax

Input: A list L of n tasks on m processors, each task j having a processing time pj and a set linej ⊆
{1, 2, . . . ,m} of required processors
Output: A schedule of task blocks, each block consisting of compatible tasks, such that each block starts
execution immediately after the previous block completes

begin
1. b← 1 //b is the block index
2. Sb ← 0 //The time that block b starts execution
3. Pb ← ∅ //The union of sets linej of tasks in block b
4. while list L 6= ∅ do
5. Remove the first task j from list L
6. Add task j to block b
7. Pb ← Pb ∪ linej
8. while not at end of list L or Pb 6= {1, 2, . . . ,m} do
9. k ← first task in list
10. if linek ∩ Pb = ∅ then
11. Remove the task k from list L
12. Add task k to block b
13. Pb ← Pb ∪ linek
14. end while // no more tasks may be added to block b
15. b← b+ 1
16. Sb ← Sb−1 + maxj∈b−1 pj
16. Pb ← ∅
17. end while
18. return tasks in each block, block starting times Sb

end

Figure 4.5: A block-based scheduling algorithm for Pm|linej |Cmax

compatible with the currently executing ones, i.e., tasks with a set linej that is a subset of the

free processors. When such a task is identified, the algorithm removes it from the list, updates

the set of free processors, and continues scanning the list until no other compatible task is found.

It then advances to the next scheduling instant and repeats the process while the list is not

empty.

Figure 4.6 presents a pseudocode description of a compact scheduling algorithm. The running

time complexity of the algorithm is O(n2). Similar to block-based algorithms, we distinguish

two algorithms based on the order in which tasks appear in the list.

• Longest First Compact Algorithm (LFC). Tasks are sorted in decreasing order of

their processing times pj .

• Widest First Compact Algorithm (WFC). Tasks are sorted in decreasing order of

the number |linej | of processors they require.
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Compact Scheduling Algorithm for Pm|linej |Cmax

Input: A list L of n tasks on m processors, each task j having a processing time pj and a set linej ⊆
{1, 2, . . . ,m} of required processors
Output: A schedule of tasks, i.e., the time Sj when each task j starts execution on the multi-processor
system

begin
1. t← 0 //Scheduling instant
2. F ← {1, . . . ,m} //Set of currently idle processors
3. while list L 6= ∅ do
4. j ← first task in list L
5. if linej ⊆ F then
6. Remove the task j from list L
6. Sj ← t // Task j starts execution at time t
7. F ← F \ linej
8. while not at the end of list L or F 6= ∅ do
9. k ← first task in list
10. if linek ⊆ F then
11. Remove the task k from list L
12. Sk ← t Task k starts execution at time t
13. F ← F \ linek
14. end while // no more tasks may start at time t
15. j ← the first task executing at time t to complete
16. t← Sj + pj
16. F ← F ∪ linej
17. end while
18. return the task start times Sj

end

Figure 4.6: A compact scheduling algorithm for Pm|linej |Cmax

Since compact scheduling algorithms make decisions at finer time scales, we expect that

they perform better than block-based ones.

4.5 Numerical Results

In the following two subsections, we discuss two sets of experiments we carried out to evaluate

the performance of the list scheduling algorithms.

4.5.1 SA in Chain Networks

In the first set of experiments, we consider instances of the Pm|linej |Cmax problem with a

relatively small number of processors, namely, m = 5, 10, 15, 20; such instances correspond to

instances of the SA problem on chains of length typical of a commercial wide area network.
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For each problem instance, we generated traffic demands between every source and destination

node on the chain. The size of the traffic demands (i.e., task times) were generated using three

different distributions:

• Discrete uniform: traffic demands may take any of the five discrete values in the set

{10, 40, 100, 400, 1000} with equal probability; these values correspond to data rates (in

Gbps) to be supported by EONs.

• Discrete high: traffic demands may take one of the five discrete values above with

probabilities 0.10, 0.15, 0.20, 0.25, and 0.30, respectively; in other words, higher data rates

have higher probability to be selected.

• Discrete low: traffic demands may take one of the five discrete values above with proba-

bilities 0.30, 0.25, 0.20, 0.15, and 0.10, respectively, such that lower data rates have higher

probability to be selected.

We considered various other probability distributions on the same set of values, but the results

are similar to the ones we present below and hence are omitted.

We use a distance-adaptive spectrum allocation strategy to allocate spectrum to each trafffic

demand based on its data rate (in Gbps) and the length of its path (i.e., number of links, or

processors in the scheduling problem) [7,36]. We assume a 12.5 GHz slot width, and consider

two modulation formats: for paths with up to (respectively, more than) ten links we assume

16-QAM (respectively, QPSK), such that demands of size 10, 40, 100, 400, and 1000 Gbps are

assigned 1, 1, 2, 8, and 20 (respectively, 1, 2, 4, 16, and 40) slots, consistent with the values

used in [36, Table 1].

Figures 4.7-4.9 plot the average ratio achieved by the four list scheduling algorithms, LFB,

LFC, WFB, and WFC, for each of the three traffic distributions; specifically, each data point in

the figures represents the average over 30 randomly generated problem instances. The average

ratio for a given algorithm is defined as the ratio of the makespan value Cmax (i.e., maximum

spectrum used on any link of the corresponding chain) obtained by the algorithm for a given

problem instance over the lower bound (i.e., the total processing time for the dominant processor)

for the same instance. Recall that the Pm|linej |Cmax problem is NP-hard for the number m ≥ 5

of processors considered in this experiment, and the optimal value is not known. Since the optimal

value is no less than the lower bound, the average ratio shown in the figures overestimates the

average gap between the Cmax values obtained by the algorithms and the optimal one.

From the figures, we can make several observations. First, the compact algorithms (LFC

and WFC) perform better than the corresponding block-based algorithms (LFB and WFB,

respectively). Second, three of the algorithms (LFC, LFB, and WFC) obtain solutions that are

within 5% (and in many cases, within 2-3%) of the lower bound. Furthermore, the average ratio
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Figure 4.7: Average ratio vs. number of processors, discrete uniform distribution
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Figure 4.8: Average ratio vs. number of processors, discrete high distribution
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Figure 4.9: Average ratio vs. number of processors, discrete low distribution

performance of these three algorithms is not sensitive to the number of processors (chain length)

or demand distribution. The block-based WFB algorithm has the worst performance over all

problem instances considered in this study. This result indicates that processing tasks in the

order of decreasing number of processors they require may pair short tasks with long tasks,

creating large idle times within blocks. On the other hand, the WFC algorithm that processes

tasks in the same order is successful in reducing these idle times, demonstrating the importance of

taking into consideration the idle times in the scheduling process. Overall, these results indicate

that, for problem instances representative of spectrum allocation problems arising in chains

typical of the diameter of metropolitan or wide-area networks, the two compact algorithms (LFC

and WFC) may obtain solutions very close to the optimal with low computational requirements.

4.5.2 Scheduling on Large Multiprocessor Systems

In this set of experiments, we consider instances of the Pm|linej |Cmax problem applicable to

large scale multiprocessor systems. Specifically, we let the number m of processors vary from

1,000 to 6,000, in increments of 1,000. For each problem instance, we generated a number of

tasks equal to twice the number of processors (i.e., n = 2m) while the task times were selected

from three distributions:

• Uniform: task times may take any integer value in the interval [10, 1000] with equal
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probability.

• Skewed High: task times may take values in the intervals [10, 200], (200, 400], (400, 600], (600, 800]

and (800, 1000] with probabilities 0.10, 0.15, 0.20, 0.25, and 0.30, respectively. Once a

task has been assigned to one of these intervals, it is assigned any value in that interval

uniformly and randomly.

• Skewed Low: this is similar to the skewed high distribution, with the only difference that

the probabilities that a task falls within one of the five intervals are 0.30, 0.25, 0.20, 0.15,

and 0.10, respectively.

Figures 4.10-4.12 plot the average ratio achieved by the LFC, LFB, and WFC algorithms as

a function of the number m of processors; each of the figures corresponds to problem instances

generated by one of the three task length distributions above.

As in the earlier figures, each data point represents the average over 30 random problem

instances. Similar to the results presented in the previous subsection, the WFB algorithm

produces solutions with an average ratio of 1.3-1.5, substantially higher than the ones achieved

by these three algorithms; hence, we omit the WFB algorithm from these figures so as to focus

on the behavior of the best algorithms. We observe that all three algorithms perform very close

to the lower bound: their solutions are around 1-3% away from the lower bound, on average,

when m = 1, 000, and the average ratio improves (drops) as the number of processors increases

to m = 6, 000. This behavior is consistent across all three distributions we considered for these

experiments. Note that the absolute difference between the makespan of the solutions and the

lower bound actually increases slowly as the number of processors increases, but the relative

difference (i.e., the ratio plotted in the figures) decreases because, for a given distribution, the

value of the lower bound increases with the number of processors.

Overall, our experiments indicate that the three algorithms, LFC, LFB, and WFC, perform

very close to the lower bound across a range of task length distributions and number of processors,

while being computationally efficient and simple to implement.
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Figure 4.10: Average ratio vs. number of processors, uniform distribution
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Figure 4.11: Average ratio vs. number of processors, skewed high distribution
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Figure 4.12: Average ratio vs. number of processors, skewed low distribution
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Chapter 5

The RSA Problem in Ring EONs

In Chapter 4, we studied the SA problem in chain (path) EONs where the traffic demands are

static and their routes are given in advance. We showed that this problem can be mapped to

the multiprocessor scheduling problem, specifically Pm|linej |Cmax. Then, we proposed a group

of heuristic and approximation algorithms for this problem.

Given the importance of SONET/SDH ring EONs, we dedicate Chapter 5 to analyze

the complexity of the EONs in rings and propose approximation algorithms for this type of

infrastructure under different scenarios. More specifically, we present a comprehensive study

of the SA and RSA problems in bidirectional ring networks based on the derived results in

Chapter 3. Building upon multiprocessor perspective, we investigate theoretically two approaches

to solve the RSA problem in bidirectional rings. In Section 5.1, we consider the case of a single

fixed path for each demand; this corresponds to a two-step approach for RSA in which routing of

demands is performed first, followed by spectrum allocation. When each traffic demand follows a

predetermined path (e.g., the shortest path) from source to destination, RSA reduces to the SA

problem. We prove that the SA problem can be solved in polynomial time in small bidirectional

rings, and we develop constant-ratio approximation algorithms for large rings. In Section 5.2, we

show that the RSA problem, in which routing and spectrum allocation are considered jointly, is

intractable for rings with as few as four nodes. Based on insight from multiprocessor scheduling

theory, we also develop an approximation algorithm for ring RSA. The approximation ratios of

our algorithms are strictly smaller than the best known (4 + 2ε) ratio presented in [20]. We also

note that our results apply to the routing and wavelength assignment problem, a special case of

RSA in which all demands are of equal size.
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5.1 The SA Problem in Ring Networks

In this section, we study the SA problem in bidirectional rings under the assumption that each

traffic demand is carried over the shortest path from its source to the destination node; we defer

discussion of the RSA problem, in which the routing and spectrum assignment problems are

solved jointly, to the next section. Let N be the number of nodes of the ring network. Note

that, whenever N is even, there are two shortest paths between every pair of nodes that are

diametrically opposite each other. In this case, we assume that one of these paths (in either the

clockwise or counter-clockwise direction) is selected and is provided as input to the SA problem.

We first note that, under shortest path routing, the clockwise and counter-clockwise directions

of the ring become decoupled and completely independent of each other. Consequently, the

SA problem in bidirectional rings is decomposed into two disjoint subproblems, one for each

direction, that can be solved separately; the subproblem in the clockwise (respectively, counter-

clockwise) direction takes as input the subset of clockwise (respectively, counter-clockwise)

links and the subset of demands with shortest paths along these links. It can be seen that this

decomposition is optimal, in that finding the optimal solution (i.e., minimum total spectrum on

any link) for each subproblem and taking the maximum of the two is an optimal solution to the

original problem on the bidirectional ring. Therefore, for the remainder of this section, we will

only consider the SA subproblem for the clockwise direction of the ring. Because of symmetry,

the same results apply to the subproblem defined on the counter-clockwise direction, although

the optimal solution may be different (e.g., because of the fact that different demands are placed

on each direction).

We have shown in Chapter 3 that the SA problem in unidirectional rings can be transformed

to a P |fixj |Cmax problem. Moreover, in the general case, i.e., whenever there are traffic demands

between any pair of nodes, the SA problem in unidirectional rings with N = 3 nodes transforms to

the P3|fixj |Cmax problem that is strongly NP-hard [88]. On the other hand, the SA subproblem

defined on the clockwise direction of a bidirectional ring is a special case of the unidirectional

ring problem inasmuch as its input consists of only the subset of demands that are routed in

that direction. Therefore, the problem can be solved in polynomial time for small rings, and

approximation algorithms with constant ratios exist, as we show next.

Since any algorithm that solves the P |fixj |Cmax problem also solves the SA problem, in

the following we will derive results for the SA problem in bidirectional rings by studying the

corresponding multiprocessor scheduling problem. In our discussion, we will make use of two

concepts related to P |fixj |Cmax.

Definition 5.1.1 (Compatible Tasks) A set T of tasks for the P |fixj |Cmax problem are

said to be compatible if and only if their prespecified sets of processors are pairwise disjoint,

i.e., fixi ∩ fixj = ∅,∀ i, j ∈ T .
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Compatible tasks may be paired with each other (i.e., they can be executed simultaneously), as

they do not share any processors.

Definition 5.1.2 (Dominant Processor and Lower Bound (LB)) Consider an instance

of P |fixj |Cmax, and let Tk denote the set of tasks that require processor k, i.e., Tk = {j : k ∈
fixj}. Clearly, all the tasks in Tk are pairwise incompatible, hence they have to be executed

sequentially. Let Πk denote the sum of processing times of tasks that require processor k:

Πk =
∑
j∈Tk

pj , k = 1, . . . ,m. (5.1)

Then, a lower bound LB for the problem instance can be obtained as:

LB = max
k=1,...,m

{Πk} . (5.2)

We will refer to a processor that achieves the lower bound LB as the dominant processor.

We also find two definitions of interval graph and interval chromatic number in the graph

theory quite helpful to propose a constant ratio approximation algorithm for SA and RSA in

rings. Hence, we extract their definitions from [97] as follows.

Definition 5.1.3 (Interval Graph) An interval graph G is an undirected graph in which its

vertices V are obtained from closed intervals of the real numbers and edges E are constructed if

and only if there is an intersection between each pair of intervals (i.e. corresponding vertices).

Definition 5.1.4 (Interval Chromatic Number) Consider a weighted graph G = (V,E, ω),

where V , E, and ω stand for the set of vertices, edges, and positive integers on V , respectively.

The notation ω(v) is used here to represent the weight of a vertex v. An interval k-coloring in

G is defined by a function c from V to {0, 1, 2, . . . , k − 1} such that c(x)− ω(x)− 1 < k and if

c(x) ≤ c(y) and (x, y) ∈ E then c(x) + w(x)− 1 < c(y). For any given vertex v, the weighted

coloring function c assigns [c(v), ..., c(v) + ω(v)− 1] of ω(v) colors so that the set of assigned

intervals of colors for any two adjacent vertices are disjoint. The interval chromatic number

of G tries to find the smallest possible integer k, denoted by χint, such that a valid k-interval

coloring of G can be constructed.

