
ABSTRACT

BHAT, SHIREESH. Network Service Orchestration within the ChoiceNet Architecture. (Under
the direction of Dr. George N. Rouskas and Dr. Rudra Dutta.)

In this research we present Network Service Orchestration algorithms for Open Marketplaces

which allow for various Data Plane Services in the routing domain to be advertised, queried,

composed, purchased and provisioned. We use ChoiceNet as an example of an Open Marketplace

in our work. Orchestration of services allows for constructing a ‘‘composed service’’ using the

various compatible services participating in the Marketplace in response to a ‘‘composed service’’

request by the User. The Orchestration algorithm presents the User with not just ‘‘a composed

service’’ but a list of ‘‘composed service(s)’’ to choose from. Our contribution can be classified

into two main categories. First, we enable Orchestration by solving three key problems: a)

Identify compatibility of adjacent services in a composed service; b) Provide the ability to

compare service offerings from different providers and c) Develop a Planner (Orchestration

Algorithm) module with request/response automation. Second, we develop three complementary

algorithms which perform service Orchestration: a) Find optimal k composed services in a

Marketplace, which allows combining multiple service functionalities into one service; b) Find

optimal time-dependent, time-constrained composed services which supports in-advance path

reservation and c) Find a optimal composed tour of services. We address the key problems for

enabling Orchestration by first defining the Semantics Language for advertising the Data Plane

Services to be compatible with other services which are a logical choice. In addition, we define

the Protocol for interaction between the entities of ChoiceNet to achieve complete automation

of the Planner. Later, we present three flavors of Planners which perform service orchestration

on three different graph models which correspond to three different Network Applications.

Network Service Orchestration within the ChoiceNet Architecture

by
Shireesh Bhat

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2017

APPROVED BY:

Dr. George N. Rouskas
Co-chair of Advisory Committee

Dr. Rudra Dutta
Co-chair of Advisory Committee

Dr. David Thuente Dr. Khaled Harfoush

Dr. Ilya Baldin

TABLE OF CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

Chapter 1 Introduction . 1
1.1 Thesis Organization . 6

Chapter 2 Introduction to ChoiceNet: An Open Marketplace Realization . . . 7
2.1 Overview . 7

2.1.1 Motivation . 7
2.1.2 Bootstrapping . 8
2.1.3 Economy Plane and Use Plane Entities 9
2.1.4 Service Composition Requirement . 10

2.2 Related Work . 10
2.2.1 Marketplace(s) for Network Services . 10
2.2.2 Service Composition . 13

2.3 Contribution . 15
2.3.1 Semantics Language . 15
2.3.2 Economy Plane and Use Plane Protocol 16
2.3.3 Planner: Choice . 16

Chapter 3 ChoiceNet Prototype . 17
3.1 ChoiceNet Semantics Language (CSL) . 17

3.1.1 Layer Abstraction . 17
3.1.2 Addressing Schema . 18
3.1.3 Format Schema . 18
3.1.4 Logical Operators . 18
3.1.5 Consideration . 18
3.1.6 k-composed service . 19

3.2 ChoiceNet Economy Plane and Use Plane Protocol 19
3.2.1 Message Syntax and ChoiceNet Port . 19
3.2.2 User, Planner, and Marketplace Interaction 20

3.3 ChoiceNet Planner . 22
3.3.1 Input . 22
3.3.2 Output . 22
3.3.3 Algorithm . 23
3.3.4 Complexity . 27

Chapter 4 Enhanced Path Planner . 36
4.1 Related Work . 36

4.1.1 Shortest Path Algorithms . 36
4.1.2 In-advance service reservation . 37

ii

4.1.3 Problem Classification . 37
4.1.4 Pros and Cons of finding Pareto paths using k-shortest paths 38
4.1.5 Pros and Cons of Pareto paths as a measure of Utility function 39
4.1.6 Conjecture . 42

4.2 Overview . 44
4.3 Marketplace and Graph Model . 45

4.3.1 The Marketplace . 45
4.3.2 Graph of Path Services . 46

4.4 Multi-Criteria Time Constrained Paths . 48
4.4.1 Dynamic Programming Algorithm for Problems 1 and 2 50
4.4.2 k-shortest cost paths algorithm for Problem 4 52
4.4.3 k-shortest cost paths algorithm for Problem 3 52

4.5 Numerical Results . 52
4.5.1 Model 1: Fixed Cost and finite threshold Delay 55
4.5.2 Model 2: Fixed Cost and no Threshold Delay 56
4.5.3 Model 3: No Threshold Delay and Cost negatively correlated to Delay . . 68
4.5.4 Model 4: Threshold Delay and Cost negatively correlated to Delay 79
4.5.5 Model 5: Three-criteria pareto paths . 79
4.5.6 Evaluation of Models 1, 2 and 3 for Problems 1 and 2 83
4.5.7 Evaluation of Models 1, 2, 3 and 4 for Problems 3 and 4 84

Chapter 5 Service Routing Planner . 87
5.1 System Model . 88
5.2 The Shortest Path Tour Problem (SPTP) . 90
5.3 Algorithms for SPTP . 91

5.3.1 Path Tour Decomposition . 91
5.3.2 Layered Graph Model . 93
5.3.3 Depth First Tour Search: A New Algorithm for SPTP 93
5.3.4 Algorithm Complexity . 96

5.4 Experimental Study and Results . 97
5.4.1 Overall Comparison . 98
5.4.2 Comparison of DC-SSSP-2 and DFTS . 100

5.5 Concluding Remarks . 107

Chapter 6 Summary and Future Work .108
6.1 Future Work . 109

References .110

iii

LIST OF TABLES

Table 3.1 Notation and Definition . 24

Table 4.1 Classification of Shortest Path Problems . 38
Table 4.2 Classification of Network Reservation Algorithms 38
Table 4.3 Mapping of Problems to Graph Models . 54

Table 5.1 Time Complexity . 96
Table 5.2 Running Time Improvement (in %) of DFTS Relative to DC-SSSP-2 106

iv

LIST OF FIGURES

Figure 1.1 Foundation principles and their dependencies 2
Figure 1.2 Feature dependency (reflects the principles) 2
Figure 1.3 Initial ChoiceNet Architecture . 4
Figure 1.4 Evolved ChoiceNet Architecture . 5

Figure 2.1 Economy Plane and Use Plane Interaction 8
Figure 2.2 Timelines for work on Marketplace for Network/Web Services 11

Figure 3.1 Service Advertisement and Requirement Schema 20
Figure 3.2 Planner Interaction . 21
Figure 3.3 Composed Service Schema . 23
Figure 3.4 Round Trip Example: Service Advertisements 27
Figure 3.5 Round Trip Example: Network Topology . 28
Figure 3.6 Round Trip Example: Input and Output . 29
Figure 3.7 Routing Example: Service Advertisements . 30
Figure 3.8 Routing Example: Network Topology . 31
Figure 3.9 Routing Example: Input and Output . 32

Figure 4.1 The gap between pareto solutions in the bi-criteria case 39
Figure 4.2 Uniqueness of K shortest paths in the bi-criteria case 40
Figure 4.3 Example 1 . 40
Figure 4.4 Example 2 . 41
Figure 4.5 Example 3 . 41
Figure 4.6 Counter Example 1 . 42
Figure 4.7 Counter Example 2 . 43
Figure 4.8 The concept of time steps . 47
Figure 4.9 Running time of the dynamic programming algorithm for Problem 1 55
Figure 4.10 Running time of the k-shortest cost paths algorithm for Problem 4 with no

delay constraints . 56
Figure 4.11 Pareto Paths Distribution for N = 100, Fixed Link Cost, Infinite Threshold

Delay . 58
Figure 4.12 Pareto Paths Distribution for N = 200, Fixed Link Cost, Infinite Threshold

Delay . 58
Figure 4.13 Pareto Paths Distribution for N = 300, Fixed Link Cost, Infinite Threshold

Delay . 58
Figure 4.14 Pareto Paths Distribution for N = 400, Fixed Link Cost, Infinite Threshold

Delay . 59
Figure 4.15 Pareto Paths Distribution for N = 500, Fixed Link Cost, Infinite Threshold

Delay . 59
Figure 4.16 Pareto Paths Distribution for N = 600, Fixed Link Cost, Infinite Threshold

Delay . 59
Figure 4.17 Time Instances Distribution for N = 100, Fixed Link Cost, Infinite Threshold

Delay . 60

v

Figure 4.18 Time Instances Distribution for N = 200, Fixed Link Cost, Infinite Threshold
Delay . 60

Figure 4.19 Time Instances Distribution for N = 300, Fixed Link Cost, Infinite Threshold
Delay . 60

Figure 4.20 Time Instances Distribution for N = 400, Fixed Link Cost, Infinite Threshold
Delay . 61

Figure 4.21 Time Instances Distribution for N = 500, Fixed Link Cost, Infinite Threshold
Delay . 61

Figure 4.22 Time Instances Distribution for N = 600, Fixed Link Cost, Infinite Threshold
Delay . 61

Figure 4.23 Running time vs average hop count for N = 100, Fixed Link Cost, Infinite
Threshold Delay . 62

Figure 4.24 Running time vs average hop count for N = 200, Fixed Link Cost, Infinite
Threshold Delay . 62

Figure 4.25 Running time vs average hop count for N = 300, Fixed Link Cost, Infinite
Threshold Delay . 62

Figure 4.26 Running time vs average hop count for N = 400, Fixed Link Cost, Infinite
Threshold Delay . 63

Figure 4.27 Running time vs average hop count for N = 500, Fixed Link Cost, Infinite
Threshold Delay . 63

Figure 4.28 Running time vs average hop count for N = 600, Fixed Link Cost, Infinite
Threshold Delay . 63

Figure 4.29 Running time vs number of time instances for N = 100, Fixed Link Cost,
Infinite Threshold Delay . 64

Figure 4.30 Running time vs number of time instances for N = 200, Fixed Link Cost,
Infinite Threshold Delay . 64

Figure 4.31 Running time vs number of time instances for N = 300, Fixed Link Cost,
Infinite Threshold Delay . 64

Figure 4.32 Running time vs number of time instances for N = 400, Fixed Link Cost,
Infinite Threshold Delay . 65

Figure 4.33 Running time vs number of time instances for N = 500, Fixed Link Cost,
Infinite Threshold Delay . 65

Figure 4.34 Running time vs number of time instances for N = 600, Fixed Link Cost,
Infinite Threshold Delay . 65

Figure 4.35 Running time vs number of pareto paths for N = 100, Fixed Link Cost,
Infinite Threshold Delay . 66

Figure 4.36 Running time vs number of pareto paths for N = 200, Fixed Link Cost,
Infinite Threshold Delay . 66

Figure 4.37 Running time vs number of pareto paths for N = 300, Fixed Link Cost,
Infinite Threshold Delay . 66

Figure 4.38 Running time vs number of pareto paths for N = 400, Fixed Link Cost,
Infinite Threshold Delay . 67

Figure 4.39 Running time vs number of pareto paths for N = 500, Fixed Link Cost,
Infinite Threshold Delay . 67

vi

Figure 4.40 Running time vs number of pareto paths for N = 600, Fixed Link Cost,
Infinite Threshold Delay . 67

Figure 4.41 Pareto Paths Distribution for N = 100, Cost ∝ 1/(Delay), Infinite Threshold
Delay . 68

Figure 4.42 Pareto Paths Distribution for N = 200, Cost ∝ 1/(Delay), Infinite Threshold
Delay . 69

Figure 4.43 Pareto Paths Distribution for N = 300, Cost ∝ 1/(Delay), Infinite Threshold
Delay . 69

Figure 4.44 Pareto Paths Distribution for N = 400, Cost ∝ 1/(Delay), Infinite Threshold
Delay . 69

Figure 4.45 Pareto Paths Distribution for N = 500, Cost ∝ 1/(Delay), Infinite Threshold
Delay . 70

Figure 4.46 Pareto Paths Distribution for N = 600, Cost ∝ 1/(Delay), Infinite Threshold
Delay . 70

Figure 4.47 Time Instances Distribution for N = 100, Cost ∝ 1/(Delay), Infinite Thresh-
old Delay . 70

Figure 4.48 Time Instances Distribution for N = 200, Cost ∝ 1/(Delay), Infinite Thresh-
old Delay . 71

Figure 4.49 Time Instances Distribution for N = 300, Cost ∝ 1/(Delay), Infinite Thresh-
old Delay . 71

Figure 4.50 Time Instances Distribution for N = 400, Cost ∝ 1/(Delay), Infinite Thresh-
old Delay . 71

Figure 4.51 Time Instances Distribution for N = 500, Cost ∝ 1/(Delay), Infinite Thresh-
old Delay . 72

Figure 4.52 Time Instances Distribution for N = 600, Cost ∝ 1/(Delay), Infinite Thresh-
old Delay . 72

Figure 4.53 Running time vs average hop count for N = 100, Cost ∝ 1/(Delay), Infinite
Threshold Delay . 72

Figure 4.54 Running time vs average hop count for N = 200, Cost ∝ 1/(Delay), Infinite
Threshold Delay . 73

Figure 4.55 Running time vs average hop count for N = 300, Cost ∝ 1/(Delay), Infinite
Threshold Delay . 73

Figure 4.56 Running time vs average hop count for N = 400, Cost ∝ 1/(Delay), Infinite
Threshold Delay . 74

Figure 4.57 Running time vs average hop count for N = 500, Cost ∝ 1/(Delay), Infinite
Threshold Delay . 74

Figure 4.58 Running time vs average hop count for N = 600, Cost ∝ 1/(Delay), Infinite
Threshold Delay . 74

Figure 4.59 Running time vs number of time instances for N = 100, Cost ∝ 1/(Delay),
Infinite Threshold Delay . 75

Figure 4.60 Running time vs number of time instances N = 200, Cost ∝ 1/(Delay), Infi-
nite Threshold Delay . 75

Figure 4.61 Running time vs number of time instances for N = 300, Cost ∝ 1/(Delay),
Infinite Threshold Delay . 75

vii

Figure 4.62 Running time vs number of time instances for N = 400, Cost ∝ 1/(Delay),
Infinite Threshold Delay . 76

Figure 4.63 Running time vs number of time instances for N = 500, Cost ∝ 1/(Delay),
Infinite Threshold Delay . 76

Figure 4.64 Running time vs number of time instances for N = 600, Cost ∝ 1/(Delay),
Infinite Threshold Delay . 76

Figure 4.65 Running time vs number of pareto paths for N = 100, Cost ∝ 1/(Delay),
Infinite Threshold Delay . 77

Figure 4.66 Running time vs number of pareto paths for N = 200, Cost ∝ 1/(Delay),
Infinite Threshold Delay . 77

Figure 4.67 Running time vs number of pareto paths for N = 300, Cost ∝ 1/(Delay),
Infinite Threshold Delay . 77

Figure 4.68 Running time vs number of pareto paths for N = 400, Cost ∝ 1/(Delay),
Infinite Threshold Delay . 78

Figure 4.69 Running time vs number of pareto paths for N = 500, Cost ∝ 1/(Delay),
Infinite Threshold Delay . 78

Figure 4.70 Running time vs number of pareto paths for N = 600, Cost ∝ 1/(Delay),
Infinite Threshold Delay . 78

Figure 4.71 Average number of pareto paths found . 79
Figure 4.72 Average running time for the Dynamic Programming Algorithm 80
Figure 4.73 Pareto solution distribution for N = 100 . 80
Figure 4.74 Pareto solution distribution for N = 200 . 80
Figure 4.75 Pareto solution distribution for N = 300 . 81
Figure 4.76 Pareto solution distribution for N = 400 . 81
Figure 4.77 Pareto solution distribution for N = 500 . 81
Figure 4.78 Pareto solution distribution for N = 600 . 82
Figure 4.79 Running time as a function of N . 83
Figure 4.80 Avg number of pareto paths as a function of N 83
Figure 4.81 Pareto paths among K paths for Models 1 and 2 84
Figure 4.82 Total paths for Models 1 and 2 . 85
Figure 4.83 Running Time for Models 1 and 2 . 85
Figure 4.84 Pareto paths among K paths for Models 3 and 4 86
Figure 4.85 Total paths for Variation 3 and 4 . 86
Figure 4.86 Running Time for Variation 3 and 4 . 86

Figure 5.1 Running time comparison, most efficient algorithms, ∆ = 3,K = 2,M = 5 . . 98
Figure 5.2 Running time comparison, least efficient algorithms, ∆ = 3,K = 2,M = 5 . . 99
Figure 5.3 Running time comparison, most efficient algorithms, ∆ = 5,K = 4,M = 25 . 100
Figure 5.4 Running time comparison, least efficient algorithms, ∆ = 5,K = 4,M = 25 . 101
Figure 5.5 Running time vs nodal degree, K = 1,M = 5 102
Figure 5.6 Running time vs nodal degree, K = 4,M = 25 103
Figure 5.7 Running time vs number of sets, ∆ = 3,M = 15 104
Figure 5.8 Running time vs number of sets, ∆ = 5,M = 15 104
Figure 5.9 Running time vs number of set elements, ∆ = 3,K = 4 105
Figure 5.10 Running time vs number of set elements, ∆ = 5,K = 1 105

viii

Chapter 1

Introduction

In the journey from the ARPANET world in the 1960’s to the Internet of the 21st century

the network has evolved significantly. One of the major factors which has contributed to the

popularity and success of the Internet of today is the plethora of services which are now available

at the edge of the network. The invisible barrier which seems to be preventing the evolution of

the core network (the backbone of the current Internet) at the same rate as the edge network

is the lack of sustained innovation. This brings up the question ‘‘What does it take for both

the core network and the edge network which are integral to the functioning of the Internet, to

evolve at a faster rate?”.