5.1.1 Complexity Results for Rings with N = 3, 4 Nodes

The following two lemmas establish that, under shortest path routing, the SA problem can be

solved in polynomial time in three- and four-node bidirectional rings, since the subproblems

defined on the clockwise (and, hence, also the counter-clockwise) direction yield polynomial
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solutions. Note also that, in the special case whereby all demands are equal to one slot, tsd = 1,

the spectrum contiguity constraint becomes redundant, and the SA problem reduces to the

wavelength assignment (WA) problem [19]. Consequently, these two lemmas also establish that

the WA problem is solvable in polynomial time in three- and four-node rings with shortest path

routing.

Lemma 5.1.1 The SA subproblem defined in the clockwise direction of a bidirectional ring

with N = 3 nodes and shortest path routing is solvable in polynomial time.

Proof. In a bidirectional ring with N = 3 nodes, the shortest path for each demand consists

of a single link. Consider the SA subproblem defined on the clockwise direction. This subproblem

has three demands, each carried on exactly one of the three clockwise links of the ring. The

corresponding P3|fixj |Cmax multiprocessor scheduling problem has three tasks, each requiring

exactly one of the three processors (i.e., |fixj | = 1, j = 1, 2, 3). Since the tasks are pairwise

compatible, they can be scheduled simultaneously. Hence, the optimal value of the total amount

of spectrum required in the network (respectively, Cmax) is equal to the maximum demand size

(respectively, the maximum task processing time).

Lemma 5.1.2 The SA subproblem defined in the clockwise direction of a bidirectional ring

with N = 4 nodes and shortest path routing is solvable in polynomial time.

Proof. In a four-node ring, the clockwise and counter-clockwise paths between two non-

adjacent nodes are of equal length (i.e., two), and either may be selected as the shortest path.

Let us consider the case where all demands between non-adjacent nodes are routed in the

clockwise direction. In other words, for non-adjacent nodes 1 and 3, both traffic from 1 to 3 and

traffic from 3 to 1 is routed clockwise; and similarly for the other pair (2,4) of non-adjacent

nodes. Hence, the input to the SA subproblem consists of four one-link demands and four

two-link demands. Consequently, the input to the corresponding P4|fixj |Cmax problem consists

of four single-processor tasks and four two-processor tasks. Let us denote these tasks as T1, T2,

T3, T4, T12, T23, T34, and T41, where the subscript of each task denotes the processors in the

corresponding set fixj .

The proof is by construction of the optimal schedule, as shown in Figure 5.1. Specifically,

first schedule the task T12 in parallel with the task T34 starting at time t = 0. Then, add all the

single processor tasks T1, T2, T3, T4 to this initial schedule without any gaps. Finally, execute

the two-processor tasks T23 and T41 as soon as both processors of each task are available. For

the instance depicted in Figure 5.1, the schedule is optimal as it is equal to the lower bound

determined by the sum of the processing times of tasks requiring processor 2 (the dominant
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Figure 5.1: Optimal schedule for the clockwise direction of a four-node bidirectional ring with shortest path
routing

processor). In fact, because of symmetry, the schedule is optimal regardless of which processor

is the dominant one.

If some of the demands between non-adjacent nodes are routed in the counter-clockwise

direction, then the instance of P4|fixj |Cmax defined on the clockwise direction will not include

the corresponding two-processor tasks. Again, it can be seen that the above algorithm yields

an optimal schedule. For instance, if task T23 is excluded from Figure 5.1, then the schedule

remains optimal. The same is true if T41 is excluded, or T23 and T41 are both excluded, or any

combination of two-processor tasks is excluded. If all two-processor tasks are excluded (i.e.,

all demands between non-adjacent nodes are routed in the counter-clockwise direction), then

the problem contains only single-processor tasks and the algorithm again produces an optimal

schedule.

The above lemma shows that as long as traffic demands in a four-node bidirectional ring

are routed along a shortest path (with ties broken arbitrarily), the SA problem is solvable

in polynomial time using a simple algorithm that is linear in the number of tasks (spectrum

demands). The following lemma shows that if one of the demands between adjacent nodes takes

a non-shortest path, the SA problem becomes NP-complete. The proof is by reduction from the

PARTITION problem definition 4.2.1.

Following standard NP-completeness proofs, the proof of the following lemma, as well as

that of Theorem 5.1.1, shows that (1) there is a polynomial transformation of any instance of
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PARTITION to an instance of the corresponding Pm|fixj |Cmax problem, and (2) a partition

exists if and only if an optimal schedule for the Pm|fixj |Cmax problem also exists. Specifically,

in both proofs, we include a number of gadget tasks in the instance of the Pm|fixj |Cmax

problem that are independent of the PARTITION instance, and select the Cmax value to ensure

that the second condition above is satisfied.

Lemma 5.1.3 The SA subproblem defined in the clockwise direction of a bidirectional ring

with N = 4 nodes and such that:

• all demands between non-adjacent nodes are routed in the clockwise direction, and

• all demands between adjacent nodes are routed along their (one-link) shortest path in the

clockwise or counter-clockwise direction, except for one such demand that is directed to a

three-link path in the clockwise direction,

is NP-complete.

Proof. If a traffic demand with a one-link shortest path in the counter-clockwise direction is

routed along the alternate clockwise three-link path, then the P4|fixj |Cmax problem defined on

the clockwise direction will include a three-processor task. Without loss of generality, assume

that this three-processor task requires processors 3, 4, and 1 (similar arguments apply for any

other three-processor task). Given an instance of PARTITION, we create an instance of this

P4|fixj |Cmax as follows. For each aj ∈ A we create a task τj with processing time pj = aj and

fixj = {2} (note that these tasks must be executed by processor 2, the one that is not required

by the three-processor task). We also create the following eight gadget tasks:

task pj fixj

Ta B {1, 2}
Tb B/2 {3, 4}
Tc B {2, 3}
Td B/2 {4, 1}
Te B/2 {3, 4, 1}
T1 B {1}
T2 B {3}
T3 3B/2 {4}

If A can be partitioned into two disjoint sets A1 and A2 such that
∑

aj∈A1
=
∑

aj∈A2
= B/2,

then there is a feasible schedule with Cmax = 3B, as shown in Figure 5.2.

57



𝑪𝒎𝒎𝒎 

Processor 

𝟒 

𝟑 

𝟐 

𝟏 

𝑨𝟏 
𝑻𝒂 

𝑻𝒆 𝑻𝒃 

𝟏
𝟐𝑩 𝑩 

𝟑
𝟐𝑩 𝟐𝟐 𝟓

𝟐𝑩 

𝑻𝟐 

𝑻𝒅 𝑻𝟏 

𝑻𝟑 𝑻𝒅 

𝟑𝟑 

𝑨𝟐 

𝑻𝒆 

𝑻𝒄 

Figure 5.2: A feasible schedule with Cmax = 3B for the clockwise direction of a four-node bidirectional ring with
shortest-path routing except for one demand routed along a three-link path

Conversely, let us assume that there exists a feasible schedule S with Cmax ≤ 3B. Without

loss of generality, suppose that Ta and Tb are executed before Tc and Td in S; otherwise, we

can use similar arguments and reach the same conclusion. Then, all the single processor tasks

T1, T2, and T3 must be executed immediately after Ta or Tb complete, as scheduling any other

task at that time would lead to a makespan greater than 3B. Tc must also be scheduled exactly

right after T2 and before Te, otherwise it would not be possible to obtain the schedule with

length of at most 3B. Using a similar argument, Td must be scheduled right after T1 and T3

and before Te, and in parallel with Tc. The schedule corresponding to this set of tasks is shown

in Figure 5.2 where only the intervals [B, 3B/2] and [5B/2, 3B] are available for the execution

of the PARTITION jobs on processor 2. Therefore, a partition must exist.

5.1.2 Complexity Results for Rings with N ≥ 5 Nodes

The next theorem states that the SA problem on five-node bidirectional rings (and, hence, on

any larger ring) is intractable.

Theorem 5.1.1 The SA subproblem defined in the clockwise direction of a bidirectional rings

with N = 5 nodes and shortest path routing is NP-complete.
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Proof. As the number of nodes is odd, there is a unique shortest path for each traffic demand

between any two non-adjacent nodes; therefore, the problem in the clockwise direction includes

only the demands with a shortest path along the clockwise links. The proof is by reduction from

the PARTITION problem, and follows an approach similar to the one we used in the proof of

Lemma 5.1.3. Specifically, for each aj ∈ A, we create a task τj with processing time pj = aj and

fixj = {2}. We also create the following set of tasks:

task pj fixj

Ta 3B/2 {1, 2}
Tb 5B/2 {2, 3}
Tc B/2 {3, 4}
Td B {4, 5}
Te 2B {5, 1}
T1 3B/2 {1}
T2 2B {3}
T3 7B/2 {4}
T4 2B {5}

If there exists a partition of A into two disjoint sets A1 and A2 such that
∑

aj∈A1
=∑

aj∈A2
= B/2, then we can execute the tasks as shown in Figure 5.3 and create a feasible

schedule with Cmax = 5B.

Conversely, assume that there exists a feasible schedule S with Cmax ≤ 5B. Similar to the

proof of Lemma 5.1.3 and without loss of generality, suppose that Ta and Td are executed before

Tc and Te in S; otherwise, we can use similar arguments and reach the same conclusion. We

need to schedule T2 in parallel with Ta and Td, otherwise the schedule length will exceed 5B. As

Td completes earlier than Ta, we need to execute T4 before Te. Therefore, T1 must be scheduled

right after Ta and before Te. On the other hand, T3 must be executed immediately after Td, and

Tc must be scheduled at the very end of S, since if we change the order of execution of T3 and

Tc in S, the makespan will be greater than 5B. Finally, executing Tc between [9B/2, 5B] means

that Tb must be scheduled immediately after T2. A feasible schedule corresponding to this set of

tasks is shown in Figure 5.3 where only the intervals [3B/2, 2B] and [9B/2, 5B] are available

for the execution of the PARTITION jobs on processor 2. Thus, we conclude that a partition of

A must exist.
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Figure 5.3: A feasible schedule with Cmax = 5B for the clockwise direction of a five-node ring with shortest path
routing

5.1.3 Approximation Algorithms

In this section, we first provide approximation algorithms for the SA problem on bidirectional

rings with N = 5, 6 and 7 nodes under shortest path routing. We then develop approximation

algorithms for bidirectional rings with N ≥ 8 nodes. Since, as we mentioned earlier, the WA

problem is a special case of SA, all approximation algorithms in this section also apply to WA.

5.1.3.1 Rings with N = 5− 7 Nodes

Lemma 5.1.4 There exists an 1.5-approximation algorithm for the SA subproblem defined on

the clockwise direction of a bidirectional ring with N = 5 nodes and shortest path routing.

Proof. As we mentioned earlier, in a five-node ring each traffic demand has a unique shortest

path. Therefore, the clockwise direction serves 10(= 5 ∗ 4/2) demands, and the corresponding

scheduling problem has 10 tasks as shown in Figure 5.4, where the subscript of each task

indicates the processors required by the task. Without loss of generality, let processor 3 be the

dominant processor, i.e., the one that achieves the lower bound LB in (5.2). Let OPT denote

the optimal value of the makespan for this problem; clearly, LB ≤ OPT .

Consider now the seven tasks that do not require processor 3, shown in the left part of the

schedule in Figure 5.4. The scheduling problem consisting of these seven tasks can be viewed
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as the scheduling problem on a four-processor system (i.e., one without processor 3), similar

to the one depicted in Figure 5.2 -- but with three rather than four two-processor tasks. In

essence, this scheduling problem corresponds to the SA problem on the clockwise direction of

the five-node after removing the link corresponding to processor 3 and the three traffic demands

using that link. Based on our earlier result regarding the four-node rings, these seven tasks can

be scheduled optimally, as shown on the left part of Figure 5.4. Let OPT ′ be the makespan of

this schedule; then, OPT ′ ≤ OPT .

Now consider the three tasks that require processor 3. These can be scheduled back-to-back

without any gaps, as shown in the right part of Figure 5.4. The makespan of this schedule is

equal to LB. Hence, the makespan of the two-part, 10-task schedule depicted in Figure 5.4 is

equal to: OPT ′ + LB ≤ 2×OPT .

We can improve the approximation ratio of 2 by modifying the above two-part schedule as

follows. Without loss of generality, assume that T23 ≥ T34 as indicated in Figure 5.4; if T34 is

larger than T23, then simply reverse the roles in the following discussion. In this case, we have

that:

T34 ≤ T3 + T23

⇒ 2T34 ≤ T3 + T23 + T34 = LB ≤ OPT

⇒ T34 ≤ 0.5×OPT (5.3)

Now slide the right part of the schedule in Figure 5.4 (i.e., the three tasks T3, T23 and T34)

as far left as possible so that tasks T3 and/or T23 overlap with the tasks in the left part of

the schedule. Consider the resulting nine-task schedule, i.e., the one consisting of all tasks of

the problem except T34. It can be seen that this schedule is optimal for these nine tasks. Let

OPT ′′ be the makespan of this nine-task schedule, and OPT ′′ ≤ OPT . Scheduling task T34

immediately after the end of this schedule results in a ten-task schedule of length OPT ′′ + T34.

Using (5.3), we conclude that the makespan of this schedule is no larger than 1.5×OPT .

Lemma 5.1.5 There exist 2-approximation algorithms for the SA subproblem defined on the

clockwise direction of bidirectional rings with N = 6, 7 nodes and shortest path routing.

Proof. The proof is by construction of a two-part schedule similar to the one we created for

the proof of Lemma 5.1.4. The proof is omitted due to its length, and the details are available

in Appendix C.
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Figure 5.4: Two-part schedule for a five-node bidirectional ring with shortest path routing

5.1.3.2 Rings with N ≥ 8 Nodes

We now present a general approximation algorithm for rings of any size. Consider the SA

problem defined on the clockwise direction of a ring with N ≥ 8 nodes and shortest path routing.

The key idea is based on the observation that if we remove a link from the ring along with the

traffic demands whose shortest paths use this link, the resulting SA subproblem is equivalent to

the SA problem on a directed path with N − 1 nodes. Furthermore, the 2 + ε approximation

algorithm in [98] for computing the interval chromatic number of interval graphs can be used to

solve the SA problem in chain networks with the same performance bound [20]. Therefore, the

approximation algorithm for rings consists of the following steps:

1. Formulate the PN |fixj |Cmax problem for the clockwise direction of the original ring.

2. Let processor N be the dominant processor (and relabel the processors appropriately if

necessary).

3. Remove processor N and all tasks j that use this processor (i.e., tasks j such that N ∈ fixj);
the resulting scheduling problem corresponds to the SA problem on a (N − 1)-link chain.

4. Use the 2 + ε approximation algorithm in [98] to create schedule S1 for the scheduling

problem on the chain network.
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5. Schedule all tasks that use processor N sequentially without any gaps to create schedule

S2.

6. Concatenate schedules S1 and S2 to create schedule S for the ring network.

Let OPT be the optimal makespan for the ring network. By construction, the makespan of

S2 is equal to LB ≤ OPT , while the makespan of S1 is no longer than (2 + ε)OPT . Hence, the

approximation ratio of the above algorithm for an N -node ring is 3 + ε, better than the 4 + 2ε

algorithm presented in [20].

5.1.4 Numerical Results

The approximation ratios of the algorithms described in the previous subsection correspond

to worst-case inputs, and we expect that the algorithms will perform better on average. To

investigate the average-case performance of the algorithms, we have carried out simulation

experiments on rings of various sizes. We assume that the network supports the following data

rates (in Gbps): 10, 40, 100, 400, and 1000. For each problem instance, we generate random

traffic rates between every pair of nodes based on one of three distributions: (1) Uniform: traffic

demands may take any of the five discrete values in the set {10, 40, 100, 400, 1000} with equal

probability; (2) Skewed low : traffic demands may take one of the five discrete values above

with probabilities 0.30, 0.25, 0.20, 0.15, and 0.10, respectively (i.e., the lower data rates have

higher probability to be selected); or (3) Skewed high: traffic demands may take one of the five

discrete values above with probabilities 0.10, 0.15, 0.20, 0.25, and 0.30, respectively (i.e., the

higher data rates have higher probability to be selected). Once the traffic rates between every

source-destination pair have been generated, we calculate the corresponding spectrum slots as

follows. We assume that the slot width is 12.5 GHz, and the 16-QAM modulation format, such

that demands of size 10, 40, 100, 400, and 1000 Gbps require 1, 1, 2, 8, and 20 slots, respectively,

consistent with the values used in [36, Table 1].

Since the optimal solution is not known for rings with more than four nodes, we compute

the lower bound as in expression (5.2). We then compute the ratio of the makespan produced by

the algorithm to the lower bound. Note that the lower bound is not tight, as it ignores any gaps

introduced by the scheduling of incompatible tasks in the optimal solution. Therefore, this ratio

overestimates the difference between the solution produced by the algorithm and the optimal

one. Figure 5.5 plots this ratio as a function of ring size for the three demand distributions; each

data point in the figure represents the average of thirty random problem instances.

As we can see, the average performance of the approximation algorithms is significantly

better than what their respective constant (worst-case) ratios suggest. For instance, for a

five-node ring, the algorithm is within 15% of the lower bound although its worst-case ratio is

63



 1

 1.25

 1.5

 1.75

 2

 2.25

 5  7  9  11

Av
er

ag
e 

R
at

io

Number of nodes

 Skewed low
  Uniform

 Skewed high

Figure 5.5: Average ratio of solutions produced by the approximation algorithms to the lower bound

1.5; whereas for a seven-node ring, the worst-case ratio is 2, but the average ratio is at most

1.6. Further, for rings of nine or more nodes, the worst-case ratio is 3, but the average ratio is

around 2. Recall that the average ratio is relative to the lower bound, not the optimal, hence

the actual performance of the algorithms (i.e., compared to the optimal solution) is better than

the figure suggests.

Finally, we note that for the problem instances used to derive the results of Figure 5.5, the

running time of the approximation algorithms was about 15 ms on a 3.10 GHz 4-core Xeon CPU;

this value did not depend on the demand distributions or ring sizes used in our experiments.

5.2 The RSA Problem in Ring Networks

Let us now turn our attention to the RSA problem in bidirectional rings. Unlike the previous

section where we assumed that traffic demands are routed on the shortest path, our objective is

to determine both a route and a spectrum allocation for each demand. Since there are exactly

two paths between each pair of nodes in a ring network, the general RSA problem on rings

reduces to the RSA problem with k = 2 fixed-alternate paths in Definition 2.1.1.

We first present results to establish the complexity of the RSA problem in rings, followed by

a new approximation algorithm. Our discussion builds upon the results of Lemma 3.2.1 which
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Figure 5.6: A feasible schedule for the RSA problem in a 4-node bidirectional ring with Cmax = 3B

shows that the RSA problem with fixed-alternate routing is a special case of the P |setj |Cmax

multiprocessor scheduling problem.

5.2.1 Complexity Results

Lemma 5.2.1 The RSA problem in 3-node bidirectional rings is solvable optimally in polynomial

time.

Proof. We will show that in a bidirectional ring with N = 3 nodes, the solution in which

each traffic demand takes the shortest (i.e., one-link) path, is optimal.

Consider the corresponding P |setj |Cmax with six processors and six tasks. Clearly, the length

of the longest task is a lower bound on the optimal makespan, i.e., OPT ≥ LB = maxj=1,...,6{pj}.
In the solution to the P |setj |Cmax problem defined by shortest path routing in the RSA instance,

each task is executed on a different single processor. Hence, the tasks are pairwise compatible

and may all start execution at time t = 0. Consequently, this solution is optimal as its makespan

is equal to maxj=1,...,6{pj}.

Theorem 5.2.1 The RSA problem in 4-node bidirectional rings is NP-complete.
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Proof. Consider a 4-node bidirectional ring with traffic demands between each pair of

nodes, for a total of 12 (= 4× 3) types of demands. Let {1, 2, 3, 4, 1′, 2′, 3′, 4′}, denote the eight

directed links of the network such that l and l′, l = 1, 2, 3, 4, are the links in the clockwise and

counter-clockwise direction, respectively, between adjacent nodes in the ring. Also, assume that,

in the clockwise direction, link 1 is adjacent to 2, 2 is adjacent to 3, 3 to 4, and 4 to 1, and

similarly for links in the counter-clockwise direction. Each demand may be assigned a path in

either the clockwise or counter-clockwise direction. For instance, a demand may take either a

one-link path (say, along link 1) in the clockwise direction or the three-link path (along links 4′,

3′, and 2′) in the counter-clockwise direction.

The equivalent multiprocessor scheduling problem P8|setj |Cmax has m = 8 processors, which

we assume are labeled identically to the corresponding links, and is constructed according to

Lemma 3.2.1. We will prove that this scheduling problem is NP-complete by reduction from the

PARTITION problem.

Given an instance of PARTITION, we create an instance of P8|setj |Cmax with the eight

processors {1, 2, 3, 4, 1′, 2′, 3′, 4′}. For each aj ∈ A, we create a task τj with processing time

pj = aj and setj = {{2}, {1′, 4′, 3′}}; in the equivalent RSA problem, this demand may be

routed either along link 2 in the clockwise direction or along the path < 1′, 4′, 3′ > in the

counter-clockwise direction. We also create the following eleven gadget tasks:

task j pj setj

Ta B/2 {{2, 3, 4}, {1′}}
Tb B {{4, 1}, {3′, 2′}}
Tc B/2 {{2, 3}, {1′, 4′}}
Td B {{1, 2}, {4′, 3′}}
Te B/2 {{3, 4, 1}, {2′}}
Tf 3B {{3, 4}, {2′, 1′}}
T1 B/2 {{1}, {4′, 3′, 2′}}
T2 3B/2 {{3}, {2′, 1′, 4′}}
T3 B {{4}, {3′, 2′, 1′}}
T4 3B {{4, 1, 2}, {3′}}
T5 3B {{1, 2, 3}, {4′}}

If it is possible to partition A into A1 and A2 such that
∑

aj∈A1
=
∑

aj∈A2
= B/2, then

there exists a feasible schedule as shown in Figure 5.6 with Cmax = 3B.

Conversely, suppose that there exists a feasible schedule S with Cmax ≤ 3B. Since T4

and T5 have length equal to 3B, they must be executed on their respective single-processor

set; scheduling either of them on the respective three-processor set would create conflict with
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some other task, resulting in a longer schedule. Tf , also of length 3B, must be executed on its

two-processor set that is compatible with the single-processor sets of T4 and T5. Since all four

processors 1′, 2′, 3′, and 4′ are busy in the interval [0, 3B] (equivalently, the counter-clockwise

direction of the ring is fully utilized), the remaining tasks must be assigned to the other four

processors (equivalently, the corresponding demands must be routed in the clockwise direction)

to ensure that Cmax ≤ 3B.

Without loss of generality, assume that Ta is executed before Te in S; otherwise, similar

arguments can be used to reach the same conclusion. T1 is the only remaining task that is

compatible with Ta and must be executed in parallel with the latter. Then, tasks Tb and Tc must

be scheduled immediately after Ta and T1 complete. Since Tc completes earlier than Tb, T2 must

be executed immediately following Tc, otherwise the schedule length for the clockwise direction

would exceed 3B. Similarly, as soon as Tb completes execution, Td and T3 must be scheduled in

parallel. Finally, we note that the only remaining gadget task, Te, must be appended at the

end of this schedule of tasks to ensure that the makespan does not exceed 3B. The schedule

corresponding to this ordering of tasks is shown in Figure 5.6, where only the intervals [B, 3B/2]

and [5/2B, 3B] are available for the PARTITION jobs. Thus, a partition exists.

5.2.2 Approximation Algorithms

The best approximation algorithm for the m-processor scheduling problem Pm|setj |Cmax was

developed in [91] and has a ratio of m/2. The algorithm proceeds in two phases:

1. Processor assignment. In the first phase, each task j is assigned to one of its alternate

processor sets in setj . Consider an assignment F , and let LBF denote the processing time

on the dominant processor under F , as given by expression (5.2). A dynamic programming

algorithm was developed in [91] to obtain in pseudopolynomial time an optimal assignment

F? such that LB? = LBF? is minimum over all possible assignments. Clearly, LB? is a

lower bound on the optimal makespan OPT for the original Pm|setj |Cmax problem, i.e.,

LB? ≤ OPT .

2. Task scheduling. Given the optimal assignment F?, the original problem reduces to a

Pm|fixj |Cmax problem in which the objective is to schedule the tasks so as to minimize

the makespan. A polynomial heuristic is used to solve this problem, and it is shown

that the makespan C achieved by this scheduling heuristic is such that C ≤ (m/2)LB?.

Hence, the two-phase algorithm is an (m/2)-approximation algorithm for the original

Pm|setj |Cmax problem.
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The above two-phase approximation algorithm for Pm|setj |Cmax corresponds to a natural

decomposition of the RSA problem into two subproblems that are solved sequentially: a routing

problem (in which a demand is assigned to either the clockwise or counter-clockwise path in

a manner that takes into account the spectrum demands), and a spectrum assignment (SA)

problem (in which spectrum is assigned to each demand along the path determined by the

solution to the routing problem).

Note that a ring with N nodes has a total of m = 2N directed links (i.e., processors in

the corresponding scheduling problem). Hence, a straightforward application of the two-phase

approximation algorithm to the RSA problem in rings would yield an approximation ratio

of N . However, as we noted earlier, once the routing of demands has been determined, the

clockwise and counter-clockwise directions of the ring become independent of each other and the

corresponding SA problems may be solved separately. Therefore, rather than solving a single

P2N |fixj |Cmax problem in the second phase, it is only necessary to solve two PN |fixj |Cmax

problems, one for each direction of the ring. With this observation, the approximation ratio of

the two-phase algorithm for the RSA problem in rings is N/2 rather than N .

We now show that it is possible to further improve the approximation ratio for the RSA

problem in rings. First, we note that linear time approximation ratios for the P4|fixj |Cmax and

P5|fixj |Cmax problems with ratios of 1.5 and 2, respectively, were developed in [99]. By using

these algorithms in the task scheduling phase above, rather than the general one presented

in [91], the two-phase algorithm yields approximation ratios of 1.5 and 2 for rings with N = 4

and N = 5 nodes, respectively.

For larger rings (i.e., N ≥ 6), we leverage the approximation algorithm for the SA problem

we developed in Section 5.1.3.2 to obtain a two-phase approximation algorithm for the RSA

problem with a constant ratio that is smaller than N/2:

1. Routing. Use the dynamic programming algorithm in [91] to assign each traffic demand

to the clockwise or counter-clockwise path.

2. Spectrum Assignment. Consider only the traffic demands routed along the clockwise

direction and assign spectrum to them by solving the corresponding PN |fixj |Cmax problem

with the approximation algorithm in Section 5.1.3.2; repeat for the traffic demands in the

counter-clockwise direction.

Following similar arguments as in Section 5.1.3.2, we conclude that the above two-phase

algorithm for the RSA problem in N -node rings has an approximation ratio of 3 + ε.
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Chapter 6

DA-RSA in Ring EONs

Distance adaptive spectrum allocation exploits the tradeoff between spectrum width and reach to

improve resource utilization by tailoring the modulation format to the level of impairments along

the path. In this Chapter, we present efficient and effective algorithms for the distance-adaptive

RSA (DA-RSA) problem in rings. In Section 6.1, we introduce the general result for the DA-RSA

with fixed alternate routing in general mesh networks and show this problem is a special case

of a general multiprocessor scheduling problem in which a task may be executed by alternate

sets of processors. Based on this transformation, we introduce a set of scheduling algorithms

in Section 6.2. In Section 6.3, we present the numerical results to compare the performance

of these algorithms with respect to the lower bound. Our results indicate that as the network

size increases beyond a point that depends on the traffic demand distribution, the spectrum

overhead associated with using a long path becomes sufficiently high that it is always best to

use the shortest path.

6.1 DA-RSA in General Graphs As a Special Case of Multipro-

cessor Scheduling

Distance-adaptive (DA) spectrum allocation, a concept first introduced in [36], exploits the

tradeoff between spectrum width and reach (for the same data rate) to improve utilization by

tailoring the modulation format to the level of impairments: a high-level modulation format

with narrow spectrum and low SNR tolerance may be selected for a short path, whereas a

low-level modulation with a wider spectrum and high SNR tolerance may be used for a longer

path [43]. The DA-RSA problem with fixed-alternate routing in mesh elastic optical networks

can be defined as:

Definition 6.1.1 (DA-RSA) Given a directed graph G = (V,A) with V vertices (nodes) and
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A arcs (directed links), k alternate routes, r1sd, . . . , r
k
sd, from each node s to each node d, and a

spectrum demand matrix T = [tlsd] , such that (i) tlsd is the number of spectrum slots required

to carry the traffic from source s to destination d along the l-th route between the two nodes,

l = 1, . . . , k, and (ii) spectrum demands may increase (but not decrease) with the path length,

i.e.,

|rlsd| ≤ |rhsd| ⇒ tlsd ≤ thsd. (6.1)

select one of the k possible routes for each spectrum demand and assign spectrum slots along all

the arcs of this route such that the total amount of spectrum used on any arc in the network is

minimized while the following three constraints are satisfied:

• spectrum contiguity constraint: each demand is assigned contiguous spectrum on all the

arcs of each route.

• spectrum continuity constraint: each demand is assigned the same spectrum along all the

arcs of its route.

• non-overlapping spectrum constraint: demands that share an arc are assigned non-

overlapping parts of the available spectrum.

If there is only one possible route for each traffic demand (i.e., k = 1 in the above definition),

then the DA-RSA problem reduces to the distance adaptive spectrum assignment (DA-SA)

problem. In Chapter 3, we have proved that the SA (and similarly DA-SA) problem in mesh

elastic optical networks is a special case of the multiprocessor scheduling problem P |fixj |Cmax.

That is, the SA problem can be transformed to P |fixj |Cmax, but the reverse is not always true.

Based on this reduction, any algorithm that solves the P |fixj |Cmax problem also solves the SA

problem. The definition of P |fixj |Cmax can be found in Definition 3.1.1.