Unfortunately, there is no silver bullet to the problem of asymmetrical growth in the build-

ing blocks of the Internet. One of the ways we can narrow the gap in the rate of innovation

in the core and the edge network is through an ‘‘Open Marketplace” [1] which allows for vari-

ous stakeholders of the Internet infrastructure to be compensated for the innovation/reliability

by the users of this infrastructure. This would have a positive impact in leveling the playing

field for the application providers who use the underlying Internet backbone, Content Delivery

Network (CDN) service providers, infrastructure providers whose resources support the appli-

cation and CDN service providers, and the end users who rely on these service providers. The

keyword ‘‘Open” in the Open Marketplace is used to differentiate this from a Marketplace

which is designed for a setting where the syntax and semantics of the advertised service follows

a proprietary notation and the advertised services represent a small and centrally controlled

network environment.

We use the term ‘‘network services” to broadly classify any service which is offered by a

provider in the ‘‘Open Marketplace” for a potential user. The ‘‘Marketplace” is not just a single

entity but it represents all the entities which fulfill the functionality of allowing the network

service providers to advertise their services and the users to choose from the set of offerings

and compensate the providers for the prorated service usage. The implicit objective of the

1

‘‘Marketplace” is to establish trust between the service providers and the users. Once the users

have used the service(s) provided at the Marketplace, the users verify if the service performed

as advertised with the help of measurement tools and provide feedback, building a sense of

trust between the users and the providers.

Figure 1.1: Foundation principles and their dependencies

Three principles originally proposed in [1] which hold the key for bringing in sustained

innovation at the core network through an ‘‘Open Marketplace” are

• ‘‘Encourage Alternatives” which is realized through the Marketplace by allowing multiple

service providers to compete for the business from the users

• ‘‘Know What Happened” allows the users to know the services which performed well and

the services which did not

• ‘‘Vote With Your Wallet” is the compensation to the service providers from the users for

the services which delivered as advertised.

These three principles and their dependency on each other is illustrated in Figure 1.1.

Figure 1.2: Feature dependency (reflects the principles)

As we move from inception to application [76,77], the features and their dependency which

is a reflection of the above principles are shown in Figure 1.2. The three features which we

relate to when describing the realization of ChoiceNet are

2

• ‘‘Level Playing Field which talks about the Open Marketplace were network services can

compete on level terms and users can search and compare network services

• ‘‘Verification and Accountability” which talks about segregating services which performed

well from those which did not

• ‘‘Reward Selectively” is the compensation which is handed out selectively to providers of

the network service which delivered as promised.

These features are responsible for driving innovation at the core network by enabling choice

and gaining acceptance among the service providers and the service users.

Applying the principles described above in the current Internet would require the under-

standing and approval of all the service providers and the users who would want to be a part of

the innovation cycle. Figure 1.3 first proposed in [1] shows how the above principles shape the

underlying network and the interaction between the various entities which are part of this net-

work. The ‘‘ChoiceNet” architecture [1] is a means to realize the three fundamental principles

in the current Internet and is described in Figure 1.3. The current ‘‘ChoiceNet” architecture has

evolved from the one envisioned in Figure 1.3 and is described in Figure 1.4. Using the evolved

architectural diagram we briefly describe the modules and their role in the Architecture:

• Marketplace: is a vital cog in the functioning of ChoiceNet and is the central entity which

interacts with all the entities in ChoiceNet and influences in their decision making.

• Verification Infrastructure [2]: supports in the realization of the second principle ‘‘Verifi-

cation and Accountability”. Only by effectively separating the roles and responsibilities

of a service being measured and verified can we achieve accountability of providers of the

service. It is also responsible for building the reputation of the service providers in the

Marketplace by providing feedback.

• Planner : can churn out sophisticated plans using the advertisements in the ‘‘Marketplace”.

The ‘‘Planner” is responsible for presenting the users with a choice of alternate service

offerings. The ‘‘Planner” presents a list of composed service(s) to the user to choose from.

A composed service is a meta service which consists of multiple services with a prespeci-

fied ordering rule. The functionality of a ‘‘Planner” is described using the term ‘‘service

composition”. ‘‘Service Composition” can be realized at various levels i.e., horizontal and

vertical layers of the network and can be broadly classified into ‘‘Protocol Stack Composi-

tion”, ‘‘Path (Route) Composition”, ‘‘In-network service Composition” or a combination

of all three. When we use the term ‘‘service composition” we imply a combination of all

of them. The role of the ‘‘Marketplace” in the functioning of the ‘‘Planner” now becomes

3

clear as only by expressing a network service through a semantic language in the Mar-

ketplace can we hope to separate the ownership/responsibility/boundary of one network

service from another, thereby constructing a wide range of ‘‘composed service(s)” which

meet(s) the user requirements.

• Provisioning Infrastructure: a ‘‘composed service” can be provisioned in the network in

one of two ways. ‘‘Full Delegation” [1], the onus of rendering a service on the user request

is transferred sequentially from the first service to the next service, the services which

we refer to in this context are the ones which make up the composed service, this is

analogous to the current Internet approach where the next hop is responsible for routing

the packet based on destination address. ‘‘Transparent” [1], this model is analogous to

the strict/loose source routing where the service which needs to be applied next on the

user request is part of the user request.

• In-force Contracts : is a repository of all the active service contracts.

• Service Infrastructure: represents the services which are made available by the providers

who are compensated in the Economy Plane. We will discuss about provisioning in the

service infrastructure later in this work to highlight how a service first seen in the ‘‘Mar-

ketplace” is realized in the network, bringing to fruition the network service life cycle.

Figure 1.3: Initial ChoiceNet Architecture

4

Figure 1.4: Evolved ChoiceNet Architecture

‘‘Service Orchestration”, ‘‘Service Composition”, ‘‘Service Choreography”, ‘‘Service Stitch-

ing”, ‘‘Planning”, are some of the terms which have been associated with integrating services

to provide a value added service which provides an end-to-end functionality, which cannot be

provided by the individual services on their own. We use the term ‘‘Planner” which performs

service orchestration and ‘‘Orchestration Algorithm” interchangeably in this work. In the con-

text of Network services, Orchestration refers to the integration of services across heterogeneous

networks using an Open Marketplace where the services advertised by the providers in different

domains can be purchased for short term or long term time scales. We envision that resellers

would make up the bulk of the sellers in the Marketplace by providing value added services.

Our contribution is in solving two key problems:

• A semantics language which forms the basis of the interaction between the entities within

ChoiceNet and the Economy Plane Protocol which defines the interactions.

• A Planner which performs orchestration by

– Extracting the service advertisements selectively from the Marketplace based on the

user request

– Building one or more composed service(s) from services which could be individual

or composed service.

In this work we present several novel orchestration algorithms which are designed for an

Open Marketplace of Data Plane Services. Here ‘‘Data Plane Services” is used to denote the set

5

of services which transport, modify, store or analyze user traffic in the routing domain. Open

Marketplaces enable users to select from a set of data plane services offered by multiple com-

peting network providers so as to construct customized end-to-end paths for their applications.

This is analogous to online travel marketplaces that allow users to explore travel options and

book their travel.

In this work we discuss the key problems in the context of ChoiceNet:

1. Designing a semantic language for developing a common understanding between the en-

tities which interact with the Marketplace (Chapter 3).

2. Identifying and ordering the services to construct a composed service through the Planner

(Chapter 3).

3. Automating the Planner request and response (Chapter 3).

4. Providing the user with a list of optimal ‘‘composed services” in a Marketplace consisting

of services which store, modify and transport data (Chapter 3).

5. Providing the user with a list of optimal time-dependent and time-constrained ‘‘composed

path services” (Chapter 4).

6. Providing the user with a optimal ‘‘composed service route” which can be modeled as a

shortest tour problem (Chapter 5).

1.1 Thesis Organization

Chapter 2 provides an overview of ChoiceNet and describes the main components, the semantic

language, the economy and use plane protocol, which are essential for realizing the principles

of ChoiceNet. Chapter 3 presents a complete prototype, building on the pieces introduced in

Chapter 2 and describes in detail a Planner which constructs K composed network services.

Chapter 4 and Chapter 5 describe two complementary Planners ‘‘Enhanced Path Planner” and

‘‘Service Routing Planner”. Finally, Chapter 6 summarizes our contribution and discusses future

work.

6

Chapter 2

Introduction to ChoiceNet: An

Open Marketplace Realization

2.1 Overview

We provide an overview on the ‘‘ChoiceNet” architecture in the following sections.

2.1.1 Motivation

The ability of users to create and deploy a wide range of devices, applications, and services at the

edge of the Internet has created a vibrant environment for innovation at the application layer.

Such a model is not currently supported in the network core, and it has been argued in [1,3,4]

that the lack of mechanisms to enable market forces to play out within the network act as an

impediment for the innovation. To overcome this limitation, as part of the ChoiceNet project [1],

we have proposed supporting choice as a design principle for enabling sustained innovation in

the core of the network. Choice implies that users can choose from alternative services that

can be deployed dynamically into the network; in this context, we use the term service as

a general term that denotes any functionality that can be realized within the network. In

ChoiceNet, choices are exposed through a new economy plane that complements the well-known

data and control planes. Whereas business relationships between network service providers and

users currently take place out-of-band, off-line, and over long time scales, the economy plane

facilitates the establishment of such relationships in-band, in real time, and for short time scales.

The marketplace is a key component of the economy plane that automates the process of offering

(advertising) and selecting services, and the establishment of contracts for the purchase and

use of services.

7

Figure 2.1: Economy Plane and Use Plane Interaction

2.1.2 Bootstrapping

For the Marketplace, the service providers and the users to function in ChoiceNet they first

need to discover each other and be able to establish an economic contract. All this needs to

happen over the Economy Plane which uses the routing services connecting these entities. The

natural question is who pays for these routing services in the Economy Plane. There are several

ways of addressing this bootstrapping problem and some of them are mentioned below:

1. We assume the Economy Plane continues to use the current existing Internet infrastruc-

ture with no strict guarantees on the performance.

2. The Marketplace pays for the routing services to and from itself in the hope of offsetting

this cost by the revenue it generates from the services sold through it. To take the Netflix

analogy, Netflix pays for the routing services for providing streaming service to the users.

3. The routing services allow traffic to and from the Marketplace(s) where they have a stake

8

free of cost, in the hope of reaping benefit by having their services purchased by the users

transiting over their network.

2.1.3 Economy Plane and Use Plane Entities

Three main entities participate in the economy plane and use plane of ChoiceNet: the market-

place, service providers, and service users. The ChoiceNet entities and the typical interactions

between them are described below in the context of the Figure 2.1.

A marketplace provides the framework in which network services are advertised and queried.

Service providers purchase listing authorization with a marketplace and advertise new service

offerings, while service users may query the marketplace to discover available services. The

marketplace entity provides templates for service advertisements, based on a common vocab-

ulary that can be used as reference by the service providers. The templates are extensible in

that service providers are allowed to extend the vocabulary to further characterize the services

they offer. Our design allows for multiple distinct marketplaces to co-exist so as to promote

competition and to support implementation diversity. Within a given marketplace, we assume

that a service provider and advertised service are uniquely identified. A service provider pur-

chases listing request in the Marketplace and advertises services within the Marketplace; we

consider such advertisements as claims made by the service providers about the services they

provide. We assume that each service advertisement is assigned a unique service ID by the

marketplace. The marketplace stores service advertisements in a service repository, and allows

providers to withdraw existing advertisements using the service ID assigned earlier. A service

provider may modify an existing service only by withdrawing the existing service and advertis-

ing it as a new service that is assigned a new ID; this approach avoids ambiguity and ensures

a valid association between an economic contract and a given service. A service user interacts

with the marketplace to discover services and negotiate contracts with service providers; in

this context, the term user is broadly defined to include either a human or an agent acting

on a humans behalf. To discover services, a user queries the marketplace by specifying a filter.

The marketplace applies the user-specified filter against the list of services in its repository,

and returns the service advertisements that match. The user selects one of the services in the

list received from the marketplace, and contacts the service provider to negotiate an economic

contract for using the service. We use the concept of tokens to access and authenticate the

use of service. A token is a form of authorization to the service user for using the service, and

is issued by the provider of the service. Figure 2.1 shows the entities discussed above and a

typical sequence of messages involved in finding the marketplace, advertising/listing services,

querying the marketplace, purchasing a service by making the payment at the portal, and using

the transaction id to receive the authorization token for using the service. We classify all the

9

interactions leading to and signing of the economic contract as being part of the economy plane.

2.1.4 Service Composition Requirement

The need for service composition stems from the fact that it is not possible to advertise all

theoretical possible service combinations in the Marketplace in the expectation of it being

required by one of the users. Service composition provides the ability to assemble selected

services in custom combinations to satisfy specific user requirements from the existing services

offered in the Marketplace. Further, ‘‘Service composition” can be offered as a service by the

Marketplace allowing it to be discovered, purchased and used by the service users. To use

an airline analogy, a composition service provider is akin to a travel website that acts as an

intermediary between passengers and airlines.

2.2 Related Work

2.2.1 Marketplace(s) for Network Services

Routing algorithms are at the core of network design and operation, and their functionality has

evolved over the last sixty years from finding single shortest paths [5] to encompassing a wide

range of considerations, including multiple paths [6], quality-of-service (QoS) constraints [7],

and various modes of communication beyond point-to-point [8]. Nevertheless, for the most

part, these routing algorithms have been designed for use by network providers/operators who

have complete control over all aspects of the network. Users of the network typically have no

visibility into the network topology or access to the routing function, and their traffic usually

follows paths assigned by the network provider - although, using service level agreements (SLAs)

they may request paths that satisfy certain properties.