Consider now the more general multiprocessor scheduling problem P |setj |Cmax, defined as

follows [91,92]:

Definition 6.1.2 (General P |setj |Cmax) Given a set of m identical processors, a set of n

tasks, a prespecified set setj = {fix1j , . . . , fixkj } of k alternative processor sets to execute each

task j, and processing time plj for executing task j on set fixlj, schedule these n tasks under

three constraints: (1) preemption is not allowed; (2) each task j is processed by exactly one set

of processors in setj simultaneously; and (3) each processor can execute at most one task at

each time, so as to minimize the makespan Cmax = maxj Cj of the schedule, where Cj represents

the completion time of task j.

We now show that the DA-RSA problem with fixed-alternate routing in mesh networks is a

special case of general P |setj |Cmax.
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Lemma 6.1.1 DA-RSA with fixed-alternate routing in mesh networks transforms to general

P |setj |Cmax.

Proof. Consider an instance of the DA-RSA problem with fixed-alternate routing on a

directed topology graph G = (V,A), a set of k routes {r1sd, . . . , rksd} for each source-destination

pair (s, d), and demand matrix T = [tlsd], l = 1, · · · , k. It is possible to build an instance of

P |setj |Cmax such that: (1) there is a processor i for every arc in ai ∈ A, (2) there is a task

j for each source-destination pair (s, d), (3) there is a setj = {fix1j , . . . , fixkj } for each task j

with fixlj = {q : aq ∈ {rlsd}} where (s, d) is the source-destination pair corresponding to task

j, and (4) and processing time of task j on processor set fixlj is plj = tlsd, l = 1, · · · , k. In this

transformation, each arc in the DA-RSA problem maps to a processor in the scheduling problem,

each spectrum demand to a task, each alternate route of a demand to one of the alternate

processor sets of the corresponding task, and the number of spectrum slots along a route of a

demand to the processing time of the task on the corresponding set of processors. Note that,

because of (6.1), the processing times of each task j in the P |setj |Cmax instance will obey this

relationship:

|fixlj | ≤ |fixhj | ⇒ plj ≤ phj . (6.2)

The spectrum contiguity constraint in the given instance of DA-RSA is equivalent to the

no preemption constraint in the constructed multiprocessor scheduling problem. The spectrum

continuity constraint guarantees that all the processors within a alternate set of processors

execute the corresponding task simultaneously. Finally, the non-overlapping spectrum constraint

assures that a processor works at most on one task at a time. Similarly, the total amount of

required spectrum on an arc of graph G in the DA-RSA problem is equivalent to the completion

time of the last task executed on the the corresponding processor. Accordingly, minimizing the

spectrum use on any arc of the DA-RSA problem is equivalent to minimizing the makespan of

the schedule in the corresponding problem general P |setj |Cmax.

We also note that the reverse of the above lemma is not true, i.e., general P |setj |Cmax

does not transform to DA-RSA and hence, it is a more general problem. The proof is by

counter-example and similar to the proof of Lemma 3.2.2.

Clearly, the P |fixj |Cmax problem is a special case of general P |setj |Cmax where there is

only one set of processors (i.e., k = 1) to execute each task. Therefore, once a set of processors

among the k > 1 alternate sets is selected to execute task j, the general P |setj |Cmax problem

reduces to P |fixj |Cmax, in which case any algorithm that solves the latter problem may be

applied to schedule the tasks.
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6.1.1 Lower Bound for Ring Networks

In order to evaluate the performance of an algorithm for the DA-RSA problem, and since the

optimal solution cannot be obtained in polynomial time, it is important to compute a lower

bound (LB). To this end, we note that the amount of flow across any cut of the network is

a lower bound on the amount of spectral resources that would be needed on any link. The

tightest such bound occurs for a cut with the maximum flow between the two network partitions.

In general, determining such a cut for a mesh network is a hard problem. In a ring network,

however, we find such a cut by considering all possible two-link cuts and selecting the one with

the maximum flow. In an N -node ring, there are N !
(N−2)!2! two-link cuts, hence a lower bound

can be obtained in O(N2) time. Note that an N -node bidirectional ring has N links in each

direction, hence the corresponding multiprocessor scheduling problem has m = 2N processors;

therefore, the complexity of obtaining the lower bound can also be expressed as O(m2).

6.2 DA-RSA Algorithms for Ring Networks

In ring networks, each demand may take either the clockwise or the counter-clockwise path to

the destination, hence the DA-RSA problem is equivalent to the general P |setj |Cmax problem

with k = 2 sets of processors for each task. It has been shown that, in the general case, there

can be no constant-ratio polynomial time approximation algorithm for P |setj |Cmax unless

P = NP [93]. Therefore, in order to solve the DA-RSA problem in large ring networks, new low

complexity algorithms with good performance are needed.

The DA-RSA problem requires both routing and spectrum assignment decisions.One strategy

is to first select one of the possible routes for each source-destination pair, and then assign the

required amount of spectrum along each path. Such methods are commonly referred to as R+SA

in the literature. A second approach is to make routing and spectrum assignment decisions

jointly.

We now present four algorithms to solve the DA-RSA problem. The algorithms make

routing and/or spectrum assignment decisions by building upon the multiprocessor scheduling

perspective above. All four algorithms utilize the concept of compatible tasks to minimize the

makespan, Cmax, of the corresponding scheduling problem.

6.2.1 R+SA Algorithms

In this section, we describe two algorithms that first select the clockwise or counter-clockwise

path for each demand, and then employ a multiprocessor scheduling algorithm to solve the

corresponding general Pm|fixj |Cmax problem. The algorithms only differ in how they make the

routing decision, or, from the point of view of multiprocessor scheduling, how they select one of
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the two sets of processors on which a task is to be executed. The input to these algorithms is a

list of tasks along with the two alternative set of processors and corresponding processing times.

The first algorithm simply assigns each traffic demand to its shortest path (in the scheduling

problem, it assigns each task to the set with the smallest number of processors), with ties broken

arbitrarily. We refer to this algorithm as SP. The second algorithm attempts to balance the

spectrum demands on all the processors, and is referred to as traffic load balancing (TLB). A

pseudocode description of the TLB algorithm is shown in Figure 6.1. Briefly, the algorithm

processes the tasks sequentially. When processing task j, the algorithm tentatively adds the

processing time of each set fixlj to the processing time of each processor in the set, and selects

the set that results in the smallest total processing time on any processor. In essence, the

algorithm ignores the simultaneous processing constraint (equivalently, the spectrum continuity

constraint of DA-RSA), hence, it only considers the amount of work (load) in making a selection,

not the actual schedule length.

The complexity of the TLB algorithm is determined by the running time of the two nested

for loops within the outer while loop. Therefore, the running time of TLB is O(kn) where n is

the number of tasks in the input list and k is the maximum number of alternative processor sets

for any task. Since, in the scheduling probelm corresponding to a ring network, the number of

alternative sets k = 2, the complexity of the TLB algorithm is linear in the number n of input

tasks.

Once a set of processors to execute each task has been determine by either the SP or TLB

algorithms, the original general Pm|setj |Cmax problem has been reduced to the Pm|fixj |Cmax

problem. In Chapter 4, we introduced a suite of list scheduling algorithms for solving the

latter problem (i.e., for performing the spectrum assignment) in chain networks. Based on the

comprehensive set of experiments reported there, the longest first compact (LFC) algorithm

exhibits the best performance across various network sizes and traffic demand distributions.

Therefore, we adopt the LFC algorithm to solve the Pm|fixj |Cmax problem corresponding to

ring networks. Since the running time of LFC is O(n2), it follows that the overall complexity of

both the SP+LFC and TLB+LFC algorithms is also O(n2).

6.2.2 Joint Routing and Spectrum Assignment Algorithms

The two R+SA algorithms described in the previous section have low complexity and are easily

implementable, as they decompose the DA-RSA problem into independent routing and spectrum

assignment subproblems that are solved sequentially. The disadvantage of an R+SA approach,

even in the case of the TLB algorithm that takes into account the work load on each processor

(i.e., arc) is that it does not consider the possible idle times (i.e., spectrum gaps) that may occur

due to the spectrum continuity constraint. Hence, the makespan of the schedule constructed by
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Traffic Load Balancing Algorithm for Pm|setj |Cmax

Input: A list L of n tasks onm processors, each task j requires a prespecified set setj = {fix1j , . . . , fixkj } of

k alternative processor sets with its corresponding processing time pj = {p1j , . . . , pkj } and Al = [a1, . . . , am]

for alternative l where ai = 1 if processor i ∈ fixlj ; otherwise, ai = 0
Output: A list L′ of n tasks in which each task j having a processing time pj and a set fixj ⊆ {1, 2, . . . ,m}
of required processors

begin
1. P ← [0, . . . , 0]1×m //Initial processing load on m processors
2. C ′max ← 0 // Expected makespan without idle times
3. while list L 6= ∅ do
4. j ← first task in list L
5. Remove the task j from list L
6. fixj ← ∅ //Set of processors to execute task j
7. pj ← 0 //Processing time to execute task j
8. for z ← 1 to k
9. altz ← P + pzj Az

10. C ′z ← takes the maximum value of altz
11. C ′max ← min(C ′z)
12. for w ← 1 to k
13. if C ′w = C ′max then
14. P ← altw
15. fixj ← fixwj
16. pj ← pwj
17. end while

end

Figure 6.1: A traffic load balancing (TLB) algorithm to select one set fixj for executing each task j of the
Pm|setj |Cmax problem

an R+SA algorithm may be longer than necessary.

In this section, we propose two new algorithms that make routing decisions jointly with

spectrum assignment. The algorithms are a variant of the well-known class of list scheduling

algorithms in that they take as input a list of tasks, process the list sequentially, and build the

schedule one task at a time, as they encounter the tasks in the list. However, our algorithms

differ in two important points from classical list scheduling. First, since each task may be

executed by alternate sets of processors, the input list contains not individual tasks, but rather

task-processor set pairs, one pair for each set of processors that may execute a given task;

therefore, we refer to these algorithms as set scheduling (SS). Second, the list is not built once

at the beginning of the algorithms; rather, it is built incrementally during the execution of the

algorithms, as we explain shortly.

The basic SS algorithm consists of the following logical steps:
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1. Task selection. A subset of the input set of tasks is selected.

2. Task ordering. For each task selected in the first step, task-processor set pairs are

created for each processor set that can execute this task. These task-processor set pairs

are sorted in a list.

3. Task scheduling. The list is scanned and tasks are considered for inclusion in the

schedule. Scheduled tasks are removed from further consideration.

4. Iteration. Repeat from the first step until all tasks have been scheduled.

We now describe the first three steps of the algorithm in more detail.

Task selection. This step starts with a set S of tasks (traffic demands) that have not been

scheduled yet; initially, the set includes all n input tasks and decreases in size at every iteration

as tasks are scheduled in the third step. Our goal is to identify tasks in S that are critical in

terms of scheduling, and consider them early on. Therefore, we consider the ring network with

only the traffic demands corresponding to the tasks in S, determine the cut that results in the

lower bound we discussed in the previous section, and identify the demands (tasks) that make

up the maximum flow across this cut. Let T ⊆ S denote the latter set of tasks. Since tasks in

T contribute to the lower bound, it is important to minimize the gaps between them in the

schedule. Therefore, we consider T as the next set of tasks to schedule.

Task ordering. For each task j ∈ T selected in the previous step, we pair it with each alternate

processor set fixlj that can execute the task. In the case of a ring network in which the only

two path options for a traffic demand are in the clockwise and counter-clockwise direction,

there are only two alternate processor sets, fix1j and fix2j , for the corresponding task. For each

task, we sort its two task-processor set pairs in increasing order of the processor set size, i.e.,

|fix1j | ≤ |fix2j |, with ties broken arbitrarily. Then, we sort the tasks in decreasing order of the

processing time p1j of their smallest processor set fix1j . This sorted list of task-processor set

pairs, L = [(1, fix11), (1, fix
2
1), (2, fix

1
2), (2, fix

2
2), . . .] is the input to the task scheduling step.

With this order, tasks that have larger processing times, and hence are more critical in terms of

scheduling, are considered earlier; and for a given task, the smaller processor set is considered

first as it requires fewer resources (processors, or arcs) and smaller processing time (due to the

distance-adaptive modulation).

Task scheduling. The input to this step is the list L of tasks from the previous step, and a

partial schedule in which the last task ends at time t; initially, the schedule is empty and t = 0.

We schedule the first task in list L to start execution at time t on processor set fix11 (recall

that (1, fix11) is the first item in list L. We then remove from the list both task-processor set

pairs (1, fix11), (1, fix21), and update the processors in set fix11 as busy at time t. We scan list L

to find the next task j and processor set that is compatible with fix11; we schedule task j at
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time t, update the processors on which it will be executed as busy, and remove all pairs with

this task from the list. We continue scanning list L to find all the task-processor sets that are

pairwise compatible, and schedule all these tasks to start at time t. Note that scheduling a task

implies making both a routing decision (i.e., selecting one of the two processor sets of the task

or route for the corresponding demand) and a spectrum assignment decision (i.e., assigning a

start time to the task, or a starting spectrum slot for the corresponding demand).

Once we have reached the end of the list, we update the set S of unscheduled tasks that was

provided as input to the task selection step by removing all the tasks that were scheduled in

this step. We also update the end time of the new partial schedule to the maximum completion

time of any scheduled task. We then continue to the fourth step to iterate until all tasks have

been scheduled.

6.2.2.1 Pseudocode Description of the SS Algorithm

A pseudocode description of the SS algorithm is presented in Figure 6.2. The pseudocode consists

of two phases. In the first phase, from Lines 5-21, we consider the critical tasks computed by

the source/sink cut. Then, we select a task with a set of processors that are currently idle and

schedule it to start exectution at the current time t. If some tasks in L (i.e., the set of tasks

defined by the current source/sink cut) cannot be scheduled at scheduling instant t, we keep

a copy of these tasks in list R. Phase two, which starts at Line 22, starts whenever no more

tasks in L can be scheduled at time t. In this case, all the remaining tasks in S are considered

to determine if some of them can be scheduled at time t. Finally, time t is updated to the next

time some processors will become idle (i.e., the earliest time a scheduled task will complete

execution), and this process is repeated until all the tasks in S are scheduled.

The running time complexity of the SS algorithm is defined by the nested for loop within

the two nested outer while loops. Thus, the overall running time of the SS algorithm is O(n3),

where n is the number of tasks.

6.2.2.2 The SS Algorithm with Shortest Path Routing (SS+SP)

The SS algorithm with shortest path routing (SS+SP) is a modified version of the SS algorithm

that attempts to assign spectrum to as many demands as possible using the respective shortest

paths (equivalently, to schedule tasks using the smallest processor sets). The input of each

iteration of this algorithm is a sorted list L which is calculated using a source/sink cut, as with

the basic SS algorithm. Under the SS+SP algorithm, list L is scanned to find tasks that can

be scheduled at the current time t using their smallest processor sets. Tasks that cannot be

scheduled on their smallesr processor sets are skipped, and scheduled later, i.e., either during

the optimization phase of the algorithm (which starts in Line 22 of the pseudocode shown in
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Set Scheduling Algorithm for Pm|setj |Cmax

Input: A set S of tasks (traffic demands) between each pair of nodes such that task j requires
a prespecified set setj = {fix1j , . . . , fixki } of k alternative processor sets with its corresponding

processing time pj = {p1j , . . . , pkj }
Output: A schedule of tasks, i.e., the time Sj when each task j starts execution on the
multi-processor system

begin
1. t← 0 //Scheduling instant
2. F ← {1, . . . ,m} //Set of currently idle processors
3. T ← a subset of S determined by the source/sink cut algorithm
4. L← a sorted list of T
5. while S 6= ∅
6. R← ∅ // List of tasks remaining from each iteration
7. while list L 6= ∅ do
8. j ← first task in list L; Remove task j from list L
9. fixj ← ∅
10. for z = 1 to k
11. if fixzj ⊆ F then

12. fixj ← fixzj ; pj ← pzj ; F ← F \ fixj
13. Sj ← t // Task j starts execution at time t
14. Remove task j from S
15. break
16. if fixj = ∅ then Add task j to list R
17. end while
18. T ← a subset of S determined by the source/sink cut algorithm
19. L← a sorted list of T
20. if L = R then // Performs optimization for all the remaining tasks
21. L← a sorted list of S
22. while list L 6= ∅ or F 6= ∅ do
23. l← first task in list L; Remove task l from list L
24. for z = 1 to k
25. if fixzl ⊆ F then
26. fixl ← fixzl ; pl ← pzl ; F ← F \ fixl
27. Sl ← t // Task l starts execution at time t
28. Remove task j from S
29. break
30. end while
31. i← the first task executing at time t to complete
32. t← Si + pi
33. F ← F ∪ fixi
34.end while
35.return the task start times Sj

end

Figure 6.2: A set scheduling algorithm for Pm|setj |Cmax
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Figure 6.2) or after the time t is updated.

6.3 Numerical Results

We now describe the experiments we have carried out to compare the performance of the four

DA-RSA algorithms in bidirectional ring networks with N = 4, 6, 8, 10, 12, 14, 16 nodes (recall

also that the scheduling problem corresponding to an N -node bidirectional ring has m = 2N

processors). We generate traffic demands between each pair of nodes in the ring based on one of

the following three distributions:

• Distance-independent: traffic demands may take any of the five discrete values in the set

{10, 40, 100, 400, 1000} with equal probability; these values correspond to data rates (in

Gbps) to be supported by EONs.

• Distance-increasing: traffic demands may take one of the five discrete values in the

set {10, 40, 100, 400, 1000} such that higher values are assigned to a node pair with a

probability that increases with the length of the shortest path between the two node.

• Distance-decreasing: traffic demands may take one of the five discrete values in the

set {10, 40, 100, 400, 1000} such that higher values are assigned to a node pair with a

probability that decreases with the length of the shortest path between the two node.

In our experiments, we also used various other probability values for both the discrete low and

discrete high distributions, but the trends regarding the relative performance of the algorithms

were very similar to the ones shown below.

We consider distance adaptive spectrum allocation based on the traffic rate and the length

of each possible path (i.e., number of processors in the corresponding scheduling problem) [7,36].

Thus, we assume that the slot width is 12.5 GHz, and there are two modulation formats as

represented in [36]:

• 16-QAM modulation format for paths with up to 8 links (i.e., processors) such that 10, 40,

100, 400, and 1000 Gbps take 1, 1, 2, 8, and 20 slots, respectively.

• QPSK modulation format for more than 8 links (i.e., processors), whereby 10, 40, 100,

400, and 1000 Gbps are assigned 1, 2, 4, 16, and 40 spectrum slots, respectively.

The performance metric we consider in this study is the ratio of the spectrum required

by the solution constructed by one of the algorithms, over the lower bound (computed as

described earlier); the closer this ratio is to 1.0, the better the performance of the algorithm

in terms of its use of available spectrum. As we discussed in Chapter 5, the P2N |setj |Cmax
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problem corresponding to a bidirectional ring network with N nodes is NP-hard for N ≥ 4, so

the optimal makespan value is not known for the problem instances considered in this study.

Clearly, this optimal value is greater than or equal to the estimated lower bound; therefore,

the performance of the algorithms with respect to the optimal may be better than this ratio

indicates. Nevertheless, this metric accurately characterizes the relative performance of the

algorithms.

Figures 6.3-6.5 plot the average ratio of the four algorithms, denoted by SP+LFC, TLB+LFC,

SS, and SS+SP, as a function of the number of ring nodes; each figure presents results for

problem instances generated using the distance-independent, distance-increasing, and distance-

decreasing demand distributions, respectively. Each data point on these plots is the average of

ten replications, each replication being the average over 30 randomly generated instances; 95%

confidence intervals, estimated using the method of batch means, are also shown in the figures.

We first observe that the best algorithm has a ratio of no more than 1.15, i.e., it is always

within 15% of the lower bound on the amount of spectrum required to route all demands. Since

the (unknown) optimal solution will generally lie above the lower bound, these results indicate

that our algorithms are effective in constructing solutions close to optimal one.

Another important observation is that of the two R+SA algorithms, TLB+LFC outperforms

SP+LFC, regardless of the demand distribution, for small- and medium-size ring networks, but

SP+LFC performs better for rings with 14 or more nodes. Note that in the ring networks in

which TLB+LFC is better than SP+LFC, and based on the modulation formats we consider, a

demand requires the same number of slots regardless of whether it is routed on the shortest or

non-shortest path. In this case, the TLB is successful in making efficient use of the spectrum

resources by occasionally using non-shortest paths to balance the traffic load. However, whenever

demands routed along the non-shortest path require a larger number of slots than along the

shortest path, it is more difficult to achieve load balancing by using the longer path. Therefore,

SP+LFC is the better solution in large networks since selecting the non-shortest path incurs a

spectrum penalty along a large number of links.

We also observe that from small- to medium-size rings, the SS algorithm is able to find

solutions using non-shortest paths that outperform both R+SA algorithms, but does not work

well for larger ring networks. On the other other hand, the SS+SP algorithm, which gives

preference to shortest paths, has by far the best performance as the ring size increases. Overall,

our results indicate that (1) due to the spectrum penalty of long paths, strategies that give

preference to shortest path routing work best for large rings, and (2) the SS-based algorithms

outperform the R+SA algorithms across the range of ring network sizes and traffic demand

distributions that we have considered in these experiments.
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Figure 6.3: Average ratio vs. number of nodes, distance-independent distribution
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Figure 6.4: Average ratio vs. number of nodes, distance-increasing distribution
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Figure 6.5: Average ratio vs. number of nodes, distance-decreasing distribution
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Chapter 7

DA-RSA in Mesh EONs

As backbone and regional networks evolve from ring to mesh, optimal solutions for the RSA

problem in general topologies are becoming important to network designers and operators.

Hence, we study the DA-RSA problem in mesh EONs in this chapter. In Section 7.1, we show

that DA-RSA in mesh networks is a special case of scheduling multiprocessor tasks on dedicated

processors. Next, we discuss the complexity of the DA-RSA in mesh networks and derive some

theoretical results in Section 7.2. Then, we develop a computationally efficient algorithm that

builds upon list scheduling concepts to jointly tackle the routing and spectrum assignment

aspects of DA-RSA in Section 7.3 and represent numerical results in Section 7.4.

7.1 DA-RSA in Mesh Networks

In Chapter 6, we have shown that the DA-RSA problem with fixed alternate routing in mesh

networks transforms to the P |setj |Cmax multiprocessor scheduling problem, but the reverse is

not true. In other words, DA-RSA is a special case of P |setj |Cmax, and hence, any algorithm

for the latter problem may also solve the former.

In the transformation, each arc in the DA-RSA problem maps to a processor in the scheduling

problem, each traffic demand to a task, and the number of spectrum slots (respectively, the set

of alternate routes) of a demand to the processing time (respectively, the set setj of alternate

processor sets) of the corresponding task, and the maximum number of spectrum slots used on

any link to the makespan of the schedule. Accordingly, minimizing the maximum spectrum

allocation on any arc of the DA-RSA problem is equivalent to minimizing the makespan of

the schedule in the corresponding problem P |setj |Cmax. Furthermore, the spectrum contiguity

constraint of DA-RSA is equivalent to the no-preemption constraint of P |setj |Cmax, the spectrum

continuity constraint maps to the constraint that all required processors must execute a task

simultaneously, and the non-overlapping spectrum constraint maps to the constraint that a
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processor work on at most one task at a time.

7.2 Complexity Results for Mesh Networks

The problem P2|setj |Cmax in which the number of processors is fixed to m = 2, is NP-

hard [94]. Moreover, it has been shown that, unless P = NP , no constant-ratio polynomial time

approximation algorithm exists for the general problem P |setj |Cmax [93]. However, since the

DA-RSA problem is a special case of P |setj |Cmax, it is possible that polynomial or approximation

algorithms exist for special topologies or spectrum demand matrices. In this section, we present

theoretical results on the complexity of the DA-RSA problem.

Before we proceed, we introduce two definitions. First, we let KN denote a complete digraph

with N nodes. Since every pair of distinct nodes in KN is connected by a pair of distinct arcs,

one in each direction, the total number of arcs in the graph is equal to N(N − 1). Second, in

the context of multiprocessor scheduling, we refer to tasks as compatible if they can be executed

simultaneously, i.e., if the processor sets assigned to the tasks are pairwise disjoint. We now

have the following lemma.

Lemma 7.2.1 The DA-RSA problem on complete digraphs KN , N ≥ 2, is solvable in polynomial

time.

Proof. From Lemma 6.1.1 the multiprocessor scheduling problem instance corresponding

to a DA-RSA instance on KN contains N(N − 1) processors, one for each arc of KN . Let us

select the shortest path (i.e., direct arc) for each spectrum demand in the DA-RSA instance.

Then, each task in the scheduling instance is to be executed on its own distinct processor.

Therefore, the problem reduces to that of scheduling a set of single-processor tasks that are

pairwise compatible. Since all tasks may be executed in parallel, the makespan of the schedule

is equal to the processing time of the longest task. Recall that all instances of P |setj |Cmax

constructed from an instance of the DA-RSA problem are such that processing times of tasks

satisfy expression (6.2). Therefore, this makespan is optimal.

Although DA-RSA may be solved optimally on a complete digraph using shortest path

routing, as the above lemma implies, the next three results show that DA-RSA on general

topologies derived by deleting arcs from a complete digraph, is NP-complete.

Theorem 7.2.1 DA-RSA on a digraph G obtained by deleting the two arcs1 between any pair

of nodes of K4, is NP-complete.

1In typical telecommunication networks, two nodes are directly connected using two links, one in each direction.
Hence, in this and the next theorem, we only consider the case of removing both arcs between a pair of nodes. It
is possible to extend the results to the case of deleting one arc at a time.
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Figure 7.1: The digraph K′
4 obtained after removing the two arcs between nodes 1 and 3 from K4

Proof. Consider the four-node digraph K ′4 obtained from K4 after removing the two arcs

between nodes 1 and 3, as shown in Figure 7.1; note that, because of symmetry, the proof

holds if the arcs between any pair of nodes of K4 are removed. Let {1, 2, 3, 4, 5, 1′, 2′, 3′, 4′, 5′}
represent the ten arcs of this network, as labeled in the figure. Following the transformation

described in Lemma 6.1.1, we transform an instance of DA-RSA on digraph K ′4 to an instance

of P |setj |Cmax with m = 10 processors, and we represent each processor using the same label

as the corresponding arc of K ′4.

Let P4 represent the set of P |setj |Cmax instances corresponding to DA-RSA instances defined

on digraph K ′4. By construction, each DA-RSA instance on K ′4 transforms to a unique instance

of P4, and therefore, the reverse is also true, i.e., each instance of P4 transforms back to a unique

instance of DA-RSA on K ′4. We now show that the scheduling problem P4 is NP-complete; since

P4 transforms to DA-RSA on K ′4, the latter problem is NP-complete as well. The proof is by

reduction from the PARTITION problem which be can be found in Definition 4.2.1.

Given an instance of PARTITION, we create an instance of P4 with the ten processors

labeled {1, 2, 3, 4, 5, 1′, 2′, 3′, 4′, 5′}, as shown in Figure 7.2. Specifically, for each aj ∈ A, we

create a task τj with processing time pj = aj and setj = {{2}, {5, 3′}, {1′, 4′, 3′}}. Furthermore,

we create the eleven tasks listed in Table 7.1:

Each task created for the P4 instance corresponds to a demand between a pair of nodes in

the DA-RSA problem on G. For instance, consider task Ta. Referring to Figure 7.1, task Ta

corresponds to a demand from node 1 to node 4 in G, and the three alternate sets of processors

for the task (i.e., the sets in the third column of the first row in Table 7.1) correspond to the

three paths from 1 to 4 in G, i.e., < 4′ >, < 1, 5 >, and < 1, 2, 3 >, respectively. Also, since
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Table 7.1: Tasks created in the transformation of PARTITION P4

task j pj setj
Ta B {{4′}, {1, 5}, {1, 2, 3}}
Tb B/2 {{1′}, {5, 4}, {2, 3, 4}}
Tc B {{3′}, {5′, 2}, {4, 1, 2}}
Td B/2 {{2′}, {3, 5′}, {3, 4, 1}}
Te 3B {{3, 4}, {2′, 1′}, {2′, 5, 4}, {3, 5′, 1′}}
Tf 3B {{1, 2}, {4′, 3′}, {1, 5, 3′}, {4′, 5′, 2}}
T1 B/2 {{1}, {4′, 5′}, {4′, 3′, 2′}}
T2 3B/2 {{3}, {2′, 5}, {2′, 1′, 4′}}
T3 B {{4}, {5′, 1′}, {3′, 2′, 1′}}
T4 5B/2 {{5}, {2, 3}, {1′, 4′}}
T5 3B {{5′}, {4, 1}, {3′, 2′}}

the processing time of each task is independent of the set of processors on which the task is

executed, condition (6.2) is satisfied.

If set A can be partitioned into A1 and A2 such that
∑

aj∈A1
=
∑

aj∈A2
= B/2, then there

exists a feasible schedule for the P4 problem as shown in Figure 7.2 with Cmax = 3B. This

schedule is also optimal since its makespan is equal to the processing time of the longest task.

Conversely, suppose that there exists a feasible schedule S with Cmax ≤ 3B. Since tasks

T5, Te, and Tf have length equal to 3B, they must be executed in parallel, i.e., they must be

assigned to processor sets that are pairwise disjoint. Specifically, assigning T5 on either of its

two-processor sets would create a schedule of length longer than 3B, hence, it must be executed

on processor 5′, as shown in Figure 7.2. As a result, Te and Tf must be scheduled on processor

sets {2′, 1′} and {4′, 3′}, respectively. Given this assignment, the five processors 1′, 2′, 3′, 4′,

and 5′ are busy in the interval [0, 3B], Therefore, the remaining tasks must be executed on

processors 1, 2, 3, 4, and 5 to guarantee that the length of the schedule Cmax ≤ 3B.