Due to the evolving nature of network applications, requirements of routing functionality

are also likely to evolve over time. However, at a time when network customers demand more

flexibility in path selection, changes in routing-level components in the Internet require broad

consensus among a diverse set of stakeholders and, hence, are increasingly difficult to implement.

Accordingly, there has been some work in providing users with options over the routing path [9--

11] in a manner that separates the data plane (the paths that packets follow) from the control

plane (routing decisions) and allows the two to evolve separately.

A natural next step in realizing ‘‘routing-as-a-service’’ (RaaS) is the creation of open mar-

ketplaces of path services that will enable customers to select from a set of path services offered

by multiple competing network providers, and stitch them together to construct customized

end-to-end paths for their applications. This is analogous to online travel marketplaces, includ-

ing Travelocity, Orbitz, and Expedia, among others, that allow users to explore travel options,

10

make plans, and book their travel. Similarly we can extend the concept of ‘‘routing” to other

data plane services.

In the virtual domain economic contracts play an important role in defining the quantity

(time) of resource (service) which has been mutually agreed upon by the seller and the buyer.

Mechanisms for contracts to be signed either implicitly or explicitly, and for proof to be obtained

regarding resource ownership have been described in [12] [13] [14] [15] These systems have

limited scope in terms of the type of resources that can be auctioned, claimed or leased; in

particular, these frameworks have been designed for a specific resource like online ads, peer-to-

peer storage or computing resources.

Figure 2.2: Timelines for work on Marketplace for Network/Web Services

11

2.2.1.1 Semantic Web Services

The Semantic Web services [16,17] have a well defined language and protocol. ChoiceNet uses

some of the design principles of the Semantic Web Service in defining the language and Proto-

col. The key components which are essential in realizing the Semantic Web and how they have

helped in shaping the ChoiceNet language and protocol is summarized below:

Web Services Description Language (WSDL) enables web service definitions to be ex-

posed to the world. For a sender and receiver to have an interaction they need to share the

common WSDL file. WSDL has a clear separation of data types, operations and service bind-

ings making it modular. The service advertisements in ChoiceNet in principle play the role of

WSDL files.

Simple Object Access Protocol (SOAP) defines a common format for XML messages over

HTTP and other transport protocols. The sender and receiver exchange SOAP messages con-

forming to the WSDL document published by the sender and shared by the receiver(s). SOAP,

a one-way asynchronous message passing mechanism, with its lightweight form, allows applica-

tions to build on top of this. The ChoiceNet Use Plane Protocol uses some of the concepts in

SOAP.

Resource Description Framework (RDF) is a standard for encoding meta-data. It is de-

scribed as statements and each statement comprises of subject, predicate, object in this order.

There are several RDF serialization formats like RDF/XML, Notation-3, Turtle and N-Triples

which allows machines to interpret the resource information. RDF has influenced in how we

define the various services (resources) in ChoiceNet so it can be interpreted by machines with

minimal effort.

RDF Schema (RDFS) and Web Ontology Language (OWL) help in creating a vocab-

ulary which describes the ontology used in writing RDF documents. The vocabulary brings

uniformity among service advertisements and helps the user in comparing and selection.

SPARQL Protocol and RDF Query Language To complete the picture of the semantic

web we need one last piece, SPARQL, a query language specification that allows the RDF

triples to be constructed, queried and updated. This piece is abstracted in the Use Plane Pro-

tocol in ChoiceNet to allow any database to be used at the Marketplace.

Universal Description Discovery and Integration (UDDI) is a public service entity

which is hosted by a select group of companies. These companies are responsible for maintain-

ing the database containing information on business registry data. SOAP is used for publishing

and querying for information. When this document was being written, UDDI was being offered

free for basic service. Business data can be registered with one of the vendors and it is the

responsibility of the UDDI to replicate this information across other vendors. UDDI provides

separate WSDL files for registration and discovery services. The ChoiceNet Marketplace enables

12

formation of contracts which is lacking in UDDI because of the trust deficient model. ChoiceNet

Marketplace will likely draw comparisons with the UDDI since the underlying principle of both

remain the same.

Universal Plug and Play (UPnP) offers a real time picture of the service and its state.

UPnP [18] allows a device to advertise its services to the control points in the network using

the Simple Service Discovery Protocol (SSDP). Similarly when a new control point is added

to the network, SSDP allows device discovery. Notification events about the changes in the

service is carried to the control points using General Notification Event Architecture (GENA).

Every service maintains three URLs that provide the information necessary for control points

to communicate with services.

• The ControlURL for control points to post requests to control this service.

• The EventSubURL for control points to post requests to subscribe to events.

• The DescriptionURL tells control points the location from which they can retrieve the

service description document.

Some of the concepts from UPnP can be applied to the service composition algorithm when we

want a more robust control over the services being advertised in the market place. This allows

the market place to provide a real time update on the state of the services being offered.

Open Services Gateway Initiative (OSGi) architecture provides a flexible model for main-

taining services. The basic building blocks of OSGi framework are bundles and the service

registry. Bundles provide well defined services [19] and they publish the services in the service

registry. The services published in the registry can be found by other bundles who want to use

this service. OSGi allows for dynamic addition, update and removal of bundles. The simple yet

flexible model offered by OSGi is what makes it interesting and these concepts are part of the

ChoiceNet framework.

2.2.2 Service Composition

2.2.2.1 Web Service Composition

An overview of recent research efforts in automatic Web service composition is provided in [20].

Most of the approaches can be classified as work flow or AI planning. The service providers

propose Web services for use. The service requesters consume services on offer. The translation

engine translates between the external languages used by the participants and the internal

languages used by the planner. For each request, the planner tries to generate a plan that

composes the available services in the service repository to fulfill the request. If more than

one plan is found, the evaluation engine evaluates all plans and gives the result to the service

13

user. The composed service recipe is given to the orchestration engine which is responsible

for identifying the individual service which is part of the recipe. As part of orchestration the

interaction between various services is formalized. The orchestration engine then interacts with

the instantiation engine for provisioning the service.

A composite service is similar to a work flow as this includes a set of services with the control

and data flow among the services keeping them together. Similarly, a work flow has to specify

the flow of work among these services. Two approaches in the work flow model are summarized

below:

• Static work flow : A set of tasks and their interdependencies are abstracted into a process

model at configuration time. But the binding of these services is done dynamically.

• Dynamic work flow : The creation of the abstract process model and selection of the web

services are done automatically.

The composition problem can also be dealt via AI planning. The AI planning methods can

be broadly divided into five categories, namely, the situation calculus, the Planning Domain

Definition Language (PDDL), rule based planning, the theorem proving and others.

In [21], a greedy algorithm is used to solve the web service composition problem. Based

on the set of input data they determine the services which can be invoked. These services can

be invoked one after the other or in parallel. They keep linking services based on the output

produced of the already invoked services. They form directed acyclic graphs with multiple

root nodes and terminating with the leaf node producing one or more of the desired output

parameters or the leaf node leading to a result which is infeasible corresponding to the query.

The key idea is to select the service with the best accumulated QoS. A priority queue is defined

to record all the satisfied services. A service becomes satisfied only when all of its inputs are

satisfied. The priority of a service is determined by its accumulated QoS. A smaller accumulated

response time gives a higher priority. A larger accumulated throughput also gives a higher

priority. A trace back function is used at the end of the main process to generate Business

Process Execution Language (BPEL) format solution.

2.2.2.2 Semantic Matching Model

A framework for performing dynamic service composition by exploiting the semantic match-

making between service parameters (i.e., outputs and inputs) to enable their interconnection

and interaction is introduced in [22]. They focus on a framework for service composition based

on functional aspects, in which services are chained according to their functional description i.e.,

inputs, outputs, preconditions and effects (IOPEs). The suggested framework uses the Causal

14

Link Matrix (CLM) formalism [23] in order to facilitate the computation of the final service

composition as a semantic graph. They have also developed a composition algorithm that fol-

lows a semantic graph-based approach, in which a graph represents service compositions and

the nodes of this graph represent semantic connections between services. Moreover, functional

and non-functional properties of services are considered, to enable the computation of relevant

and most suitable service compositions for some service request. Once this is done a trace is

done starting from the output parameters and stopping at the input parameters.

2.2.2.3 Services Integration controL and Optimization (SILO)

In [24] the application requests SILOManagement Agent (SMA) for a composed service. SMA in

turn contacts the SILO Construction Agent (SCA) to compose the service. The SCA composes

the service if possible and it contacts the SMA with the composed service. The SMA contacts

the application with the result of the service composition. The job of the SCA is to map the

service name supplied by the application to match with the service names maintained as part

of SILOs Resource Description Framework file and compose the service within the boundary

of the constraints. The job of the SMA is to make sure these services are loadable. In this

approach a dictionary is created using the semantic web notation of RDF and RDFS. All the

required Services are found by querying the SPARQL Helper. The mandatory opening and

closing services are identified and inserted in the ordered list of services. As part of the First

Phase of the algorithm for every service in the required services list a constrained insertion is

done as part of the tentative service recipe. Constrained insert involves both strict and loose

constraints. As part of the Second Phase of the algorithm the loose constraints ordering is

verified. As part of the work being presented in this paper we propose to make this composition

algorithm domain independent.

2.3 Contribution

We briefly describe the solutions being put forth to solve the problems mentioned in Chapter

1 in the following sections.

2.3.1 Semantics Language

To know if a service can be combined with another service we first need to describe the service

with sufficient information for a user of this service to understand, compare and combine this

with other service(s). We define a semantics language which allows for various Data Plane

services to be advertised, queried and composed. By defining a semantics language we move a

step closer in standardizing the syntax and the semantics of the services being advertised in

15

the Marketplace. The language provides uniformity which allows for competing services from

different network providers to be compared. The language has also provisions for describing

the scope/boundary of the service which allows for clear separation of responsibility allowing

for service composition.

The language also allows the use of logical operators to define a service with all the features.

This is advantageous to not just the Marketplace, which has to deal with fewer number of

services but also to the service provider, which is now not required to split the original service

to create multiple smaller services to express the various features of the original service. A

detailed explanation on the design of a semantics language is presented in Chapter 2.

2.3.2 Economy Plane and Use Plane Protocol

For the sustenance of an Open Marketplace two things are essential. First, the services adver-

tised in the Marketplace needs to be purchased generating revenue for the Marketplace. Second,

the Marketplace should drive more traffic into it in the hope of making it attractive for Service

Providers and Users. The messages which are exchanged between the various entities partici-

pating in the Marketplace over physical/virtual network where consideration/money changes

hands is classified as being part of the Economy Plane. The messages which are exchanged post

service purchase is classified as being part of the Use Plane. We associate the Planner with pro-

viding a composition service which needs to be purchased by the user before using the Planner.

Its also possible that the composition service can be offered free of cost at the Marketplace to

drive the traffic and indirectly increase the revenue. In this work we describe the interaction

between the Planner and the various entities in the context of Use Plane. Defining the Use

Plane Protocol for an Open Marketplace is essential in automating the Planner request and

response. A detailed explanation on the economy plane interaction is presented in Chapter 3.

2.3.3 Planner: Choice

One of the main requirements of Service Composition is providing options for the User to choose

from. The input to service composition is the user request and the list of service advertisements

in the Marketplace at the time of the user request. The output from service composition is

the list of ‘‘composed services” sorted in non-decreasing order of the accumulated cost of the

‘‘composed service”. We have developed three Planners which are complementary and are de-

signed for three different applications of network services. The three planners are presented in

Chapters 3, 4,and 5.

16

Chapter 3

ChoiceNet Prototype

In this section, we describe a ChoiceNet Prototype from the perspective of the Planner

3.1 ChoiceNet Semantics Language (CSL)

CSL helps represent a service definition, a service advertisement and a service requirement

which are essential pieces in the working of the Planner. CSL helps define an extensible

schema/vocabulary for building a consensus between the entities interacting with the Market-

place. This schema/vocabulary may be managed by a regulated and widely accepted authority

such as the Internet Assigned Numbers Authority (IANA), that enforces the vocabulary’s syn-

tax and semantics. The attributes used in the description of a service definition or a service

advertisement or a service requirement and later in the economy plane and use plane interac-

tions are fully specified using the triple: (attribute name, attribute value, vocabulary location),

the attribute name and value are defined in the context of the vocabulary whose location is

specified in the last part of the triple. The service advertisement and the service requirement

are illustrated in Figure 3.1.

3.1.1 Layer Abstraction

Since we are dealing with network services it becomes important to state the layer at which a

particular service is being provided. We use a layering abstraction which is realized using the

address type and format type fields of the service advertisement. In the framework we classify

all the path services as being realized at layer 2 of the TCP/IP protocol architecture and all

the other services as being realized at layer 2 or above of the TCP/IP protocol architecture.

The layering abstraction enables us to extend this framework to realize services at layer 1 of

the TCP/IP protocol architecture.

17

3.1.2 Addressing Schema

The addressing schema should support subnetting if the goal is for a wider adoption of this

Marketplace by the data plane services. We use IPv4 as the addressing schema in our framework

but this can be extended to any other addressing schema which supports subnetting. While

interpreting a service advertisement if the ‘‘from” and ‘‘to” address are different and the format

fields are identical, we interpret that this service is a ‘‘path service”. If the address fields are

identical and the format fields are different, or if both the address fields and the format fields

are different then we interpret that this service is not a ‘‘path service”.

The interpretation is similar in the case of a service requirement and also in the case of a

‘‘composed service”.

3.1.3 Format Schema

The format schema is used to specify the functionality of the data plane service with respect

to how it treats the user data. To define pure transit services which are responsible for routing

data, we support wild card formats to represent them. While interpreting a service adver-

tisement if the ‘‘from” and ‘‘to” formats are different we interpret that this service either

modifies/stores/analyzes the data, if they are identical then we interpret that this may be a

path service. If the ‘‘from” and ‘‘to” formats have wild card formats then we are dealing with

a routing service which transports any data, else we are dealing with a routing service which

transports data selectively. In our framework we use formats to refer to the data at the appli-

cation layer of the TCP/IP architecture.

The interpretation is similar in the case of a service requirement and also in the case of a

‘‘composed service”.

3.1.4 Logical Operators

We support the Logical ‘‘OR” operator in all the address and format fields. The ‘‘OR” operator

in the service advertisement indicates that all possible combinations of the operands make up

this service advertisement. The ‘‘OR” operator in the service requirement indicates that any

possible combination of the operands in the ‘‘composed service” satisfies the user request. We

plan to support the Logical ”AND” operator in our future work and we will dicuss the challenges

and the flexibility it offers in Chapter 6.

3.1.5 Consideration

To allow multiple ways of being compensated for the service, we provide a way to specify

the consideration type and the amount of consideration in the service advertisement. The

18

consideration type and the value in the service requirement indicates the cost the user is willing

to pay for a composed service. We assume all the services which are part of the ‘‘composed

service” have the same consideration type and the value is the accumulated sum of the values

of the services which make up the ‘‘composed service”. We can extend the framework to have

services with different consideration type being part of the ‘‘composed service” but we would

need a service which can convert values from different consideration types i.e., some kind of a

consideration exchange service.

3.1.6 k-composed service

The user request has the option of specifying the number of ‘‘composed services” which should

be returned in nondecreasing order of the accumulated cost of the ‘‘composed services” which

is below the threshold consideration value specified in the user request. The other fields in the

Service advertisement including the Service Name, Service Description, Provisioning Detail,

and Purchase Portal do not influence the service composition and hence are not relevant to the

discussion.