We also note that the processing time of T4 is 5B/2, so this task must be executed on

processor 5 to ensure that the makespan does not exceed 3B. Consequently, Tb is the only task

that can be scheduled on the processor set {4, 5} to keep Cmax ≤ 3B. In turn, this observation

implies that task Ta must be executed on the set {1, 2, 3}.
Without loss of generality, suppose Ta is executed before Td in schedule S; otherwise, similar

arguments can be used to reach the same conclusion. Among the remaining tasks compatible

with Ta, Tb is the only one that must be executed in parallel with Ta to yields a makespan of no

more than 3B. Next, tasks T3 and T4 must be scheduled immediately after the completion of
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Figure 7.2: A feasible schedule with Cmax = 3B for the P4 problem instance of Theorem 7.2.1

Tb. As Ta completes at time B, earlier than T3, tasks T1 and T2 must be scheduled right after

Ta, otherwise the schedule length would be greater than 3B. Similarly, as soon as T1 and T3

complete at time 3B/2, Tc must be executed in parallel with T2 and T4. Finally, we observe that

Td must start at time 5B/2 to ensure that the makespan does not exceed 3B. The corresponding

schedule of tasks is shown in Figure 7.2, and is such that only the intervals [B, 3B/2] and

[5/2B, 3B] can be used to execute the PARTITION jobs. Thus, a partition of set A, i.e., a

solution to the PARTITION problem, exists.

Theorem 7.2.1 shows that removing the two arcs between any pair of nodes of K4 renders

the DA-RSA problem on the resulting graph K ′4 NP-complete. The following theorem shows

that removing two pairs of arcs from K5 yields a problem that is also NP-complete.

Theorem 7.2.2 DA-RSA on a digraph K ′5 obtained by deleting the two arcs between any two

pairs of nodes of K5, is NP-complete.

Proof. The two pairs of nodes in K5 whose arcs are removed may or may not have one node

in common. We investigate each of these cases separately.
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Figure 7.3: The digraph K′
5 created from K5 by removing two pairs of arcs (a) with no common node, and (b)

with one common node.

Figure 7.3(a) illustrates the digraph K ′5 after removing the two arcs between nodes 1 and 3,

and nodes 2 and 4. Consider a DA-RSA instance in which spectrum demands to and from

node 5 are very large, i.e., tl5j = tlj5 = M, j = 1, . . . , 4, where M is a large number. In this case,

an optimal solution must be such that (1) all these large demands must be routed across the

corresponding direct arc, and (2) the arcs that carry the large demands are not used to carry

any other traffic. The DA-RSA problem for the remaining node pairs (i, j), i, j = 1, . . . , 4, i 6= j,

is equivalent to the DA-RSA on a four-node bidirectional ring, which, as we mentioned above,

is NP-complete.

Similarly, if we remove the two arcs between nodes 1 and 5 and nodes 1 and 3, the result will

be the digraph K ′5 shown in Figure 7.3(b). Let the spectrum demands tl5j = tlj5 = M, j = 2, . . . , 4,

be very large. As we observed in the previous case, these large demands must use the direct arcs,

and the latter may not be used to carry other traffic. DA-RSA for the remaining demands is

defined on a digraph identical to the one in Figure 7.1, a problem we proved to be NP-complete

in Theorem 7.2.1.

We now provide the following complexity result for the DA-RSA problem on general graphs.

Lemma 7.2.2 Let G be a digraph. If either K ′4 or K ′5 is a vertex-induced subgraph of G, then

the DA-RSA problem on G is NP-complete.

Proof. Let K ′4 be a vertex-induced subgraph of G; identical arguments apply when K ′5 is

a vertex-induced subgraph of G. Consider an instance of DA-RSA on G with the following

spectrum demands: (1) arbitrary, between nodes of the K ′4 subgraph, (2) equal to a large number
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M , between adjacent nodes not in the K ′4 subgraph, and (3) equal to zero, between non-adjacent

nodes not in the K ′4 subgraph. Similar to the observations in the previous theorem, in the

optimal solution, each arc of G that is not part of the subgraph K ′4 only carries the traffic

between the directly connected nodes. Hence, this instance reduces to a DA-RSA sub-problem

on digraph K ′4, which, according to Theorem 7.2.1, is NP-complete.

7.3 A List Scheduling Algorithm for Pm|setj|Cmax

In this section, we propose a list scheduling (LS) algorithm for the Pm|setj |Cmax problem. Since

DA-RSA is a special case of Pm|setj |Cmax, this algorithm can be used to solve the DA-RSA

problem in networks of general topology. This is accomplished in three steps: (1) the DA-RSA

instance at hand is first be transformed to an instance of Pm|setj |Cmax following the process

described in Lemma 6.1.1, (2) the LS algorithm is applied to construct a schedule that solves

the scheduling instance, and (3) the schedule is transformed back to a solution of the DA-RSA

instance.

The input to the LS algorithm is a list of tasks L, along with their corresponding k alternate

sets of processors. Tasks in the list are sorted in decreasing order of the processing time on their

smallest processor set; ties are broken by the size (i.e., the number of processors) of their smallest

processor set, and further ties are broken arbitrarily. For each task, its alternate processor sets

are sorted in increasing order of their size.

At each scheduling instant t, the algorithm scans the list L to find the first task j and

processor set Sl
j that is compatible with the tasks already executing at this time t. This set Sl

j

of processors is selected to execute task j starting at time t, and the algorithm removes the task

from L. The algorithm updates the set of free processors at time t, and continues scanning list

L, repeating the above process until no other compatible task is found. Then, the algorithm

advances t to the earliest time t′ > t at which one of the currently executing tasks will be

completed, releases the set of processors assigned to the just completed task, and repeats the

above actions for time t′. The algorithm continues in this manner until all tasks in list L have

been scheduled.

A pseudocode description of the LS algorithm is provided in Figure 7.4. Both the outer and

inner while loops of the algorithm take at most O(n) time, in the worst case, where n is the

number of tasks in the scheduling problem. Both for loops take time O(k) in the worst case,

where k is the number of alternate processor sets. Therefore, the running time complexity of

the LS algorithm is O(kn2). Since the number of tasks corresponds to the number of spectrum

demands, the complexity of the algorithm when applied to the DA-RSA problem is O(kN4),

where N is the number of nodes and k the number of alternate paths.
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List Scheduling Algorithm for Pm|setj |Cmax

Input: A list L of n tasks on m processors, each task j defined by the set setj = {fix1j , . . . , fixkj }
of k alternative processor sets on which it may be executed, and the corresponding processing times
{p1j , . . . , pkj }
Output: A schedule of tasks, i.e., the time Tj when task j starts execution, along with the set fixj of
processors assigned to it and the corresponding processing time pj

begin
1. t← 0 //Scheduling instant
2. F ← {1, . . . ,m} //Set of currently idle processors
3. while list L 6= ∅ do
4. j ← first task in list L
5. fixj ← ∅ //Set of processors to execute task j
6. pj ← 0 //Processing time of task j
7. for z ← 1 to k
8. if fixzj ⊆ F then
9. fixj ← fixzj
10. pj ← pzj
11. Tj ← t
12. F ← F \ fixj
13. Remove the task j from list L
14. break
15. while not at the end of list L or F 6= ∅ do
16. i← first task in list
17. for w ← 1 to k
18. if fixwi ⊆ F then
19. fixi ← fixwi
20. pi ← pwi
21. Ti ← t
22. F ← F \ fixi
23. Remove the task i from list L
24. break
25. end while // no more tasks may start at time t
26. j ← the first task executing at time t to complete
27. t← Tj + pj
28. F ← F ∪ fixj
19. end while

end

Figure 7.4: A list scheduling (LS) algorithm to select one set fixj and its corresponding processing time pj to
execute each task j of the Pm|setj |Cmax problem.
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7.4 Numerical Results

We have evaluated the performance of the LS algorithm by carrying out simulation experiments

with a large number of DA-RSA problem instances. Each problem instance is characterized

by three parameters: (1) the network topology, (2) the number k of shortest paths for each

source-destination pair, and (3) a randomly generated spectrum demand matrix.

7.4.1 Topology and Shortest Paths

In our evaluation study, we have used three general topology networks of varying size and

average nodal degree:

• the 14-node, 42-arc (directed link) NSFNet shown in Figure 7.5,

• the 32-node, 108-arc GEANT2 topology depicted in Figure 7.6, and

• the 60-node, 154-arc network topology illustrated in Figure 7.7 and adapted from CORO-

NET CONUS [100].

We used Yen’s algorithm [101] to compute the the k loop-less shortest paths, k = 1, . . . , 7,

between each pair of nodes in each topology. Yen’s algorithm takes time O(N3), where N is the

number of nodes. For the experiments we present in this section, we assumed that all links have

unit weight for purposes of computing shortest paths.

7.4.2 Spectrum Demand Matrix

For each DA-RSA problem instance we randomly generate a spectrum demand matrix in two

steps: traffic demand generation and distance-adaptive spectrum allocation.

7.4.2.1 Traffic Demand Generation

We assume that the elastic optical network supports the following data rates (in Gbps): 10, 40,

100, 400, and 1000. Therefore, in the first step, traffic rates between every pair of nodes are

drawn from one of three probability distributions:

• Distance-independent: each value in the set {10, 40, 100, 400, 1000} is selected with equal

probability.

• Distance-increasing: the probability assigned to each value in the set {10, 40, 100, 400, 1000}
depends on the length of the shortest path between the source and destination nodes, such

that the probability of higher values in the set increases with the length of the shortest

path.
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Figure 7.6: The GEANT2 topology

91



Figure 7.7: The 60-node network topology derived from the CORONET CONUS

• Distance-decreasing: the probability assigned to higher values in the set {10, 40, 100, 400, 1000}
decreases with the length of the shortest path between the source and destination nodes.

7.4.2.2 Distance-Adaptive Spectrum Allocation

In the second step, we determine the number tlsd of spectrum slots required for the traffic

demand to be carried on the l-th alternate path, l = 1, . . . , k, from source s to destination d. In

distance-adaptive spectrum allocation, the number of slots depends on both the data rate and

the length of the path [7, 36]. We adopt the parameters of the study in [36], and assume a slot

width of 12.5 GHz and three modulation formats:

• Paths with up to 4 links: the 64-QAM modulation format is used such that data rates of

10, 40, 100, 400, and 1000 Gbps require 1, 1, 2, 6, and 14 spectrum slots, respectively.

• Paths with 5-9 links: the 16-QAM modulation format applies, such that rates of 10, 40,

100, 400, and 1000 Gbps are assigned 1, 1, 2, 8, and 20 slots, respectively.

• Paths with 10 or more links: the QPSK modulation format is utilized, and data rates of 10,

40, 100, 400, and 1000 Gbps are allocated 1, 2, 4, 16, and 40 spectrum slots, respectively.

7.4.3 Evaluation Metrics

The first metric we consider is the maximum number of spectrum slots on any link in the

network required by the solution to a DA-RSA problem instance obtained by the LS algorithm.
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We denote this value as MaxSlotsLS ; as the reader may recall, this value is equivalent to the

length of the schedule constructed by the LS algorithm for the corresponding scheduling problem

instance. This metric can provide insight into the impact of the number k of alternate paths or

the traffic rate distribution on the use of spectrum resources in the network.

In order to evaluate the quality of the LS algorithm, and since the optimal solution cannot

be obtained in polynomial time, it is important to compute a lower bound (LB). Let Din
q and

Dout
q denote the in- and out-degrees of node q. A simple lower bound for the DA-RSA problem

can be calculated as follows:

LB = max{max
s

∑
d

tsd/D
out
s ,max

d

∑
s

tsd/D
in
d } (7.1)

where tsd in the above expression is the spectrum demand for the traffic from s to d along the

shortest path between the two nodes. The metric we use to characterize of the LS algorithm is

the ratio

R = MaxSlotsLS/LB. (7.2)

Clearly, R ≥ 1.0; the closer R is to 1.0, the better the performance of the algorithm. We note,

however, that the lower bound in (7.1) only considers spectrum demands in and out of each

node, and does not account for the interaction of these demands along the links of the network;

therefore, we expect the bound to be loose.

The figures we present in the next section report average values for either MaxSlotsLS or

R. Specifically, each data point on these figures is the average of 10 replications of a random

experiment; in turn, each replication is the average of 30 random instances generated for the

stated parameters (i.e., topology, number k of paths, and traffic rate distribution). The figures

also report 95% confidence intervals which can be seen to be narrow.

7.4.4 Results and Discussion

The three Figures 7.8-7.10 plot the maximum number of spectrum slots, MaxSlotsLS , as a

function of the number k of alternate paths, for the NSFNet, GEANT2, and 60-node topologies,

respectively. Each figure includes three curves, each representing results for problem instances

with spectrum demand matrices generated by the distance-independent, distance-increasing,

and distance-decreasing distributions, respectively.

We first observe that the amount of spectrum increases with the size of the network, reflecting

the corresponding increase in traffic demands due to the larger number of source-destination

pairs. Nevertheless, the overall behavior of the curves is consistent across the three traffic

distributions and network topologies. Specifically, the amount of spectrum resources is high for

shortest path routing (k = 1), but drops sharply (between 20-50%, depending on the distribution
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and topology) when demands may be routed along one of k = 2 alternate paths. As the number

k of alternate paths increases further, the number of spectrum slots decreases more slowly and

eventually levels off, indicating the diminishing returns of employing each additional path.

A final observation from the three Figures is that the solution to the DA-RSA problem is

highly sensitive to the traffic demand distribution. Specifically, everything else being equal,

the distance-increasing distribution requires more spectrum than the distance-independent

distribution, which in turn is more resource-intensive than the distance-decreasing distribution.

This result can be explained by the fact that demands between nodes that are far away from

each other consume more spectral resources in the network than the same demands between two

nearby nodes due to (1) the larger number of links in the paths they travel, and (2) the wider

spectrum that is required to carry the demand if the length of its path crosses the threshold

into a lower-level modulation with high SNR tolerance.

Let us now turn our attention to the three Figures 7.11-7.13 which plot the average ratio

R in expression (7.2) against the number k of paths for each of the three network topologies;

again, each figure includes three plots, one per demand distribution. Note that the lower bound

in (7.1) is independent of the number k of alternate paths for each demand. Since the number

of required slots, MaxSlotsLS decreases with k, as seen in the previous three figures, we expect

R to decrease as well, and this is exactly what we observe in Figures 7.11-7.13.

Nevertheless, there is an important difference between the three figures that plot the absolute

value of spectrum slots required and the ones that show the average ratio. Specifically, we

observe that there are significant gaps between the various curves in each of Figures 7.8-7.10,

which, as we explained above, are due to the combined effects of the demand distribution and

distance-adaptive spectrum allocation. On the other hand, the curves of the various distributions

in Figures 7.11-7.13 are closer to each other and the average ratios of the three distributions

converge to similar values. Recall that the lower bound in (7.1) depends on the demands in and

out of each node in the network, and hence it depends on the traffic distribution. Therefore, the

behavior of the curves in Figures 7.11-7.13 is a strong indication that, for the topologies and

distributions we considered in this study, the LS algorithm is capable of exploiting alternate

paths to construct solutions that move towards the lower bound, regardless of the absolute

value of spectrum slots required in each problem instance.