3.2 ChoiceNet Economy Plane and Use Plane Protocol

3.2.1 Message Syntax and ChoiceNet Port

We use CSL to define the message syntax between the various entities in ChoiceNet. These

messages are exchanged over the standard ChoiceNet TCP/UDP Port unless stated otherwise.

Some of the messages which are relevant from the perspective of the planner include:

• Planner Listing Request is sent from the Planner to the Marketplace to advertise the

Planner service in the Marketplace. Generally this needs to be done post purchasing the

slot for advertisement in the Marketplace. For the ChoiceNet framework we assume that

the Planner service is provided by the entity which manages the Marketplace.

• Query Request is sent by the user to the Marketplace to search for services matching one

or more fields in the service advertisement. In response the Marketplace sends a list of

matching service advertisements.

• Planner Request is sent by the user to the Planner found from the Marketplace. In

response the Planner responds back with a list of ‘‘composed services”

19

Figure 3.1: Service Advertisement and Requirement Schema

3.2.2 User, Planner, and Marketplace Interaction

For the user to start using the planner, the user needs to first discover the planner in the

Marketplace. If the Planner is part of the Marketplace then the Planner request can be sent to

the Marketplace directly else the user needs to search for the Planning service(s) and choose

one of them. The user can search for the Planner either based on the service description or

based on the source and destination format. As part of the service advertisement the Planner

needs to state the source format as being the requirement schema and the destination format

as being the list of ‘‘composed services”. This can be done using CSL and be made part of the

schema/vocabulary.

Once the Planner is found the user can send the request in the requirement schema illustrated

in Figure 3.1. There are two approaches for the Planner to get the service from the Marketplace

for constructing a list of ‘‘composed services” to satisfy the user request.

• Pull Method: In the first approach the Planner requests the Marketplace for advertise-

20

ments on a need basis and builds a partial graph locally based on the advertisements

received from the Marketplace. This approach explores the advertisements in the Mar-

ketplace systematically looking for matching services which can be composed minimizing

the cost.

• Push Method: In the second approach the Planner subscribes to the Marketplace to receive

advertisements which match the subscription filter registered at the Marketplace by the

Planner.

In this framework we have used the pull method and we would like to employ subscription

based model in our future work. Further, all our messages are sent over UDP but this can be

extended to use TCP but with a rider. Its possible to send arbitrarily large amount of data to

the Marketplace or the Planner as part of the listing request or planner request respectively and

overwhelm the module. To prevent Denial of Service (DOS) attack to either the Marketplace

or the Planner, we tend to limit the payload size.

Figure 3.2: Planner Interaction

21

3.3 ChoiceNet Planner

Two flavors of the Planner have been developed, both providing Choice based on Yen’s K-

Shortest Path Algorithm [25]. The first Planner is part of the ChoiceNet framework while the

second Planner described in Chapter 5 is a standalone module which is designed for composing

and reserving path services which are time sensitive. The second Planner also has an option

of finding Pareto Optimal paths based on bi-criteria constraints of cost and delay. Integrating

the second Planner with the ChoiceNet framework is part of the future direction and will be

discussed in Chapter 6.

The main problem involved in composing services within the ChoiceNet framework de-

scribed above is identifying services which can be combined to satisfy user requirements and

presenting the user with options to choose from a number of composed services(s) arranged in

non-decreasing order of cost.

3.3.1 Input

The input to the Planner is a service request from the user which is illustrated in Figure 3.1

and the interaction between the user and the Planner is described in Figure 3.2. The request

is sent from the user as a ChoiceNet message over a transport layer protocol. The Planner is

listening on the ChoiceNet TCP/UDP port for ChoiceNet messages. The Planner receives the

message and parses the request which is based on CSL referred to in Section 3.1

3.3.2 Output

The output of the Planner is a list of ‘‘composed service(s)” which is structured as shown in

Figure 3.3 and is sent back to the user as a ChoiceNet message over the same transport layer

protocol. The user or an agent on behalf of the user receives the message and parses the re-

sponse which is based on CSL referred to in Section 3.1 and makes a Choice based on the options

presented by the Planner. There are subtle differences between a Service Advertisement and

the ‘‘composed service” which uses the service advertisements to construct a ‘‘composed ser-

vice”. K-Composed Service, the ‘‘K” stands for the number of ‘‘composed service(s)” which is

returned by the Planner in non-decreasing order of the accumulated cost of each ‘‘composed ser-

vice”. The number of ‘‘composed service(s)” returned may be less than or equal to the number

of ‘‘composed services(s)” requested by the user. Each composed service consists of the consid-

eration type which is uniform across all the services in the ‘‘composed service”. It also consists

of the accumulated cost of all the services which are part of the ‘‘composed service”. This is

followed by the service advertisement instances arranged sequentially in the order the services

need to be executed. Each service advertisement instance consists of the Service Advertisement

22

Figure 3.3: Composed Service Schema

Identifier which is used for creating the instance followed by the source and destination address

information which contains one of the set elements from the original service advertisement. The

source and destination format information contains one of the set elements from the original

service advertisement. The format values in the instance needs to take into account wild card

formats which the universal set containing all formats supported by CSL. This can be achieved

by replacing the wild card formats, if present in a service advertisement with a specific format

value and type being requested by the user. So, it is possible for two composed service(s) to

have the same advertisement identifiers but what sets them apart is the service instance which

is returned by the Planner. If the Planner cannot find a ‘‘composed service” which matches the

user request it returns a empty list of ‘‘composed service(s)”.

3.3.3 Algorithm

The subscript and superscript notations used in Section 3.3.3.1 is represented as array indices

and structure data members in Algorithm 2 and Algorithm 1.

23

Notation Definition

N

The number of nodes in the graph, each node represents one set element each from the
source address and source format information of a service advertisement or one set
element each from the destination address and destination format information of a
service advertisement.

(i)
i = 1, 2, ..., N , represent the nodes where (1) is the starting node and (N) is the final
node

dij i 6= j, is the cost of the direct arc from (i) to (j)

Ak Ak = (1)-(2k)-(3k)-...-(Qk
k)-N , k = 1,2, ..., K, denotes the kth shortest composed service

from (1) to (N) where (2k), (3k) represent the 2nd and 3rd node respectively and so on.

Ak
i Path which deviates from Ak−1 at (i), i = 1, 2, ..., Qk

Rk
i Root path of Ak

i coincides till the (ith) node of Ak−1

Sk
i Spur path of Ak

i has only one node coinciding with Ak−1

Table 3.1: Notation and Definition

3.3.3.1 Notation and Definitions

We use the notations from [25] to bring out the similarity and differences between the algorithm

presented here and the original Yen’s algorithm. The notation and their meaning is described

in the Table 3.1

3.3.3.2 Pseudocode

The algorithm assumes that a virtual source node exists which can reach all nodes which

represent one set element of the source address and source format in the user request at zero

cost. Similarly, there exists a virtual destination node which can be reached from all nodes which

represent one set element of the dst address and dst format in the user request at zero cost.

A variation of Dijkstra’s algorithm [5] is used to find the K shortest cost composed service(s)

between this virtual source and virtual destination node and is represented using Algorithm 2

and Algorithm 1.

3.3.3.3 Description

In Algorithm 1 we use a variation of Dijkstra’s [5] shortest path algorithm to compute a shortest

cost composed service. The input to this algorithm is the virtual source node and the virtual

destination node along with the user constraints which must be satisfied. We list below the

variations to the original Dijkstra’s algorithm:

• In this variation we query the Marketplace repeatedly till we find a end-to-end composed

service or we are certain that no such end-to-end composed service exists which satisfies

24

the user constraints. We assume that the Marketplace is just a repository of services

and doesn’t have the intelligence of inferring the functionality associated with the service

advertisements. So, the intelligence of making sense of the advertisements needs to be

built outside the Marketplace. We build this intelligence in the planner module and this

is executed as part of the service pruning functionality in the planner. This transforms the

Planner from being a simple service concatenation tool to a service composition platform.

• To make this work with Yen’s algorithm we need to avoid edges which are part of the

previously calculated composed service instance(s). One of the approaches for achieving

this is by maintaining a open chain hash table which keeps track of all service instances

associated with an advertisement which have been taken. Also, we need to avoid nodes

which are part of the rootPath node. One of the approaches for achieving this is by

maintaining a tree which supports the compact representation of an address which allows

subnetting. Each node should also store the format instances which are used to represent

these rootPath nodes.

In Algorithm 2 we use a variation of Yen’s [25] k-shortest loopless paths algorithm to compute

the K shortest cost composed service(s). The input to this algorithm is the user request. We

list below the variations to the original Yen’s algorithm:

• In this variation we represent a node by the tuple (Addr, Fmt) and we transform the

user request by constructing virtual source and virtual destination nodes.

• To avoid visiting nodes which are part of the rootNode or edges which share the same

rootPath of the previously computed composed service instances we store them in a

patricia tree and open chain hash table respectively.

3.3.3.4 Service Pruning

Service pruning mentioned in Section 3.3.3.3 and in the Algorithm 2 refers to the feature

in the Planner which is needed to discern the functionality of a service advertisement which

uses the layering abstraction mentioned in Section 3.1.1 to describe the service. The Planner

queries the Marketplace for services matching the address schema. The Marketplace returns all

services which match the search criteria. The Planner is then tasked with sifting through these

service advertisements to identify service advertisements which can be part of a composed

service. If a composed path service is the end goal, the Planner considers only path service

advertisements. If a composed non-path service is the end goal, the Planner considers non-path

service advertisements which match the tuple (Addr, Fmt) and it considers all path service

advertisements since they match the tuple (Addr, Fmt) as they support all possible formats

in the Marketplace. Two tuples (Addr1, Fmt1) and (Addr2, Fmt2) are a match if an element

25

from the ‘‘Addr1” set matches with an element from the ‘‘Addr2” set and if an element from

the ‘‘Fmt1” set matches with an element from the ‘‘Fmt2” set.

We also perform service pruning when we need to split the service advertisement in Algorithm 1.

We define splitting a service advertisement as decomposing a service advertisement to represent

all possible combinations of the logical operands individually i.e., if a service advertisement has

two possible source address and source formats each and three possible destination address

and destination formats each, then post splitting a service advertisement we will be left with

2 * 2 * 3 * 3 i.e., 36 individual service advertisements which have been derived from one

advertisement. All of these individual service advertisements do not match the search filter

which was used in getting the original service advertisement. We prune out all the individual

service advertisements which do not match the search criteria.

3.3.3.5 Backtracking

Once we find a service advertisement whose destination tuple matches with the destination

tuple of the service requirement, we backtrack to construct the composed service. For every

edge traversal which leads to the discovery of at least one new tuple we store the service

advertisement information which represents this edge. A new tuple (Addrn, Fmtn) is defined

as a tuple which contains at least one element from the ‘‘Addrn” set or one element from the

‘‘Fmtn” set which hasn’t been found. We use the service advertisement information which is

associated with the discovered tuples to backtrack and find the composed service.

3.3.3.6 Example

We present two examples, the first example describes constructing a composed path service

while the second example describes constructing a non-composed path service.

• Round Trip: Figure 3.4 shows a set of path and non-path service advertisements for

the first example. Figure 3.5 shows the path service and non-path service advertisements

represented in a network topology diagram with each node represented using the tuple

(Addr, Fmt) and each edge represented using the advertisement ID. Figure 3.6 shows

the input and output to and from the Planner respectively and we obtain two composed

non-path services in this example.

• Routing: Figure 3.7 shows a set of path service advertisements for the second exam-

ple. Figure 3.8 shows the path service advertisements represented in a network topology

diagram with each node represented using the tuple (Addr, Fmt) and each edge repre-

sented using the advertisement ID. Figure 3.9 shows the input and output to and from

the Planner respectively and we obtain eight composed path services in this example.

26

Figure 3.4: Round Trip Example: Service Advertisements

3.3.3.7 Correctness

The proof of correctness of this algorithm follows from Yen’s algorithm.

3.3.4 Complexity

The time complexity of the modified Yen’s algorithm is O(KN(M+NlogN)) which is identical

to Yen’s complexity where K is the number of shortest cost loopless composed services, M is

the number of edges and N is the number of nodes. In the modified algorithm, N and M

are functions of the set of advertisements ADV in the Marketplace, the number of supported

formats in the Marketplace F , and the number of shortest loopless composed services required

K. The set of advertisements ADV are classified into ADV PATH and ADV OTHER which

denote path and non-path service advertisements respectively. The path service advertisements

include all services which can carry any user traffic without modifying the payload of the packet.

The non-path service advertisements includes all services which cannot be classified as being

27

Figure 3.5: Round Trip Example: Network Topology

path services. The algorithm for finding K composed path services and K composed non-path

services is the same. The distinction between the advertisements is made only to highlight the

time complexity of the algorithm. While a composed path service is derived using only path

service advertisements, a composed non-path service is derived using one or more non-path

service advertisements and zero or more path service advertisements.

3.3.4.1 Bounds for K composed Path Services

When findingK composed path services, N is given by (3.1), andM is given by (3.2), where the

notations ADV SRC ADDR
nk−1

and ADV DEST ADDR
nk−1

are used to denote the ‘‘SRC ADDR” and

‘‘DEST ADDR” address sets (refer Figure 3.1) of the advertisement whose ‘‘SRC ADDR”

address set is used for deriving the nth node of the (k − 1)th composed service, nk−1 is used to

denote the nth node in the (k − 1)th composed service and Nk−1 is used to denote the number

of nodes in the (k − 1)th composed service.

N = (2∗ADV PATH)+
K
∑

k=2

Nk−1
∑

nk−1=1

(
∣

∣

∣
ADV PATHSRC ADDR

nk−1

∣

∣

∣
∗
∣

∣

∣
ADV PATHDEST ADDR

nk−1

∣

∣

∣
− 2)

(3.1)

M = ADV PATH +
K
∑

k=2

Nk−1
∑

nk−1=1

(
∣

∣

∣
ADV PATHSRC ADDR

nk−1

∣

∣

∣
∗
∣

∣

∣
ADV PATHDEST ADDR

nk−1

∣

∣

∣
− 1)

(3.2)

3.3.4.2 Analysis for K composed Path Services

Since each path service advertisement consists of ‘‘SRC ADDR” and ‘‘DEST ADDR” ad-

dress sets, its possible for all the advertisements to have ‘‘SRC ADDR” and ‘‘DEST ADDR”

28

Figure 3.6: Round Trip Example: Input and Output

address sets to be different from each other, which would make a advertisement contribute

two unique nodes to N . Although each node is represented by the tuple (Addr, Fmt) where

each element in the tuple is a set, in case of Path services, the format field is considered to

be a wild card. Hence, the theoretical maximum number of nodes which can be present when

finding the first composed service is given by (3.1). Finding subsequent composed services with

Yen’s algorithm involves the previous composed service. We split the compact service notation

used in the advertisement which leads to a possible increase in the number of nodes N . We

calculate the increase in N , by multiplying the size of the ‘‘SRC ADDR” and ‘‘DEST ADDR”

address sets of an advertisement whose ‘‘SRC ADDR” address is used for finding the previous

composed service and subtracting two, the contribution of the advertisement to the number of

nodes in the compact notation. We do this over all the nodes which are part of all the previous

composed services to find the theoretical maximum number of nodes over K. Similarly its pos-

sible that each advertisement contributes an unique edge which would lead to the theoretical

maximum given by (3.2). Since a non-path service advertisement isn’t considered when finding

29

Figure 3.7: Routing Example: Service Advertisements

a composed path service, we do not factor them in.

3.3.4.3 Bounds for K composed Non-Path Services

When findingK composed non-path services,N is given by (3.3), andM is given by (3.4), where

the notations ADV SRC ADDR
nk−1

and ADV DEST ADDR
nk−1

are used to denote the ‘‘SRC ADDR”

and ‘‘DEST ADDR” address sets, ADV SRC FMT
nk−1

and ADV DEST FMT
nk−1

are used to denote the

‘‘SRC FMT” and ‘‘DEST FMT” format sets (refer Figure 3.1) of the advertisement whose

‘‘SRC ADDR” and ‘‘SRC FMT” sets are used for deriving the nth node of the (k − 1)th

composed service, nk−1 is used to denote the nth node in the (k − 1)th composed service and

Nk−1 is used to denote the number of nodes in the (k − 1)th composed service.

30

Figure 3.8: Routing Example: Network Topology

N = (2 ∗ADV PATH ∗ F) +
K
∑

k=2

Nk−1
∑

nk−1=1

(
∣

∣

∣
ADV PATHSRC ADDR

nk−1

∣

∣

∣
∗
∣

∣

∣
ADV PATHDEST ADDR

nk−1

∣

∣

∣
− 2)

+ (2 ∗ADV OTHER) +
K
∑

k=2

Nk−1
∑

nk−1=1

(
∣

∣

∣
ADV OTHERSRC ADDR

nk−1

∣

∣

∣
∗
∣

∣

∣
ADV OTHERDEST ADDR

nk−1

∣

∣

∣

∗
∣

∣

∣
ADV OTHERSRC FMT

nk−1

∣

∣

∣
∗
∣

∣

∣
ADV OTHERDEST FMT

nk−1

∣

∣

∣
− 2)

(3.3)

M = (ADV PATH ∗ F) +
K
∑

k=2

Nk−1
∑

nk−1=1

(
∣

∣

∣
ADV PATHSRC ADDR

nk−1

∣

∣

∣
∗
∣

∣

∣
ADV PATHDEST ADDR

nk−1

∣

∣

∣
− 1)

+ (ADV OTHER) +
K
∑

k=2

Nk−1
∑

nk−1=1

(
∣

∣

∣
ADV OTHERSRC ADDR

nk−1

∣

∣

∣
∗
∣

∣

∣
ADV OTHERDEST ADDR

nk−1

∣

∣

∣

∗
∣

∣

∣
ADV OTHERSRC FMT

nk−1

∣

∣

∣
∗
∣

∣

∣
ADV OTHERDEST FMT

nk−1

∣

∣

∣
− 1)

(3.4)

31

Figure 3.9: Routing Example: Input and Output

3.3.4.4 Analysis for K composed Non-Path Services

In the analysis for composed non-path services, a path service advertisement’s possible con-

tribution of two unique Address sets needs to be combined with all supported formats in the

Marketplace to obtain the theoretical maximum number of nodes which can be present when

finding the first composed service when considering only path service advertisements. The non-

path service advertisement contributes two unique nodes to N, the two unique nodes are rep-

resented by the tuple ((SRC ADDR), (SRC FMT)) and ((DEST ADDR), (DEST FMT)).

For finding subsequent composed services we split the compact service notation used in the

advertisement which leads to a possible increase in the number of nodes N. For path service ad-

vertisement, we calculate the increase in N , by multiplying the size of the ‘‘SRC ADDR” and

‘‘DEST ADDR” address sets of a path advertisement whose ‘‘SRC ADDR” address is used

for finding the previous composed service and subtracting two, the contribution of the adver-

tisement to the number of nodes in the compact notation. We do this over all the nodes which

are part of all the previous composed services to find the theoretical maximum number of nodes

32

over K. For non-path service advertisement, we calculate the increase in N , by multiplying the

size of the ‘‘SRC ADDR”, ‘‘SRC FMT”, ‘‘DEST FMT” and ‘‘DEST ADDR” address sets

of a path advertisement whose ‘‘SRC ADDR” and ‘‘SRC FMT” sets are used for finding the

previous composed service and subtracting two, the contribution of the advertisement to the

number of nodes in the compact notation. We do this over all the nodes which are part of all

the previous composed services to find the theoretical maximum number of nodes over K. We

do a similar analysis while finding the theoretical maximum number of edges M given by (3.4).

33

Data: virSrc, virDst, User Constraints
Result: Shortest cost Composed Service Instance satisfying user constraints
price from src = 0
while (!find in explored patricia tree(virDst)) do

advertisements = searchMarketplace(virSrc.Addr)
forall the (service ∈ advertisements) do

/*
* Infer the functionality based on the format values of
* advertisements returned by the Marketplace and prune
* the service advertisements based on the search filter
*/
prune(service)
if
(check in hash(service)||find in avoid patricia tree(service.srcAddr, service.srcFmt))
then

Split Service advertisement
forall the (split service ∈ service) do

if split service.srcAddr == virSrc.Addr then
insert in dij minHeap(split service, price from src + split service.cost)

end

end

else
insert in dij minHeap(service, price from src + service.cost)

end

end
while (1) do

if (newService = heap del dij minHeap()) then
if
(!find in explored patricia tree(newService.dstAddr, newService.dstFmt))
then

insert in explored patricia tree(newService.dstAddr, newService.dstFmt))
virSrc = newService.dst

end

else
break

end

end

end
Algorithm 1: Modified Dijkstra’s Algorithm

34

Data: User Request
Result: Upto K Shortest cost Composed Service Instances
/*Store shortest cost composed service instance from virSrc to virDst*/
A[0] = Dijkstra variation(virSrc, virDst, userConstraint)
for k ∈ [1,K] do

for i ∈ [0, (|A[k − 1]| − 1)] do
A[k-1].explored patricia tree = new patricia tree
A[k-1].avoid patricia tree = new patricia tree
hash table = new open chain hash table
spurNode = A[k-1].node(i)
rootPath = NULL
for j ∈ [0, i] do

rootPath = rootPath + A[k-1].node(j)
end
for p ∈ [0, (k − 1)] do

for j ∈ [0, i] do
if rootPath.node(j)! = A[p].node(j) then

match = 0
break

else
match = 1

end

end
if match == 1 then

insert in hash(A[p].node(i).advertisement id, A[p].edge(i, i+1))
end

end
for j ∈ [0, (i− 1)] do

insert in avoid patricia tree(A[p].node(i).srcAddr, A[p].node(i).srcFmt))
end
if rootPath == NULL then

spurPath = Dijkstra variation(virSrc, virDst, userConstraint)
else

virSrc = spurNode
spurPath = Dijkstra variation(virSrc, virDst, userConstraint)

end
totalPath = rootPath + spurPath
insert in yens minHeap(total path, total path.cost)
free patricia tree(s) and hash table

end
while (tentative path = heap del yens minHeap()) do

if tentative path is not a duplicate path then
insert in hash(A[p].node(i).advertisement id, A[p].edge(i, i+1))
break

end

end

end
Algorithm 2: Modified Yen’s Algorithm

35

Chapter 4

Enhanced Path Planner

4.1 Related Work

4.1.1 Shortest Path Algorithms

The planner must present the user with several options (i.e., viable alternative end-to-end

solutions) that meet multiple criteria, including price, bandwidth capacity, delay, the inclusion

or exclusion of sub-paths from certain providers, etc. We envision that planners will differentiate

from the competition by deploying sophisticated and specialized algorithms for constructing a

list of ‘‘composed services”.

To simplify the explanation, we take the example of path services. Introducing one additional

resource constraint (e.g., a delay constraint along with a cost constraint), makes the shortest

path problem NP-Complete [26, Problem ND30]. Consequently, a wide range of heuristics

and approximation algorithms have been developed for a diverse set of constrained shortest

path problem variants [27,28]. Also, while efficient algorithms exist for constructing k-shortest

elementary (i.e., acyclic) [25] and non-elementary [29] paths, the k-constrained shortest path

problem is significantly harder and has received little attention [30].

Just as the planner of a travel site takes into consideration flights from multiple airlines, many

of which offer competing flights between the same pairs of cities, a path planner must consider

advertisements from multiple providers, including virtual operators who may lease capacity

from the same physical infrastructure. Consequently, the path planner takes as input a topology

that is a superset of the topologies representing the networks of individual providers, and that

is likely to include parallel edges between nodes for which there exist competing path services.

Such a topology is expected to be much larger than each of its constituent individual provider

topologies.

36

4.1.2 In-advance service reservation

We extend the example of path services to discuss the In-advance service reservation. Planners

must allow users to reserve end-to-end paths during specific continuous time intervals in the

future; this feature is analogous to booking a hotel for a set of consecutive days long before

travel takes place. On the other hand, support for time constraints allows users to explore

additional options whenever their communication plans are flexible, in the same manner that

travel planners allow users to provide a range of acceptable start and end dates for their travel.

In-advance path reservations involve reserving resources along an end-to-end path for a contin-

uous interval of time that has a specific duration and starts at a specific instant, either in the

present or in the future. Algorithms for finding and reserving paths with sufficient bandwidth

resources well in advance of the start of communication [31--33] have generally been designed

for small, centrally controlled connection-oriented networks in which only a relatively small

fraction of connections require such advance reservations. These algorithms may be extended

to account for cost and delay constraints, but do not directly support time constraints.

4.1.3 Problem Classification

The shortest path problems and network reservation algorithms can be classified based on the

objective function(s) as shown in Table 4.1 and Table 4.2 respectively. In this classification

we use the notation α/β/γ/π/φ, α = {G, T} where G denotes problems which are not time

sensitive and T denotes problems which are time sensitive, β ∈ N denotes the number of resource

constrained objective functions, γ = {P, F} where P denotes pareto or non-dominated paths

and F denotes all feasible paths, π = {1,K} which indicates if the problem finds 1 optimal path

or K paths in non-decreasing order of cost, φ = {O,A} where O denotes optimal paths and A

denotes approximate or subset paths, to categorize problems and this classification differs from

the one in [34] as we extend the classification to problems which are time driven, non-dominated

and those which consider K non elementary shortest paths.

Dijkstra’s algorithm [5] is designed to find a single source shortest path and runs in poly-

nomial time. The rest of the algorithms shown in Table 4.1 either run in pseudopolynomial

or exponential time. The concept of non-dominated or pareto solution(s) was first defined on

multiplicative lattices. It was then extended to network graph models [35--37] using the label

setting/correction approach. Climaco et.al [38,39] use the K-shortest [40,41] paths approach to

find the pareto solution(s). Joksch [42] introduced the notion of shortest paths with constraints.

The shortest path problems with resource constraints was solved using Lagrangian relaxation

by Handler et.al [43] and using K-shortest paths algorithm by Martins et.al [41]. Henig [44],

Warburton [45] and Hassin [46] introducted the concept of approximate solutions to pareto and

constrained shortest path problems. The concept of shortest path problem with time windows

37

Notation Original Algorithm Variations

G/0/F/1/O Dijkstra [5]

G/0/P/1/O Brown et.al [53] Thuente [35], Hansen [36], Martins [37]

G/0/P/K/O Climaco et.al [38] Climaco et.al [39]

G/1/F/1/O Joksch [42]

G/1/F/K/O Handler et.al [43], Martins et.al [41] Ning [54]

G/0/P/1/A Henig [44], Warburton [45]

G/1/F/1/A Hassin [46]

T/0/F/1/O Desrochers et.al [47], Desaulniers et.al [55]

T/0/P/1/O Hamacher et.al [48]

T/0/F/K/O Rouskas et.al [49]

T/1/P/1/O Rouskas et.al [49]

Table 4.1: Classification of Shortest Path Problems

Notation Original Algorithm Variations

T/1/F/1/O Guerin et.al [56] Balman et.al [57]

T/0/F/K/O Rouskas et.al [49]

T/1/P/1/O Roukas et.al [49]

Table 4.2: Classification of Network Reservation Algorithms

was introduced by Desrochers et.al [47] and later it was defined for non-dominated shortest path

problems with time windows by Hamacher et.al [48] for vehicle routing problems. The concept

of time windows was extended to network graph models and the concept of non-dominated

and constrained shortest path problems with time windows is defined by Rouskas et.al [49].

This work connects the domain of shortest path problem with advance resource reservation in

network graph models. Some of the notable network reservation algorithms without preemption

are shown in Table 4.2

Aneja et.al [50], Beasley et.al [51] and Dumitrescu et.al [52] employ preprocessing to improve

the running time of several constrained shortest path algorithms.

4.1.4 Pros and Cons of finding Pareto paths using k-shortest paths

There are two main challenges when finding pareto paths.

• How quickly can you find the pareto solutions

• How do you choose the optimal/sub-optimal solution among these pareto solutions

There are basically two ways of finding pareto solutions.

• Label setting/correction approach

38

• K-shortest cost paths

Since finding pareto solution(s) is NP-Hard, both the approaches take exponential running

time. For certain graph problems one of the approaches might be better suited than the other. In

Figure 4.1 we have three examples where the number and the gap between the pareto solutions

is different. Suppose every path from source to destination has a unique pair of (cost, time)

solution and each corresponds to one of the of the K-shortest cost paths. In that case, for all

the three examples we can quickly find all the pareto solutions relatively quickly compared with

the labeling approach.

The gap between the pareto solutions and the number of pareto solutions which can be

found using the K-shortest paths plays an important role in determining which approach is

the best. In Figure 4.2 we have an example which is not suitable for the K-shortest cost/time

paths as we have multiple paths which have the same cost or time and we are not guaranteed

to find the shortest cost/time path which minimized both cost and time for a small value of

K when we are searching for K-shortest cost paths or the K-shortest time paths. So, we have

to find K-shortest cost/time paths for a large value of K before we find pareto solutions. This

applies for the bi-criteria and multi-criteria pareto solutions.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

R
e
so

u
rc

e
 (

T
im

e
)

Cost

Example 1
Example 2
Example 3

Figure 4.1: The gap between pareto solutions in the bi-criteria case

4.1.5 Pros and Cons of Pareto paths as a measure of Utility function

Once we find the pareto solutions, we still have the problem of choosing one or more among

these. A utility function is defined as a mapping from the set of pareto solutions to a combined

solution. The utility function [58] can be designed in several ways and it is also possible that

39

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

R
e
so

u
rc

e
 (

T
im

e
)

Cost

Example 4

Figure 4.2: Uniqueness of K shortest paths in the bi-criteria case

there might be several utility functions which can be applied to these pareto solutions. Some

of the sample utility functions are illustrated in Figures 4.3, 4.3 and 4.3. In Figure 4.3 we

have utility function which is linear and in Figure 4.4 and Figure 4.5 we have non-linear utility

functions.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-4
-3
-2
-1
 0
 1
 2
 3
 4

Example Utility Function-func1

-4
-3
-2
-1
 0
 1
 2
 3
 4

Figure 4.3: Example 1

40

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0.9
 1

Example Utility Function-func2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 4.4: Example 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

Example Utility Function-func3

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14

Figure 4.5: Example 3

41

4.1.6 Conjecture

We state the following conjecture and provide counter examples to disprove it.

Conjecture 1 Small number of Pareto paths ⇐⇒ Lower running time.

We provide two counter examples to disprove the conjecture from both directions of the

equality. In Figure 4.6 we have shown a ‘Source’ node and a ‘Destination’ node along with two

intermediary nodes ‘A’ and ‘B’ and two sub-graphs connecting them. Suppose we have two

pareto paths from ‘Source’ to ‘B’ and hundred pareto paths from ‘Source’ to ‘A’. If the large

connected sub-graph is dense we end up spending a lot of time traversing the edges and finding

the pareto paths. Suppose the pareto paths from ‘Source’ to ‘Destination’ via ‘B’ dominates

all the pareto paths from ‘Source’ to ‘Destination’ via ‘A’, we end up having just two pareto

paths from ‘Source’ to ‘Destination’. So a small number of pareto paths does not imply a

lower running time. In Figure 4.7 we have shown a Directed Acyclic Graph with (cost, delay)

attributes mentioned corresponding to every edge. Each path from ‘Source’ to ‘Destination’

forms a pareto path, so we end up with four pareto paths on a very small graph with a lower

running time. So a small running time does not imply a lower number of pareto paths. The

number of pareto paths and the running time depends not only on N , the size of the graph but

also on the graph structure.