Finally, we note that the average ratio of the LS algorithm increases with the size of the

network, from around 1.8 for the NSFNet to around 2.7 for GEANT2 and about 5 for the

60-node network (these ratio values are for the largest number of alternate paths shown in the

figures). This increase is partly due to the heuristic nature of the LS algorithm: as the size of

the problem increases, the size of the solution space increases exponentially whereas the set of

solutions examined by the algorithm increases polynomially, hence the probability of finding

good quality solutions decreases. However, we argue that a significant part of the increase in
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Figure 7.8: Spectrum slots vs. number k of paths in NSF
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Figure 7.9: Spectrum slots vs. number k of paths in GEANT2
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Figure 7.10: Spectrum slots vs. number k of paths in 60-node network

the ratio is due to the increase in the gap between the lower bound and optimal solution as the

network size increases. In particular, as the network size grows, spectrum allocation is affected

by the interaction of an increasing number of traffic demands over an increasing number of paths

and links. Since expression (7.1) for the lower bound does not account for these interactions,

we expect that LB becomes looser and further disconnected from the optimal. Therefore, we

conjecture that the LS algorithm performs significantly better relative to the lower bound than

Figures 7.11-7.13 suggest, especially for the GEANT2 and 60-node networks.

Overall, the results in this section indicate that the LS algorithm is effective in using a small

number of alternate paths (i.e., k = 5, 6) to utilize spectrum resources efficiently, by balancing

the traffic demands across the network links.
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Figure 7.12: Average ratio vs. number k of paths in GEANT2
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Figure 7.13: Average ratio vs. number k of paths in 60-node network
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Chapter 8

Conclusions and Future Work

In this work, we discussed the importance of employing EONs to fulfill the ongoing traffic

demands and introduced the constraints that need to be satisfied while we use this type of

optical networks. We then reviewed the existing problems in the literature for EONs and

classified common solution approaches to tackle each of them. Although there exist various

ILP formulations with different assumptions for the RSA problem, they can only handle small

network sizes. Hence, the most common approach to solve the RSA problem in the medium to

large network instances is (meta)heuristic algorithms.

We then proved that the SA problem in (mesh) networks of general topology is a special case

of multiprocessor scheduling problem on the dedicated processors denoted as Pm|fixj |Cmax.

Based on this transformation, we could show that the chain networks with four nodes can

be solved in polynomial time, whereas the chain networks with more than five nodes are

NP-complete. We also introduced constant-ratio approximation algorithms which beat the

previous ratio had been proposed for this problem. Then, we developed four heuristic algorithms

inspired by a new scheduling perspective for the SA problem in chain networks and ran extensive

simulations to compare their performance with regard to the lower bound for the SA problem.

We also studied the SA problem in rings networks. Concretely, we showed that the SA

problem in bidirectional rings with less than four nodes with the shortest-path assumption

is solvable in polynomial time. Nevertheless, the SA problem in bidirectional rings with the

shortest-path assumption turns out to be NP-complete for rings with more than five nodes. We

then developed a 1.5-approximation algorithm for the SA problem in five-node bidirectional

rings with the shortest-path routing. Furthermore, we proposed 2-approximation algorithms

for the SA problem in six-node and seven-node bidirectional rings under the shortest-path

assumption. For rings with more than eight nodes, we developed 3 + ε-approximation algorithm

which is much better than the recently proposed 4 + 2ε ratio for SA in rings.

Next, we explored the RSA problem in (mesh) networks of general topology and showed it
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is a special case of multiprocessor scheduling problem denoted as Pm|setj |Cmax. Similarly, we

proved that the RSA problem for rings with more than four nodes is NP-complete. We could also

derive 3 + ε-approximation algorithm for the RSA problem in rings using dynamic programming

and an approximation algorithm for the interval chromatic number of interval graphs. Then,

we proposed four heuristics algorithms for DA-RSA in ring networks and computed their

performance through extensive simulations. These algorithms can be divided in two categories;

two of them considers routing and spectrum assignment separately, while the rest considers

them jointly.

Finally, we studied the complexity of the RSA problem for general (mesh) networks with

different number of nodes. We also developed a fast heuristic algorithm with low computational

time to handle DA-RSA in mesh networks. We ran extensive simulations for DA-RSA in

NSFNET, GEANT2, and 60-node network and performed statistical analysis to define a

confidence interval for the required number of spectrum slots and approximation ratios versus

the number of shortest paths in mesh networks.

8.1 Future Work

We proposed a new perspective to solve RSA in elastic optical networks for different topologies.

Some of the possible future directions for this problem are summarized as follows.

• Inverse Multiplexing with Virtual Concatenation in EONs. Inverse multiplexing

with virtual concatenation provides the network with flexibility by splitting traffic demands

into multiple streams and sends them independently to the destination. Indeed, virtual

concatenation allows better utilization of available spectrum by overcoming the fragmen-

tation which may exist in the EONs. This additional feature simplifies the basic RSA by

removing the contiguity constraint. Note when we apply virtual concatenation technique,

each split traffic load can only take the value from the set {10, 40, 100, 400, 1000} Gbps.

For instance, a 100 Gbps traffic demand can be divided into either 10× 10 GBps or 2× 40

Gbps +2× 10 Gbps demands. In the multiprocessor scheduling problem perspective, the

SA problem with virtual concatenation can transform to the Pm|fixj , pmtn|Cmax [102],

where pmtn stands for preemption. Similarly, RSA with virtual concatenation can map to

Pm|setj , pmtn|Cmax [92] where more than one set can be chosen to perform a task. To

the best f our knowledge, there are no results regarding the complexity or approxima-

tion algorithm for Pm|setj , pmtn|Cmax. One possible direction is to develop optimal and

approximation algorithms for Pm|fixj , pmtn|Cmax and Pm|setj , pmtn|Cmax and apply

them to solve the RSA problem with virtual concatenation.

• Survivable EONs. Survivable elastic optical network is another active area which deals

100



with intractable ILPs. Another possible future direction would be utilizing the multi-

processor scheduling approaches for tackling the basic RSA and provisioning protection

capacity in elastic optical networks. One of extension to our proposed work on RSA would

be the RSA with dedicated path protection in which we find two paths (primary and

backup) for each connection request. Clearly, the corresponding scheduling problem would

be Pm|setj |Cmax. Specifically, we duplicate each task (i.e., corresponding traffic request)

and then solve the scheduling problem such that these duplicated tasks use the disjoint

set of processors to be executed. We also could use similar approach to model the RSA

problem with shared protection.

• Online RSA in EONs. Online RSA, which tries to find a path and spectrum for

each upcoming connection request, is the fundamental control problem in EONs. As

the connection requests are arriving dynamically, the focus of existing research has

been on developing fast (meta)heuristic algorithms. The other future direction would be

development of algorithms with competitive ratio to compute how well these algorithm

perform; competitive ratio of an algorithm can be defined as the ratio of the performance of

the algorithm over the performance of an optimal algorithm which knows the arrival times

of all traffic requests in advance. The equivalent multiprocessor scheduling for the online SA

and RSA problems can be represented as Pm|fixj , rj |Cmax [88] and Pm|setj , rj |Cmax [103],

respectively, where rj denotes the arrival of the task j. To the best of our knowledge,

Pm|fixj , rj |Cmax and Pm|setj , rj |Cmax have not received adequate attention in the

literature. Hence, there is potential in working on developing algorithms for these scheduling

problems and apply them to solve SA and RSA.
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Appendix A

P4|linej|Cmax Approximation Ratio

We show that there exists an approximation algorithm with ratio of 1.5 − ε where ε > 0 for

P4|linej |Cmax. We assume that the subscript of each task denotes the set of processors required

to execute the task. For the sake of simplicity of the proof, it is assumed that the processing

time of T1234 is zero. This assumption does not impact the proof, in that T1234 can be scheduled

first. We also use Li notation to represent total processing time on processor i, for i = 1, . . . , 4.

Let LB also presents the lower bound and OPT be the optimal value of the makespan for this

problem; clearly, LB ≤ OPT .

The main idea behind this algorithm is to divide all the tasks requiring the busiest processor

into two disjoint sets and schedule the more weighted one first, then try to execute the remained

tasks to the end of this schedule. In case that the constructed gaps in the proposed schedule

do not provide enough space for any of the remained tasks, we use dragging technique. This

technique allows us to expand theses gaps for single-processor tasks until they fit into them.

As this problem is symmetric, we only discuss the cases in which processor 1 and 2 have the

maximum load and the results can easily be generalized to the cases where processors 3 and 4

are the busiest ones.

A.1 LB = L1

Divide all the tasks requiring processor 1 (i.e., T1, T12, and T123) into two disjoint sets such that

set one contains T1 and T12, and set two includes T123. Define C1 = T1 + T12 and C2 = T123. We

investigate two possibilities which may happen between C1 and C2. It is obvious that C1 ≥ C2
denotes C1 ≥ 0.5L1 = 0.5LB and vice versa.
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Figure A.1: The schedule corresponding with LB = L1 and C1 ≥ 0.5LB

A.1.1 C1 ≥ 0.5LB

A schedule for this case is represented in Figure A.1. From assumption C1 ≥ 0.5LB, we can

infer C2 < 0.5LB. We use this result to show that Cmax can be bounded. Clearly, T2 and T3 can

fit into the shaded areas without any issue. If T4 is small enough to fit into the provided space,

then the proposed schedule is the optimum one with Cmax = LB. If not, the dragging technique

makes enough room for T4 and the makespan is modified as Cmax = L4 + T123. Therefore, we

get following set of inequalities

Cmax = L4 + T123 < L4 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (A.1)

A.1.2 C1 < 0.5LB

Similarly, we propose a schedule for this case as illustrated in Figure A.2. Based on the proposed

schedule, the shaded spaces are big enough for T2 and T4. Still, T3 may face a problem to fit

into its shaded gap. If so, the dragging technique builds enough room for T3 and makespan is

117



Processor

4

3

2

1

 

 

 

 

 

 

Figure A.2: The schedule corresponding with LB = L1 and C1 < 0.5LB

updated as Cmax = L3 + T12, and we get the following bound

Cmax = L3 + T12 < L3 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (A.2)

A.2 LB = L2

We follow the same lines of reasoning for the case in which L2 has the maximum load. We

divide the tasks that require processors 2 into two sets such that set one includes T12 and T123

and set two contains T2, T23 and T234. Define C′1 = T12 + T123 and C′2 = T2 + T23 + T234. We

prove that under either C′1 ≥ C′2 or C′1 < C′2 constraint, the completion time of the proposed

schedule is strictly less than 1.5×OPT .

A.2.1 C ′1 ≥ 0.5LB

Build a schedule as illustrated in Figure A.3. Clearly, the assumption here denotes that T23 <

0.5LB, in that C′1 = T12+T123 ≥ 0.5LB. This result helps us to define a bound for the makespan.

There would be no problem to assign all the remained tasks except T4. If T4 is small enough to fit

in the shaded area, then the represented schedule in Figure A.3 is optimal (i.e. Cmax = LB). If

not, then the dragging technique is called to make enough space and the makespan is computed
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Figure A.3: The schedule corresponding with LB = L2 and C′1 ≥ 0.5LB

as Cmax = L4 + T23. Therefore, we could derive an upper bound for Cmax in the worst case as

following

Cmax = L4 + T23 < L4 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (A.3)

A.2.2 C ′1 < 0.5LB

This case is the reverse of previous assumption. The schedule of the tasks under this scenario is

shown in Figure A.4. The order of the tasks assures that T1 and T4 get enough space. If T3 fits,

the schedule is optimal; otherwise, the dragging technique yields a schedule with completion

time defined as Cmax = L3 +T12 and the upper bound for Cmax can be summarized as following

Cmax = L3 + T12 < L3 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (A.4)
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Figure A.4: The schedule corresponding with LB = L2 and C′1 < 0.5LB
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Appendix B

P5|linej|Cmax Approximation Ratio

Similar to our discussion in Appendix A, we show that there exists a (1.5− ε)-approximation

algorithm for P5|linej |Cmax scheduling problem where ε > 0. Again, we assume that the

subscript of each task denotes the set of processors required to execute the task. It is also

assumed that the processing time of T12345 is zero. This assumption does not affect the proof as

this task can be scheduled first. We use Li to denote the total processing time on processor i,

for i = 1, . . . , 5. Let LB also presents the lower bound and OPT be the optimal value of the

makespan for this problem; clearly, LB ≤ OPT .

The idea is similar to Appendix A; that is, all the tasks on the busiest processor are split

into two sets. Then, the set with greater total processing time is scheduled first. Finally, the

remained tasks are added based on prespecified order to the schedule such that the tasks with

shorter processing times come at the end of the schedule. Similarly, whenever the provided

space is not enough for some task, we use the dragging technique to make enough space for it.

As this problem is symmetry, we only need to discuss the cases where the LB happens at either

processor 1, 2, or 3. This approach can be generalized to the case where either processor 4 or 5

is the processor with the maximum load.

B.1 LB = L1

Consider the set of tasks requiring processor 1 (i.e., T1, T12, T123, and T1234). We prove that we

can split these tasks into two disjoint sets and construct a schedule with ratio of 1.5 such that

set one contains only T1 and T12 and set two includes T123 and T1234. Let C1 = T1 + T12 and

C2 = T123 + T1234. For the rest of our discussion, we compare the total processing times of these

two sets. If C1 = T1 +T12 ≥ T123 +T1234 = C2, then we could conclude that C1 ≥ 0.5L1 = 0.5LB.

We use the latter inequality for the sake of simplicity.
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Figure B.1: The schedule corresponding with LB = L1, C1 ≥ 0.5LB, and T45 < 0.5LB

B.1.1 C1 ≥ 0.5LB

The assumption here implies that C2 = T123 + T1234 < 0.5LB and the order of tasks are shown

in Figure B.1. We consider two possible scenarios between T123 and T45 values (i.e., either

T123 ≥ T45 or T123 < T45) and show the proposed schedule is always less than 1.5×OPT .

B.1.1.1 T123 ≥ T45

As it is shown in Figure B.1, T4 or T5 might not fit into the shaded areas. We study each case

separately and calculate the worst possible Cmax as following

T4 case: The dragging technique leads to a schedule with a new completion time modified as

Cmax = L4 + pace where pace ≤ T123 − T45 as the total processing on processor 4 cannot

exceed the total processing time on processor 1. Based on this observation, the upper

bound for the Cmax is estimated as

Cmax = L4 + pace ≤ L4 + T123 − T45 ≤ L4 + T123

< L4 + 0.5× LB ≤ 1.5× LB ≤ 1.5×OPT (B.1)

T5 case: The updated completion time would be Cmax = L5 + pace where pace ≤ T1234 +

(T123−T45); otherwise, the L5 is greater than LB. Hence, an upper bound for the makespan

in this case would be stated as

Cmax = L5 + pace ≤ L5 + T1234 + (T123 − T45) ≤ L5 + T1234 + T123

< L5 + 0.5× LB ≤ 1.5× LB ≤ 1.5×OPT (B.2)
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Figure B.2: The schedule corresponding with LB = L1, C1 ≥ 0.5LB, and T45 ≥ 0.5LB

Thus, we can conclude that under T123 ≥ T45 constraint, the purposed schedule in Figure B.1

has (1.5− ε)-approximation ratio where ε > 0.