Source Destination

A large
 connected
 sub-graph

A small
 connected
 sub-graph B

A

Figure 4.6: Counter Example 1

42

Source

Destination

E

CB
3, 3

1, 1

10, 5

3, 3

1, 4

3, 3

6, 4

Figure 4.7: Counter Example 2

43

4.2 Overview

The main problem involved in route planning is to combine available services into end-to-end

paths that meet user requirements. From an algorithmic point of view, path planning shares a

number of challenges with online travel planning:

• Large network topologies with parallel edges. Just as the planner of a travel site takes

into consideration flights from multiple airlines, many of which offer competing flights

between the same pairs of cities, a path planner must consider advertisements from multi-

ple providers, including virtual operators who may lease capacity from the same physical

infrastructure. Consequently, the path planner takes as input a topology that is a superset

of the topologies representing the networks of individual providers, and that is likely to

include parallel edges between nodes for which there exist competing path services. Such

a topology is expected to be much larger than each of its constituent individual provider

topologies.

• Support for in-advance reservations and time constraints. Planners must allow users to

reserve end-to-end paths during specific continuous time intervals in the future; this

feature is analogous to booking a hotel for a set of consecutive days long before travel

takes place. On the other hand, support for time constraints allows users to explore

additional options whenever their communication plans are flexible, in the same manner

that travel planners allow users to provide a range of acceptable start and end dates for

their travel.

• Multiple alternatives selected using multiple criteria. The planner must present the user

with several options (i.e., viable alternative end-to-end paths) that meet multiple criteria,

including price, bandwidth capacity, delay, the inclusion or exclusion of sub-paths from

certain providers, etc. We envision that path planning services will differentiate from the

competition by deploying sophisticated and specialized algorithms for selecting paths.

Each of the above considerations significantly complicate the path finding process. For in-

stance, introducing one additional resource constraint (e.g., a delay constraint along with a cost

constraint), makes the shortest path problem NP-Complete [26, Problem ND30]. Consequently,

a wide range of heuristics and approximation algorithms have been developed for a diverse

set of constrained shortest path problem variants [27, 28]. Also, while efficient algorithms ex-

ist for constructing k-shortest elementary (i.e., acyclic) [25] and non-elementary [29] paths, the

k-constrained shortest path problem is significantly harder and has received little attention [30].

In-advance path reservations involve reserving resources along an end-to-end path for a

continuous interval of time that has a specific duration and starts at a specific instant, either

44

in the present or in the future. Algorithms for finding and reserving paths with sufficient

bandwidth resources well in advance of the start of communication [31--33] have generally

been designed for small, centrally controlled connection-oriented networks in which only a

relatively small fraction of connections require such advance reservations. These algorithms

may be extended to account for cost and delay constraints, but do not directly support time

constraints.

The general shortest path problem with time constraints involves finding the least cost

path from source to destination in a graph whose nodes can be visited within a specified time

interval [59]. Similar time-constrained path problems have been studied in the context of vehicle

routing [59, 60] and travel planning [61]. The problem is NP-Complete regardless of whether

the shortest path is required to be elementary or is allowed to contain cycles.

4.3 Marketplace and Graph Model

4.3.1 The Marketplace

We consider a marketplace that includes a repository of path services as advertised by network

services providers. Each path service is represented by the tuple:

(Ls, Ld, LID,Lattr, Tstart, Tend), Tstart < Tend

where Ls and Ld are the source and destination nodes, respectively, of a (physical or virtual)

link with unique ID LID and attributes Lattr, and [Tstart, Tend] is the time interval during which

this path service is valid. For this work, we assume that the attributes include the available

bandwidth, delay, cost, and energy consumption of the link, here cost is expressed as price per

unit bandwidth; the link attribute notation is give below:

Lattr = (Lbw, Ldelay, Lcost, Lenergy).

This representation allows multiple distinct providers, including virtual providers who do not

own any physical infrastructure, to advertise path services between the same (Ls, Ld) pairs,

that can be distinguished using the unique link ID field.

Users submit to the path planner requests of the form

(Rs, Rd, Rreq, τe, τl), τe ≤ τl

where Rs and Rd are the source and destination node, respectively, of the requested communi-

cation service and Rreq are user requirements that the service must meet, and [τe, τl] is a time

interval that specifies the earliest and latest start times for the service; if τe = τl, then the

service must start at exactly time τe. We assume that user requirements include a minimum

45

bandwidth along the path, an acceptable end-to-end delay, the time duration (length) of the

communication, and a maximum cost that the user is willing to pay, i.e.,

Rreq = (Rbw, Rdelay, Rlen, Rcost).

4.3.2 Graph of Path Services

The planner uses the path service descriptions stored in the marketplace repository to construct

a graph G = (V,E), where V is the set of nodes that are part of at least one service description,

and E is the set of unique links defined by the service descriptions. As we mentioned earlier,

the graph G will generally include parallel edges representing competing services or virtual

links. Each edge includes all information associated with the corresponding link, i.e., LID, link

attributes (bandwidth, delay, cost and energy), and the interval of time [Tstart, Tend] during

which the edge is valid.

We assume that the planner updates the graph of path services in real time whenever each

of these four events takes place: (a) when a new path service is advertised, a new edge is added

to the graph; (b) when an advertisement updates an existing path service, the attributes of the

corresponding edge are updated accordingly (or the edge is removed if the update cancels the

service); (c) when a new reservation is established, the attributes (e.g., available bandwidth)

of the path services in the end-to-end path are updated accordingly; and (d) when an existing

reservation terminates, the attributes of its constituent path services are also updated.

We define a time step [31] as a continuous period of time during which the state of the

network does not change; in other words, the graph of path services and their attributes remain

the same throughout a time step. The planner updates the sequence of time steps whenever an

advertisement creates a new path service or modifies an existing one, and when reservations

are set up or terminate. Consider Figure 4.8(a), where three time steps are shown, representing

the changes in network state before the arrival of the new path service. As seen in the figure,

the time duration of the new path service overlaps with two of the time steps. Therefore the

addition of this path service causes changes in the state of the network within each of the two

time steps, resulting in the five time steps shown in Figure 4.8(b). Time steps must be similarly

updated for new and departing reservations.

We have the following two results.

Lemma 4.3.1 For any set of path services that have m unique sets of [Tstart, Tend] time inter-

vals, there can be at most 2m− 1 time steps.

Proof 1 In geometry, it is known that the number of non-overlapping segments formed by k

distinct collinear points is k − 1. Since m unique sets of [Tstart, Tend] time intervals include

46

(b)

Time

New Path Service

Time Steps

(a)

Time

Time Steps

Figure 4.8: The concept of time steps

at most 2m distinct time instants at which a path service starts or ends, the number of non-

overlapping time segments created by these instants is at most 2m − 1. Since a path service

starts or ends at the boundary between two time segments, the state of the network (graph) does

not change during any of the time segment. Therefore, there are at most 2m− 1 time steps.

Lemma 4.3.2 Consider a user request for a communication service that may start anywhere

in the interval [τe, τl]. If the time interval [τe, τl] overlaps with n time steps, then, in order to

satisfy this request, it is sufficient to run a path finding algorithm at most n times, each time

with a start time equal to the beginning of one of the time steps.

Proof 2 Consider time step x = [t1, t2] that overlaps with the interval [τe, τl] of the user request.

Let P be the set of paths that a specific path finding algorithm returns under the assumption

that the communication service requested by the user starts at time t1. Since the state of the

network does not change for the duration of time step x, the same algorithm will not be able to

find better paths than the ones in P for any start time t of the request such that t1 < t ≤ t2.

On the other hand, the algorithm may find worse paths when t1 < t ≤ t2; this may occur if the

later starting time causes the service to end within a later time step in which the network state

may not be able to accommodate the quality of features of the paths in P.

The above two results impose strict bounds on the search space that the planner has to

explore to satisfy a user request. These bounds make path computations more efficient than

the method used in [31] to divide the search space; the latter method becomes inefficient even

for networks of moderate size with a relatively small number of path services.

47

4.4 Multi-Criteria Time Constrained Paths

Our objective is to present each user requesting service with a set of time constrained paths

that satisfy multiple user-specified constraints. More formally, the problems we address are

variations of the time constrained shortest path (TCSP) problem defined as follows.

Problem 1 (Non-dominated k-TCSP with resource constraints (ND-k-TCSPRC))

Let G = (V,E) be a graph with path services as edges such that each edge e is valid only during

the time interval [T e
start, T

e
end]. Let U be a utility function defined by the user which maps the

set of pareto solutions to the set R. Consider the user request

(Rs, Rd, Rreq, τe, τl), Rreq = (Rbw, Rdelay, Rlen, Rcost)

and an integer k. Find the top k Pareto-optimal paths from Rs to Rd which provide the maxi-

mum utility, such that each path:

1. is a concatenation of one or more path services (edges),

2. has bandwidth at least Rbw,

3. has end-to-end delay at most Rdelay, and

4. is valid throughout the interval [t, t+Rlen], for any t ∈ [τe, τl],

where a path is considered valid in a given time interval if and only if all path services com-

prising the path are valid in the same interval.

Problem 2 (Non-dominated k-TCSP (ND-k-TCSP)) Let G = (V,E) be a graph with

path services as edges such that each edge e is valid only during the time interval [T e
start, T

e
end].

Let U be a utility function defined by the user which maps the set of pareto solutions to the set

R. Consider the user request

(Rs, Rd, Rreq, τe, τl), Rreq = (Rbw, Rdelay, Rlen, Rcost)

and an integer k. Find the top k Pareto-optimal paths from Rs to Rd which provide the maxi-

mum utility, such that each path:

1. is a concatenation of one or more path services (edges),

2. has bandwidth at least Rbw,

3. is valid throughout the interval [t, t+Rlen], for any t ∈ [τe, τl],

where a path is considered valid in a given time interval if and only if all path services com-

prising the path are valid in the same interval.

48

We note that both NDTCSP and NDTCSPRC are in the class NPC [62] even for one time

instance. To keep the notations uniform for solving the problem we set Rdelay to ∞.

Problem 3 (k-TCSP with resource constraints (k-TCSPRC)) Let G = (V,E) be a graph

with path services as edges such that each edge e is valid only during the time interval [T e
start, T

e
end].

Consider the user request

(Rs, Rd, Rreq, τe, τl), Rreq = (Rbw, Rdelay, Rlen, Rcost)

and an integer k. Find k least cost paths from Rs to Rd, such that each path:

1. is a concatenation of one or more path services (edges),

2. has bandwidth at least Rbw,

3. has end-to-end delay at most Rdelay, and

4. is valid throughout the interval [t, t+Rlen], for any t ∈ [τe, τl],

where a path is considered valid in a given time interval if and only if all path services com-

prising the path are valid in the same interval.

This reduces to the k-CSP problem [30] which is known to be in NPC even for one time instance.

Problem 4 (k-TCSP) Let G = (V,E) be a graph with path services as edges such that each

edge e is valid only during the time interval [T e
start, T

e
end]. Consider the user request

(Rs, Rd, Rreq, τe, τl), Rreq = (Rbw, Rdelay, Rlen, Rcost)

and an integer k. Find k least cost paths from Rs to Rd, such that each path:

1. is a concatenation of one or more path services (edges),

2. has bandwidth at least Rbw,

3. is valid throughout the interval [t, t+Rlen], for any t ∈ [τe, τl],

where a path is considered valid in a given time interval if and only if all path services com-

prising the path are valid in the same interval.

We note that this is pseudo-polynomial algorithm [63] even for one time instance. To keep the

notations uniform for solving the problem we set Rdelay to ∞.

49

4.4.1 Dynamic Programming Algorithm for Problems 1 and 2

Let G = (V,E) be the graph of path services at the time the user request

(Rs, Rd, Rreq, τe, τl), Rreq = (Rbw, Rdelay, Rlen, Rcost)

arrives. We set the utility function

U ∝ (1/
∑

L ∈ Pareto Path Lcost)

We now present a dynamic programming algorithm that can be used to find Pareto-optimal

paths from node Rs to node Rd that are valid in the interval [τe, τl +Rlen].

Define F (i, t, Rdelay) as the minimum cost of any path from source Rs to the node i, i ∈ V ,

that starts at time t, has available bandwidth at least equal to Rbw, and its cumulative delay

(i.e., the total delay along the path services from Rs to i) is at most Rdelay. If no such path

exists at time t, then F (i, t, Rdelay) = ∞.

F (i, t, Rdelay) can be calculated using the following recursion:

F (i, t,D) =

{

0, i = Rs and D ≥ 0

∞, D < 0
(4.1)

F (j, t,D) = min
(i,j)∈E

{

F
(

i, t,D − L
(i,j)
delay

)

+ L
(i,j)
cost

}

,

∀(i, j) ∈ E , D ≤ Rdelay, Rbw ≤ L
(i,j)
bw (4.2)

The base case (4.1) simply states that (i) the cost of getting from the source node Rs to itself is

zero, and (ii) the cost of going from Rs to any node i with a negative delay is infinity since no

such path exists. The recursive expression (4.2) can be explained by noting that the minimum

cost of getting from Rs to node j with a total delay of at most D, is equal to the minimum

cost, over all path services (i, j), i 6= j, of getting from Rs to node i with a total delay of at

most D−L
(i,j)
delay, plus the cost L

(i,j)
cost of going from i to j. Note also that the minimum is taken

only over edges (path services) (i, j) that have sufficient bandwidth for the user request.

The optimal solution at time t, i.e., the minimum cost of a path that starts at time t and

can accommodate the user request, can be computed as:

F (Rd, t, Rdelay). (4.3)

Recall now that, according to Lemma 4.3.2, it is sufficient to run the path finding algorithm

once for each time step that overlaps with the interval [τe, τl] that represents the allowable

start times for the user request. Let n be the number of such time steps and t1, . . . , tn be the

time instants when the path finding algorithm must be run; according to Lemma 4.3.2, t1 = τe,

while t2, . . . , tn coincide with the start of the following n− 1 time steps. Therefore, the overall

50

optimal solution, i.e., the cost of the minimum-cost path for the user request starting anywhere

in [τe, τl], can be obtained as:

min
t1,...,tn

F (Rd, ti, Rdelay). (4.4)

We note that computing expression (4.3) may require the evaluation of an exponential

number of paths. Furthermore, the recursion returns the cost of a minimum-cost, feasible path,

if one exists, but it does not directly provide the path services (edges) comprising this path.

Importantly, this expression does not compute multiple shortest paths, and hence it does not

provide a solution to Problems 1 and 2.

In the following subsection, we show that it is possible to maintain labels at the nodes of

graph G during the execution of recursion (4.2), so as to (i) construct Pareto-optimal paths,

and (ii) speed up the recursion by eliminating paths (i.e., terminating the recursion early) that

will not lead to Pareto-optimal solutions.

4.4.1.1 Tracking Pareto-Optimal Paths

Consider an execution of the recursive algorithm (4.3) for a given start time t. At each node

i visited by the recursion, we maintain labels to keep track of Pareto-optimal paths passing

through that node. Specifically, for each path through node i, we maintain the tuple (C,D),

where C (respectively, D) is the cost (respectively, delay) of the path from the source node Rs

to node i1.

Consider two paths through node i with labels (C1, D1) and (C2, D2), respectively. We say

that the first path dominates the second, denoted by (C1, D1) ≺ (C2, D2), if C1 ≤ C2 and

D1 ≤ D2. In other words, the dominating path is better than the dominated one in terms

of both cost and delay. When we add a third criteria, energy, the dominating path is better

than the dominated one for all three attributes i.e., cost, delay, and energy. Note that, all

paths entering node i have the exact same options as path services to continue towards the

destination Rd. Therefore, it is certain that the dominated path will result in an end-to-end

solution that cannot be superior to that resulting from the dominating path in terms of either

cost and delay. Consequently, we eliminate the dominated path at node i by terminating the

recursion at that point, which also speeds up the overall running time.

At the end of the recursion (4.3), we obtain Pareto-optimal paths that start at time t. We

execute the recursion n times, once for each time step, as indicated in (4.4), and obtain Pareto-

optimal paths that start in [τe, τl]. We then extract (up to) k least-cost Pareto-optimal paths

from this list, and return them to the user, allowing the latter to make an informed selection.

1The label includes two additional parameters: the previous node j towards the source Rs and the unique
link ID, LID, of the path service that leads from j to i. These parameters make it possible to reconstruct the
path starting at the destination node, Rd, but are not essential for determining Pareto-optimal paths.

51

4.4.2 k-shortest cost paths algorithm for Problem 4

We will now consider the TCSP problem variation where the user does not request non dominant

paths but instead requests k least cost paths without resource constraints. Problem 4 may be

solved in pseudopolynomial time [59] if the number of time instants is finite using the following

steps at each of the n time instants ti discussed in Section 4.4.1 above: (1) remove from the graph

all edges which, at time ti, have available bandwidth less than Rbw; (2) run Yen’s algorithm [25]

to construct the k shortest paths between Rs and Rd at time ti. These steps will determine

up to nk shortest paths, of which we present the k shortest to the user. Since Yen’s algorithm

is polynomial, assuming k and the number of time instants are bounded, this algorithm will

produce the k shortest paths starting anywhere in [τe, τl] in polynomial time.

4.4.3 k-shortest cost paths algorithm for Problem 3

We will now consider the TCSP problem variation where the user does not request non dominant

paths but instead requests k least cost paths with resource constraints. This is identical to the

problem defined in [54] but now in the context of time windows. The algorithmic approach

to this problem is similar to the one above but with an additional checking of the resource

constraint done at every step when we relax the edge i.e. add a node to the list of explored

nodes.

4.5 Numerical Results

We now present simulation results to evaluate the algorithms for Problems 1, 2, 3, and 4.

We used BRITE [64] to generate graphs for running the simulation because it is a universal

topology generator and offers more than just network connectivity at the AS level. We obtained

undirected graphs by configuring BRITE to generate AS-Level Barabasi models. We set the

size of the outer and inner planes to 1000 and 100 respectively, for placement of the nodes in a

heavy tailed distribution. We set the growth type of the graph to be incremental in nature, we

disabled the preferential connection property, and we set the average nodal degree to between 2

and 4. We used a uniform bandwidth distribution with a maximum and minimum bandwidth

values of 2500 Mbps and 100 Mbps, respectively, with the additional restriction that bandwidth

values be multiples of 100 Mbps. Ldelay, the link delay was set proportional to the Euclidean

distance between the two points in the plane representing the endpoints of the edge. Lenergy,

the energy consumption of an edge was set independent of both the link delay and link cost.

Lenergy is uniformly distributed between [1 - 1000].

We use two cost models. In the first model, the cost of using a link as a function of the

product of bandwidth times duration of the connection. Specifically, we let the cost, Lcost, per

52

unit bandwidth (i.e., 1 Mbps) to $0.06, a value that is approximately one-tenth of the current

market cost [65]. Hence, the price that a user has to pay for a connection can be expressed

as $0.06×Rbw × Rlen. In the second model. the link cost is negatively correlated to the delay.

Finally, we let the start and end times of an edge (path service) to be in the range [0, 15 days].

We generate user requests using the following model:

• The bandwidth Rbw requested is uniformly distributed in the range [10, 100 Mbps] with

probability 0.6, and in the range (100 Mbps, 500 Mbps] with probability 0.4.

• The duration Rlen of the request is uniformly distributed in the ranges: [1, 30 min] (prob-

ability 0.1), [31 min, 60 min] (probability 0.1), (1 hr, 3 hr] (probability 0.6), and (3 hr,

12 hr] (probability 0.2).

• The earliest start time τe is between [0, 1 day] with probability 0.8, and between (1,

15 days] with probability 0.2.

• The latest start time τl is set to either equal to τe (with probability 0.5) or is uniformly

distributed in the range (τe, τe+ 60 min] (with probability 0.5).

• The end-to-end delay Rdelay is set to
√
2 times the delay along the Euclidean distance of

the diameter in the outer plane of the topology graph for Problems 1 and 3 and is set to

∞ for Problems 2 and 4.

We further assume that user requests arrive as a Poisson process with mean equal to 1 minute.

We use five different graph models to evaluate the algorithms used for solving the problems

defined earlier and the mapping of the graph models to the corresponding problems is captured

in Table 4.3.

We have implemented the routing algorithms in C, and we run the simulation experiments

on a Linux cluster, each node in the cluster consisting of two Xeon processors (representing a

mix of 1, 2, 4, 6, or 8 cores) and 2-4 GB of memory per core. In the figures we present in this

section, each data point corresponds to the average of 30 randomly generated problem instances.

The figures also plot confidence intervals around the mean, estimated using the method of batch

means.

53

Graph Model Link Cost Link Delay Rdelay Link Energy Problem

1 Fixed ∝ Euclidean Distance Finite NA 1

2 Fixed ∝ Euclidean Distance ∞ NA 2 and 4

3 ∝(1/Link Delay) ∝ Euclidean Distance ∞ NA 2 and 4

4 ∝(1/Link Delay) ∝ Euclidean Distance Finite NA 3

5 ∝(1/Link Delay) ∝ Euclidean Distance ∞ Uniformly distributed 1

Table 4.3: Mapping of Problems to Graph Models

54

4.5.1 Model 1: Fixed Cost and finite threshold Delay

Figure 4.9 plots the running time of the dynamic programming algorithm as a function of the

number N of nodes in the graph; for these experiments, the average nodal degree was set to 2.

For each problem instance, we generated 100 user requests and, hence, run the algorithm 100

times to find paths for each request. The running time shown in the figure is an average over

these 100 executions. As we can see, the running time increases faster than linearly with the size

of the network, but remains reasonable even for large topologies; for N = 400 nodes, it takes

about 7-8 seconds, an amount of time comparable to what users experience in online travel

sites. We also plot the running time of a O(N3) function to compare the running time of the

dynamic programming algorithm with 2-criteria. We use the reference time for N = 100 to plot

the extrapolated running times for N = 200 to N = 500. We expect a running time which is

between Ω(N3) and an exponential running time since we use a variation of Label Correction

Algorithm and also use an adjacency matrix. Since the running time of the algorithm is very

close to the cubic function we can claim that the algorithm has been efficiently implemented

in the context of Model 1.

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500

A
v
g
 R

u
n
n
in

g
 t

im
e
 (

in
 s

e
c)

N

Running Time vs Algorithm Complexity

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500

A
v
g
 R

u
n
n
in

g
 t

im
e
 (

in
 s

e
c)

N

Running Time vs Algorithm Complexity

2-criteria
Cubic function

Figure 4.9: Running time of the dynamic programming algorithm for Problem 1

55

4.5.2 Model 2: Fixed Cost and no Threshold Delay

The second model compares the impact of having no resource constraints on Problems 2 and 4

Figure 4.10 presents the average running time of the algorithm for solving Problem 4, as

a function of the number k of shortest paths; for these experiments, we generated 1,000 user

requests and the average was taken over the 1,000 executions of the algorithm. We can see that

the running time increases linearly with k, and also with the network size, as expected. Overall,

this algorithm runs more than one order of magnitude faster than the dynamic programming

algorithm for the same network size, implying that relaxing the delay and dominance constraints

makes it possible to scale to very large networks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20

T
im

e
 (

se
c)

K

N = 200
N = 400
N = 600
N = 800

N = 1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20

T
im

e
 (

se
c)

K

Figure 4.10: Running time of the k-shortest cost paths algorithm for Problem 4 with no delay constraints

56

For Problem 2 to get the fine grain information regarding the impact of pareto paths,

average hop count and the number of time instances searched corresponding to a user request

we plot their distribution in the following sections and explain their role in the running time of

the algorithm. The distribution plots are drawn for 30 simulation runs with each simulation run

consisting of 100 user requests or simulation instances. We use the same experimental setup as

in Model 1 for evaluating Problem 2.

Figures 4.11 to 4.16 plot the distribution of the number of pareto paths over the simulation

instance for N = 100 to N = 600 respectively. Initially, before the first user request arrives

all the links have attributes such as bandwidth identical throughout the whole time window.

As user requests arrive and bandwidth is carved out from the link, the time window gets

fragmented and the probability that the earliest and latest start times of a new user request

overlaps with the previous fragmented time windows increases with every new incoming user

request. The dynamic programming algorithm doesn’t compare path dominance for paths which

have different start time. This explains the peaks observed in the Figures 4.11 to 4.16 which

is caused by more pareto paths being found for fragmented time windows. This observation is

consistent for Figures 4.17 to 4.22 which plots the distribution of the number of time instances

i.e., the number of times the dynamic programming algorithm is run to find the pareto paths

which have a starting time coinciding with the time instance value.

Figures 4.23 to 4.28 plot the distribution of average hop count of the pareto paths vs the

running time (in seconds) of the algorithm. Figures 4.29 to 4.34 plot the distribution of number

of time instances searched to find the pareto paths vs the running time (in seconds) of the

algorithm. Figures 4.35 to 4.40 plot the distribution of number of pareto paths vs the running

time (in seconds) of the algorithm. We observe that we do not see peaks for the running time

of the algorithm as the pareto paths or the hop count increases unless it is accompanied by a

increase in the number of time instances.

57

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

p
a
re

to
 p

a
th

s

Simulation Run Instance

Figure 4.11: Pareto Paths Distribution for N = 100, Fixed Link Cost, Infinite Threshold Delay

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

p
a
re

to
 p

a
th

s

Simulation Run Instance

Figure 4.12: Pareto Paths Distribution for N = 200, Fixed Link Cost, Infinite Threshold Delay

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

p
a
re

to
 p

a
th

s

Simulation Run Instance

Figure 4.13: Pareto Paths Distribution for N = 300, Fixed Link Cost, Infinite Threshold Delay

58

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

p
a
re

to
 p

a
th

s

Simulation Run Instance

Figure 4.14: Pareto Paths Distribution for N = 400, Fixed Link Cost, Infinite Threshold Delay

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

p
a
re

to
 p

a
th

s

Simulation Run Instance

Figure 4.15: Pareto Paths Distribution for N = 500, Fixed Link Cost, Infinite Threshold Delay

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

p
a
re

to
 p

a
th

s

Simulation Run Instance

Figure 4.16: Pareto Paths Distribution for N = 600, Fixed Link Cost, Infinite Threshold Delay

59

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Simulation Instance

Figure 4.17: Time Instances Distribution for N = 100, Fixed Link Cost, Infinite Threshold Delay

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Simulation Instance

Figure 4.18: Time Instances Distribution for N = 200, Fixed Link Cost, Infinite Threshold Delay

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Simulation Instance

Figure 4.19: Time Instances Distribution for N = 300, Fixed Link Cost, Infinite Threshold Delay

60

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Simulation Instance

Figure 4.20: Time Instances Distribution for N = 400, Fixed Link Cost, Infinite Threshold Delay

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Simulation Instance

Figure 4.21: Time Instances Distribution for N = 500, Fixed Link Cost, Infinite Threshold Delay

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Simulation Instance

Figure 4.22: Time Instances Distribution for N = 600, Fixed Link Cost, Infinite Threshold Delay

61

 0 10 20 30 40 50 60 70 80 90 100 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 0

 0.2

 0.4

 0.6

 0.8

T���

Simulation Instance

Av� ��� ���	

T���

Figure 4.23: Running time vs average hop count for N = 100, Fixed Link Cost, Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0

 2

 4

 6

 8

 10

��
�

Simulation Instance

��� ��� �����

��
�

Figure 4.24: Running time vs average hop count for N = 200, Fixed Link Cost, Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 0

 5

 10

 15

 20

 25

 30

����

Simulation Instance

��� !" #!$%&

����

Figure 4.25: Running time vs average hop count for N = 300, Fixed Link Cost, Infinite Threshold Delay

62

 0 10 20 30 40 50 60 70 80 90 100 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 0

 20

 40

 60

 80

 100

Simulation Instance

Figure 4.26: Running time vs average hop count for N = 400, Fixed Link Cost, Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0

 20

 40

 60

 80

 100

 120

Simulation Instance

Figure 4.27: Running time vs average hop count for N = 500, Fixed Link Cost, Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0
 50

 100
 150
 200
 250
 300
 350

Simulation Instance

Figure 4.28: Running time vs average hop count for N = 600, Fixed Link Cost, Infinite Threshold Delay

63

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Simulation Instance

Figure 4.29: Running time vs number of time instances for N = 100, Fixed Link Cost, Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0

 2

 4

 6

 8

 10

 12

Simulation Instance

Figure 4.30: Running time vs number of time instances for N = 200, Fixed Link Cost, Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0

 10

 20

 30

 40

 50

Simulation Instance

Figure 4.31: Running time vs number of time instances for N = 300, Fixed Link Cost, Infinite Threshold Delay

64

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0

 20

 40

 60

 80

 100

 120

Simulation Instance

Figure 4.32: Running time vs number of time instances for N = 400, Fixed Link Cost, Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0

 50

 100

 150

 200

 250

Simulation Instance

Figure 4.33: Running time vs number of time instances for N = 500, Fixed Link Cost, Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0

 50

 100

 150

 200

 250

 300

Simulation Instance

Figure 4.34: Running time vs number of time instances for N = 600, Fixed Link Cost, Infinite Threshold Delay

65

 0 10 20 30 40 50 60 70 80 90 100 0
 5

 10
 15

 20
 25

 0

 0.2

 0.4

 0.6

 0.8

 1

'()*

Simulation Instance

Num of pareto paths

'()*

Figure 4.35: Running time vs number of pareto paths for N = 100, Fixed Link Cost, Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 5

 10
 15

 20
 25

 0
 1
 2
 3
 4
 5
 6
 7

+,-.

Simulation Instance

Num of pareto paths

+,-.

Figure 4.36: Running time vs number of pareto paths for N = 200, Fixed Link Cost, Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 5

 10
 15

 20
 25

 30

 0

 5

 10

 15

 20

 25

/012

Simulation Instance

Num of pareto paths

/012

Figure 4.37: Running time vs number of pareto paths for N = 300, Fixed Link Cost, Infinite Threshold Delay

66

 0 10 20 30 40 50 60 70 80 90 100 0
 5

 10
 15

 20
 25

 30

 0

 20

 40

 60

 80

 100

 120

Simulation Instance

Num of pareto paths

Figure 4.38: Running time vs number of pareto paths for N = 400, Fixed Link Cost, Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 5

 10
 15

 20
 25

 30
 35

 0

 50

 100

 150

 200

 250

Simulation Instance

Num of pareto paths

Figure 4.39: Running time vs number of pareto paths for N = 500, Fixed Link Cost, Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 5

 10
 15

 20
 25

 30

 0

 50

 100

 150

 200

 250

 300

Simulation Instance

Num of pareto paths

Figure 4.40: Running time vs number of pareto paths for N = 600, Fixed Link Cost, Infinite Threshold Delay

67

4.5.3 Model 3: No Threshold Delay and Cost negatively correlated to Delay

The third model is useful in two ways. From an experimental point of view, this is one of the

ways of increasing the number of pareto paths using the underlying graph with the same delay

and average nodal degree. From an applications point of view, taking the analogy of ISPs, a link

with the maximum delay would likely represent an edge which spans across continents/countries

and the low cost would be amortized by the amount of traffic going through it; taking the

analogy of airlines, a link with the maximum delay would likely represent a long distance flight

and the low cost would be amortized by the full utilization, while the small delays would likely

represent a short connecting flight and the high cost would likely compensate for any under

utilization. In the network domain, the base cost represents per Mbps and per unit time. For

the airline domain, the equivalent could be per person and per unit time spent in the flight.