B.1.1.2 T123 < T45

The schedule in Figure B.1 shows that only T5 may not fit in the designed area. If so, the Cmax

is updated as Cmax = L5 + pace such that pace ≤ T1234 − (T45 − T123). The upper bound for

the pace value guarantees that the L5 is always less than or equal to the L1. Subsequently, the

following inequality is derived

Cmax = L5 + pace ≤ L5 + T1234 − (T45 − T123) ≤ L5 + T1234 + T123

< L5 + 0.5× LB ≤ 1.5× LB ≤ 1.5×OPT (B.3)

However, if the current schedule does not require us to use the dragging technique, the

completion time would be calculated as Cmax = L1+T45−T123. If T45 < 0.5×LB, then we easily

derive 1.5 approximation ratio; otherwise, we construct a new schedule shown in Figure B.2. If

we use the same lines of reasoning, we could show that the completion time of this new schedule

can still be bounded by 1.5×OPT .

B.1.2 C1 < 0.5LB

Figure B.3 represents a schedule of tasks for this case. This schedule provides adequate space

for T2, T3, and T4 where the makespan is defined as Cmax = L1 + T2345 + T345 + T34. We also
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Figure B.3: The schedule corresponding with LB = L1 and C1 < 0.5LB

can derive the following inequality

L3 < L1 ⇒ T34 + T345 + T2345 ≤ T1 + T12 (B.4)

In Figure B.3, we observe that if T5 fits into its shaded area, then the upper bound for the

makespan with the use of inequality B.4 can be established as following

Cmax = L1 + T2345 + T345 + T34 ≤ L1 + T1 + T12

< L1 + 0.5× LB ≤ 1.5× LB ≤ 1.5×OPT (B.5)

Otherwise, the dragging technique results in a schedule with the completion time of Cmax =

L5 + T34. Based on the upper bound we obtained for T34 in inequality B.4, we conclude that the

possible worst value for Cmax can be computed as

Cmax = L5 + T34 ≤ L5 + T1 + T12

< L5 + 0.5× LB ≤ 1.5× LB ≤ 1.5×OPT (B.6)

B.2 LB = L2

Similarly, consider all the tasks requiring processor 2 and divide them into two sets; set one

contains T23, T123, and T1234, and set two includes T2, T12, T234, and T2345. Define C′1 = T23 +

T123+T1234 and C′2 = T2+T12+T234+T2345. If C′1 = T23+T123+T1234 ≥ T2+T12+T234+T2345 = C′2,

we can infer that C′1 ≥ 0.5LB.
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Figure B.4: The schedule corresponding with LB = L2 and C′1 ≥ 0.5LB

B.2.1 C ′1 ≥ 0.5LB

This assumption implies that C′2 = T2 + T12 + T234 + T2345 < 0.5LB. We use this constraint

for the rest of our discussion in this section. A schedule corresponding to this assumption is

illustrated in Figure B.4 and it grantees T3 and T4 have enough space to be excuted. If T1 and

T5 also fit into the provided gaps, the makespan corresponds to this schedule is defined as

Cmax = L2 + T34 where T34 can be bounded as

L3 < L2 ⇒ T3 + T34 < T2 + T12 (B.7)

If both T1 and T5 fit into the provided space, then the completion time of the schedule with the

help of derived inequality B.7 and the upper bound value for C′2 will be determined as

Cmax = L2 + T34 ≤ L2 + T2 + T12

< L2 + 0.5× LB ≤ 1.5× LB ≤ 1.5×OPT (B.8)

Now, suppose that any of tasks T1 or T5 do not fit in the constructed gaps in the schedule

represented in Figure B.4. In this case, the dragging technique is called to expand these gaps.

In the following, we address each case separately and show that Cmax is still bounded by 1.5.

T1 case: The dragging technique will update the Cmax = L1 + T2345 + T234 + T34. Using

inequality B.7, the makespan can be bounded as

Cmax = L1 + T2345 + T234 + T34 < L1 + T2345 + T234 + (T2 + T12)

< L1 + 0.5× LB ≤ 1.5× LB ≤ 1.5×OPT (B.9)
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Figure B.5: The schedule corresponding with LB = L2 and C′1 < 0.5LB

T5 case: The new completion time after using dragging technique is Cmax = L5 + T234 + T34

and it can be similarly estimated as following

Cmax = L5 + T234 + T34 < L5 + T234 + (T2 + T12)

< L5 + 0.5× LB < 1.5× LB ≤ 1.5×OPT (B.10)

With respect to these two bounds for the makespan, it can be derived that if LB = L2, the

approximation ratio is still strictly less than 1.5.

B.2.2 C ′1 < 0.5LB

Under this assumption, a new schedule of the tasks is proposed in Figure B.5. We use the same

lines of reasoning to show that the approximation ratio is still strictly less than 1.5. As it is

illustrated in Figure B.5, T3 has enough space to fit in, but T1, T4, and T5 are the tasks which

may cause problems when they want to be placed in their gaps. Hence, we evaluate the worst

case scenario which may happen for any of them as following

T1 case: By using the dragging technique, the makespan of the schedule is defined as Cmax =

L1 + T23. On the other hand, the assumption here implies that T23 < 0.5LB, in that

C′1 < 0.5LB. This inequality will help us to define the upper bound for Cmax

Cmax = L1 + T23 < L1 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (B.11)
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T4 case: If T4 requires us to apply the dragging technique, the makespan of the schedule is

updated as Cmax = L4 +T123 +T23. The assumption for C′1 upper bound leads us to derive

the following inequality

Cmax = L4 + T123 + T23 < L4 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (B.12)

T5 case: The last case deals with the case when T5 does not fit into its designed space. Hence,

Cmax here is estimated as Cmax = L5 + T1234 + T123 + T23 and the bound of the makespan

can be computed as

Cmax = L5 + T1234 + T123 + T23 < L5 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (B.13)

All these two scenarios complete our proof to show that if processor 2 has the maximum

load, there is an approximation algorithm to schedule the tasks with ratio strictly less than 1.5.

B.3 LB = L3

Similar to our approach in sections B.1 and B.2, we study the case in which processor 3 has

the maximum load and split it into two subproblems. Suppose C′′1 = T23 + T123 + T1234 and

C′′2 = T3 + T34 + T234 + T345 + T2345. We then investigate the cases when either C′′1 ≥ 0.5LB or

C′′1 < 0.5LB is valid and discuss each of them separately.

B.3.1 C ′′1 ≥ 0.5LB

Under this assumption, build a schedule similar to Figure B.6. We prove that this order of

tasks gives us a ratio less than 1.5. Based on Figure B.6, only T1, T2, or T5 may not fit into the

shaded areas. To resolve this problem, the dragging technique is called to make adequate space.

From the assumption here, it can be inferred C′′2 = T3 + T34 + T234 + T345 + T2345 < 0.5LB. We

use this constraint to define an upper bound for the completion time of the proposed schedule.

T1 case: After applying the dragging technique, the new completion time of the proposed

schedule as shown in Figure B.6 is estimated as Cmax = L1 + T2345 + T345 + T34. With

respect to C′′2 upper bound here, we compute Cmax bound as following

Cmax = L1 + T2345 + T345 + T34 < L1 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (B.14)
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Figure B.6: The schedule corresponding with LB = L3 and C′′1 ≥ 0.5LB

T2 case: Similar to the previous case, the modified makespan will be defined as Cmax =

L2 + T345 + T34. Similarly, we derive the following bounds for the makespan.

Cmax = L2 + T345 + T34 < L2 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (B.15)

T5 case: The new completion time is Cmax = L5 + T34. Thus, we derive the upper bound for

this new makespan as following

Cmax = L5 + T34 < L5 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (B.16)

All of these discussed cases show that if LB = L3 and C′′1 ≥ 0.5LB, then there is a schedule

with Cmax bounded by 1.5×OPT .

B.3.2 C ′′1 < 0.5LB

We continue our the discussion for this case and propose a new schedule of the tasks as

represented in Figure B.7. If T1, T4, and T5 could fit into provided gaps, then this schedule is

optimum and the approximation ratio is one; otherwise, the dragging technique is called to

make more space for these single-processor tasks.

T1 case: The modified makespan is defined as Cmax = L1 + T23. On the other hand, the
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Figure B.7: The schedule corresponding with LB = L3 and C′′1 < 0.5LB

assumption here implies that T23 < 0.5LB, so we get the following bound for Cmax

Cmax = L1 + T23 < L1 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (B.17)

T4 case: The completion time for this case would be estimated as Cmax = L4 + T123 + T23. We

bound the makespan as follwing

Cmax = L4 + T123 + T23 < L4 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (B.18)

T5 case: Based on Figure B.7, the makespan is calculated Cmax = L5 + T1234 + T123 + T23 and

we derive its bound as following

Cmax = L5 + T1234 + T123 + T23 < L5 + 0.5× LB

< 1.5× LB ≤ 1.5×OPT (B.19)

Considering our discussion for these three cases, we derive that under C′′1 < 0.5LB assumption,

we can build a schedule which is always bounded by 1.5×OPT .
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Appendix C

N = 6, 7 Nodes Ring with Shortest

Path Routing Approximation Ratios

Similar to the discussion in the proof of Lemma 5.1.4, we use constructive approach to show

that there exist 2-approximation algorithms for the N = 6, 7 nodes ring with shortest path

routing. In Section C.1, we provide the argument for the accuracy of this statement in 6-node

bidirectional rings under shortest path assumption. Then, we use similar approach to show in

Section C.2 that it is also possible to obtain 2-approximation ratio in 7-node bidirectional rings

and shortest path routing. Here, we assume that the subscript of each task denotes the set of

processors required to execute the task.

C.1 6-Node Ring and Shortest Path Routing

Since 6-node rings have even number of nodes, the clockwise and counterclockwise paths between

two symmetric nodes are of equal length (i.e., three), and either may be selected as the shortest

path. Let us consider the case where all demands between symmetric nodes are routed in the

clockwise direction. That is, we only use the links on the clockwise direction to carry over the

traffic demands from node 1 to node 4 and vice versa.

Clearly, the input to the SA subproblem consists of six one-link demands, six two-link

demands, and six three-link demands. Hence, the clockwise direction has to serve 18 demands

which means that the corresponding scheduling problem contains 18 tasks. Without loss of

generality, let processor 3 be the dominant processor, i.e., the one that achieves the lower bound

LB in (5.2). Let OPT also represent the optimal value of the makespan for this problem; clearly,

LB ≤ OPT .

Consider now a set of nine tasks that do not require processor 3 and 4 and remove task T61

from this set. Then, schedule these tasks as shown in left part of Figure C.1 with eight tasks
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Figure C.1: A six-node bidirectional ring with shortest path routing

needed to be scheduled on four-processor system (i.e., one without processors 3 and 4). It can

be easily seen that the proposed schedule in the first part of Figure C.1 is optimum. Let OPT ′

denote the makespan of this schedule; then, OPT ′ ≤ OPT .

In the next step, consider the nine remained tasks that require either processors 3 or 4. These

tasks can be scheduled back-to-back without any gaps, as shown in the right part of Figure C.1,

whereas T61 can be scheduled in parallel with them without no restriction. The makespan

corresponding to the second part of the schedule is equal to LB. So, the total makespan of the

two-part, 18-task schedule depicted in Figure C.1, is equal to: OPT ′ + LB ≤ 2×OPT .

C.2 7-Node Ring and Shortest Path Routing

Since the number of nodes is odd, there is only a unique shortest path for every traffic between

each pair of nodes. Consequently, the clockwise direction has to serve 21(= 7 ∗ 6/2) demands

which means that the corresponding scheduling problem contains 21 tasks. Without loss of

generality, let processor 4 be the dominant processor, i.e., the one that achieves the lower bound

LB in (5.2). Let OPT also represent the optimal value of the makespan for this problem; clearly,

LB ≤ OPT .

Now, consider a set of fifteen tasks that do not require processor 4 and remove T712, T671,

and T71 from this set. The left part of Figure C.2 shows how this set of twelve takes can be

excused in parallel. The scheduling problem of these twelve tasks can be viewed as the scheduling

problem on two independent parallel three-processor systems (i.e., without processor 4), similar

131



𝑻𝟔𝟔 
𝑻𝟕 𝑻𝟕𝟕 

𝑻𝟔𝟔𝟔 

𝑻𝟔𝟔𝟔 

𝑻𝟐𝟐𝟐 

𝑻𝟓𝟓𝟓 

𝑻𝟏𝟏𝟏 

𝟔 

𝑻𝟕𝟕𝟕 

𝑻𝟓 

𝑪𝒎𝒎𝒎 

Processor 

𝟓 

𝟒 

𝟑 

𝟐 

𝑻𝟑𝟑 
𝑻𝟒 

𝑻𝟏𝟏 

𝑻𝟒𝟒 

𝟏 

𝑻𝟐 
𝑻𝟕𝟕𝟕 

𝑻𝟏 

𝑻𝟓𝟓 
𝑻𝟔 

𝑻𝟑𝟑𝟑 

𝑻𝟒𝟒𝟒 

𝟕 

𝑻𝟐𝟐 
𝑻𝟑 

𝑻𝟕𝟕 

Figure C.2: A seven-node bidirectional ring with shortest path routing where S1 ≥ S2

to the one depicted in Figure 4.1(b). This scheduling problem corresponds to the SA problem on

the clockwise direction of the seven-node after removing the link corresponding to processor 4

and the six traffic demands using that link.

Based on Lemma 4.2.1, we notice these twelve tasks can be scheduled optimally. Let C1, C2,

C6, and C7 denote the completion time corresponding to the processors 1, 2, 6, and 7, respectively

in the left part of Figure C.2. Define S1 = max{C1, C2} and S2 = max{C6, C7}. We now show

that depending on the relationship between S1 and S2, we can always construct a schedule of

ratio 2.

• S1 ≥ S2
We append T712 to the end of the schedule in the left part of Figure C.2 whereby the

structure of the optimum solution will not be violated. Let OPT ′ = S1 + T712 be the

makespan of this schedule; then, OPT ′ ≤ OPT . Now, consider the six remained tasks

that require processor 4. These tasks can be scheduled back-to-back without any gaps, as

shown in the right part of Figure C.2. The makespan of this schedule is equal to LB.

Once we add these tasks in the second part of the schedule, we then execute tasks T671

and T71 in parallel with them as shown in Figure C.2. Tasks T671 and T71 would essentially

fit in the designed space; otherwise, the processor 4 would not be the dominant processor.

Thus, the makespan of the two-part of 21 tasks schedule depicted in Figure C.2 is equal

to: OPT ′ + LB ≤ 2×OPT .
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Figure C.3: A seven-node bidirectional ring with shortest path routing where S1 < S2

• S1 < S2
Since S2 is greater than S1, the existing schedule remains optimum after adding task

T671 to the end of schedule in the left part of Figure C.3. Let OPT ′ = S2 + T671 be the

makespan of this schedule; then, OPT ′ ≤ OPT .

Similarly, if we schedule the six remained tasks that require processor 4 back-to-back

without any gaps as shown in the right part of Figure C.3, we observe T712 and T71 can be

also executed in parallel with them. Concretely, we know that T712 ≤ LB−T234; otherwise,

processor 1, 2, or 7 would be the dominant processor. As the makespan of the second

part of the schedule is equal to LB, the total completion time of the two-part of 21 tasks

schedule shown in Figure C.3 is equal to: OPT ′ + LB ≤ 2×OPT .
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