Figures 4.41 to 4.46 plot the distribution of the number of pareto paths over the simulation

instance for N = 100 to N = 600 respectively. Figures 4.47 to 4.52 plot the distribution of the

number of time instances. Figures 4.53 to 4.58 plot the distribution of average hop count of the

pareto paths vs the running time (in seconds) of the algorithm. Figures 4.59 to 4.64 plot the

distribution of number of time instances searched to find the pareto paths vs the running time

(in seconds) of the algorithm. Figures 4.65 to 4.70 plot the distribution of number of pareto

paths vs the running time (in seconds) of the algorithm. We observe that these plots show the

same behavior wrt the plots for model 2, the only difference being the slightly higher running

time and the higher number of pareto paths found.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

p
a
re

to
 p

a
th

s

Simulation Run Instance

Figure 4.41: Pareto Paths Distribution for N = 100, Cost ∝ 1/(Delay), Infinite Threshold Delay

68

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

p
a
re

to
 p

a
th

s

Simulation Run Instance

Figure 4.42: Pareto Paths Distribution for N = 200, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

p
a
re

to
 p

a
th

s

Simulation Run Instance

Figure 4.43: Pareto Paths Distribution for N = 300, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

p
a
re

to
 p

a
th

s

Simulation Run Instance

Figure 4.44: Pareto Paths Distribution for N = 400, Cost ∝ 1/(Delay), Infinite Threshold Delay

69

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

p
a
re

to
 p

a
th

s

Simulation Run Instance

Figure 4.45: Pareto Paths Distribution for N = 500, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

p
a
re

to
 p

a
th

s

Simulation Run Instance

Figure 4.46: Pareto Paths Distribution for N = 600, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Simulation Instance

Figure 4.47: Time Instances Distribution for N = 100, Cost ∝ 1/(Delay), Infinite Threshold Delay

70

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Simulation Instance

Figure 4.48: Time Instances Distribution for N = 200, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Simulation Instance

Figure 4.49: Time Instances Distribution for N = 300, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Simulation Instance

Figure 4.50: Time Instances Distribution for N = 400, Cost ∝ 1/(Delay), Infinite Threshold Delay

71

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Simulation Instance

Figure 4.51: Time Instances Distribution for N = 500, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

Simulation Instance

Figure 4.52: Time Instances Distribution for N = 600, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0

 0.5

 1

 1.5

 2

 2.5

 3

Simulation Instance

Figure 4.53: Running time vs average hop count for N = 100, Cost ∝ 1/(Delay), Infinite Threshold Delay

72

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Simulation Instance

Figure 4.54: Running time vs average hop count for N = 200, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0

 20

 40

 60

 80

 100

 120

Simulation Instance

Figure 4.55: Running time vs average hop count for N = 300, Cost ∝ 1/(Delay), Infinite Threshold Delay

73

 0 10 20 30 40 50 60 70 80 90 100 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0
 50

 100
 150
 200
 250
 300
 350

Simulation Instance

Figure 4.56: Running time vs average hop count for N = 400, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

Simulation Instance

Figure 4.57: Running time vs average hop count for N = 500, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

Simulation Instance

Figure 4.58: Running time vs average hop count for N = 600, Cost ∝ 1/(Delay), Infinite Threshold Delay

74

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

Simulation Instance

Figure 4.59: Running time vs number of time instances for N = 100, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0
 5

 10
 15
 20
 25
 30
 35

Simulation Instance

Figure 4.60: Running time vs number of time instances N = 200, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

Simulation Instance

Figure 4.61: Running time vs number of time instances for N = 300, Cost ∝ 1/(Delay), Infinite Threshold Delay

75

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0
 50

 100
 150
 200
 250
 300
 350
 400

Simulation Instance

Figure 4.62: Running time vs number of time instances for N = 400, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0
 100
 200
 300
 400
 500
 600
 700
 800

Simulation Instance

Figure 4.63: Running time vs number of time instances for N = 500, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 2

 4
 6

 8
 10

 12

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

Simulation Instance

Figure 4.64: Running time vs number of time instances for N = 600, Cost ∝ 1/(Delay), Infinite Threshold Delay

76

 0 10 20 30 40 50 60 70 80 90 100 0
 10

 20
 30

 40
 50

 60
 70

 0

 0.5

 1

 1.5

 2

 2.5

Simulation Instance

Num of pareto paths

Figure 4.65: Running time vs number of pareto paths for N = 100, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 10

 20
 30

 40
 50

 60
 70

 0
 5

 10
 15
 20
 25
 30
 35

Simulation Instance

Num of pareto paths

Figure 4.66: Running time vs number of pareto paths for N = 200, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 20

 40
 60

 80
 100

 120
 140

 0
 20
 40
 60
 80

 100
 120
 140
 160

Simulation Instance

Num of pareto paths

Figure 4.67: Running time vs number of pareto paths for N = 300, Cost ∝ 1/(Delay), Infinite Threshold Delay

77

 0 10 20 30 40 50 60 70 80 90 100 0
 20

 40
 60

 80
 100

 120

 0
 50

 100
 150
 200
 250
 300
 350
 400

Simulation Instance

Num of pareto paths

Figure 4.68: Running time vs number of pareto paths for N = 400, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 20

 40
 60

 80
 100

 120
 140

 160

 0

 100

 200

 300

 400

 500

 600

Simulation Instance

Num of pareto paths

Figure 4.69: Running time vs number of pareto paths for N = 500, Cost ∝ 1/(Delay), Infinite Threshold Delay

 0 10 20 30 40 50 60 70 80 90 100 0
 20

 40
 60

 80
 100

 120
 140

 160

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

Simulation Instance

Num of pareto paths

Figure 4.70: Running time vs number of pareto paths for N = 600, Cost ∝ 1/(Delay), Infinite Threshold Delay

78

4.5.4 Model 4: Threshold Delay and Cost negatively correlated to Delay

In this model, the link costs in the graph are negatively correlated to link delay and the user

requests are modeled with finite and fixed threshold delay. We evaluate Problem 3 and present

the results in Section 4.5.7.

4.5.5 Model 5: Three-criteria pareto paths

We extend the third model by adding another edge attribute ‘‘energy” consumption and evalu-

ate Problem 2. In Figure 4.71 and in Figure 4.72 we plot the average number of pareto paths

found and the average time it takes to find them and compare it with the two-criteria case

presented in Model 3. Figures 4.73 to 4.78 plot the actual pareto solutions for N = 100 to N =

600. In Figure 4.72 we also plot the running time of a O(N3) function and a O(N4) function to

compare the running time of the dynamic programming algorithm with 2-criteria and 3-criteria.

We use the reference time for N = 100 to plot the extrapolated running times for N = 200

to N = 600. We expect a running time which is between Ω(N3) and an exponential running

time since we use a variation of Label Correction Algorithm and also use an adjacency matrix.

Since the running time of the algorithm is slightly higher than a cubic function but well below

a Quartic function we can claim that the algorithm has been efficiently implemented for both

2 and 3 criteria.

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

A
e
to

 p
a
th

s

N

A

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

A
e
to

 p
a
th

s

N

A

Figure 4.71: Average number of pareto paths found

79

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

A
v
g
 R

u
n
n
in

g
 t

im
e
 (

in
 s

e
c)

N

Running Time vs Algorithm Complexity

2-criteria
3-criteria

Cubic
Quartic

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

A
v
g
 R

u
n
n
in

g
 t

im
e
 (

in
 s

e
c)

N

Running Time vs Algorithm Complexity

Figure 4.72: Average running time for the Dynamic Programming Algorithm

 0 1000 2000 3000 4000 5000 6000 7000 0
 500

 1000
 1500

 2000
 2500

 3000

 1700
 1750
 1800
 1850
 1900
 1950
 2000
 2050
 2100
 2150
 2200
 2250

eto Solution, N = 100

Cost

Delay

E
n
e
rg

y

 1700
 1750
 1800
 1850
 1900
 1950
 2000
 2050
 2100
 2150
 2200
 2250

Figure 4.73: Pareto solution distribution for N = 100

 0
 1000

 2000
 3000

 4000
 5000

 6000 0
 100

 200
 300

 400
 500

 600
 700

 800

 1800
 1850
 1900
 1950
 2000
 2050
 2100
 2150
 2200
 2250
 2300

eto Solution, N = 200

Cost

Delay

E
n
e
rg

y

 1800
 1850
 1900
 1950
 2000
 2050
 2100
 2150
 2200
 2250
 2300

Figure 4.74: Pareto solution distribution for N = 200

80

 0 500 1000 1500 2000 2500 3000 3500 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 2200
 2300
 2400
 2500
 2600
 2700
 2800

eto Solution, N = 300

Cost

Delay

E
n
e
rg

y

 2200

 2300

 2500

 2600

 2700

 2800

Figure 4.75: Pareto solution distribution for N = 300

 0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

 2100
 2150
 2200
 2250
 2300
 2350
 2400
 2450
 2500
 2550
 2600
 2650

Cost

Delay

E
n
e
rg

y

 2100
 2150
 2200
 2250
 2300
 2350

 2500
 2550
 2600
 2650

Figure 4.76: Pareto solution distribution for N = 400

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000

 2200
 2300
 2400
 2500
 2600
 2700
 2800

eto Solution, N = 500

Cost

Delay

E
n
e
rg

y

 2200

 2300

 2400

 2500

 2600

 2700

 2800

Figure 4.77: Pareto solution distribution for N = 500

81

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 0
 2000

 4000
 6000

 8000
 10000

 12000

 2300
 2400
 2500
 2600
 2700
 2800
 2900
 3000
 3100
 3200

eto Solution, N = 600

Cost

Delay

E
n
e
rg

y

 2300
 2400
 2500
 2600
 2700
 2800
 2900
 3000
 3100
 3200

Figure 4.78: Pareto solution distribution for N = 600

82

4.5.6 Evaluation of Models 1, 2 and 3 for Problems 1 and 2

We observe that the running time of the algorithm is significantly higher for the third model

compared to the first and second models. This is mainly due to more non dominant paths

being stored at the intermediate nodes in the graph. We observe that the number of pareto

paths has some influence on the running time of the algorithm, but the major factor influencing

the running time of the dynamic programming algorithm which doesn’t assume positive link

attributes is N, the size of the graph.

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700

A
v
g
 R

u
n
n
in

g
 t

im
e
 (

in
 s

e
c)

N

ime for Models 1, 2 and 3

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700

A
v
g
 R

u
n
n
in

g
 t

im
e
 (

in
 s

e
c)

N

Comparison of Running Time for Models 1, 2 and 3

Model 1
Model 2
Model 3

Figure 4.79: Running time as a function of N

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700

A
v
g
 N

u
m

b
e
r

o
f

P
a
re

to
 p

a
th

s

N

Comparison of average pareto path count for Models 1, 2 and 3

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700

A
v
g
 N

u
m

b
e
r

o
f

P
a
re

to
 p

a
th

s

N

Comparison of average pareto path count for Models 1, 2 and 3

Model 1
Model 2
Model 3

Figure 4.80: Avg number of pareto paths as a function of N

83

4.5.7 Evaluation of Models 1, 2, 3 and 4 for Problems 3 and 4

The average running time, the actual paths found when searching for K paths and the pareto

paths found among them, per user request with 95% confidence interval for 30 simulation runs

with each simulation run consisting of 100 user requests are shown in Figure 4.81, Figure 4.82,

and Figure 4.83 respectively. The figures highlight the difference between models 1 and 2.

Figure 4.84, Figure 4.85, and Figure 4.86 highlight the difference between models 3 and 4.

The average number of pareto paths among the K shortest paths for K = 5, and K = 10, is

small for both types of problems, but marginally higher for the problem instance without delay

constraints as seen in Figure 4.81 and Figure 4.84. The difference between the two models is

small to draw any definite conclusions, but we can infer that the finite threshold delay might

lead to paths which are clustered around this threshold leading to paths which are very similar

and also lesser in number giving a smaller number of pareto paths.

The average number of total paths is also smaller for model 1 compared to model 2 as

seen in Figure 4.82 because of discarding some paths which exceed the threshold delay. This

observation is consistent for model 3 and model 4 as seen in Figure 4.85.

The average running time for model 2 is higher compared to model 1 as seen in Figure

4.83, which is the result of relatively lesser paths being found which are below the threshold

delay. The affect of a resource constraint i.e., threshold delay on the K shortest cost path

problem doesn’t lead to an increase in time compared to the K shortest cost problem without

resource constraints for the graph instances considered in our experiments. This observation is

also consistent with model 3 and model 4 as seen in Figure 4.86

The observation made while comparing the results for both the problems is influenced by

the graph/user model. These observations will change for a different graph/user model.

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700

A
v
g
 N

u
m

b
e
r

o
f

P
a
re

to
 p

a
th

s

N

Comparison of pareto path count among K paths for Models 1 and 2

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700

A
v
g
 N

u
m

b
e
r

o
f

P
a
re

to
 p

a
th

s

N

Comparison of pareto path count among K paths for Models 1 and 2

Model 2, K = 5
Model 2, K = 10

Model 1, K = 5
Model 1, K = 10

Figure 4.81: Pareto paths among K paths for Models 1 and 2

84

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700

A
v
g
 N

u
m

b
e
r

o
f

p
a
th

s

N

Comparison of path count for Models 1 and 2

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700

A
v
g
 N

u
m

b
e
r

o
f

p
a
th

s

N

Comparison of path count for Models 1 and 2

Model 2, K = 5
Model 2, K = 10

Model 1, K = 5
Model 1, K = 10

Figure 4.82: Total paths for Models 1 and 2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700

A
v
g
 r

u
n
n
in

g
 t

im
e
 (

in
 s

e
c)

N

Comparison of running time for Models 1 and 2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700

A
v
g
 r

u
n
n
in

g
 t

im
e
 (

in
 s

e
c)

N

Comparison of running time for Models 1 and 2

Model 2, K = 5
Model 2, K = 10

Mode 1, K = 5
Model 1, K = 10

Figure 4.83: Running Time for Models 1 and 2

85

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700

A
v
g
 N

u
m

b
e
r

o
f

P
a
re

to
 p

a
th

s

N

Comparison of pareto path count among K paths for Models 3 and 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700

A
v
g
 N

u
m

b
e
r

o
f

P
a
re

to
 p

a
th

s

N

Comparison of pareto path count among K paths for Models 3 and 4

Model 3, K = 5
Model 4, K = 5

Figure 4.84: Pareto paths among K paths for Models 3 and 4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700

A
v
g
 N

u
m

b
e
r

o
f

p
a
th

s

N

Comparison of path count for Models 3 and 4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700

A
v
g
 N

u
m

b
e
r

o
f

p
a
th

s

N

Comparison of path count for Models 3 and 4

Model 3, K = 5
Model 4, K = 5

Figure 4.85: Total paths for Variation 3 and 4

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500 600 700

A
v
g
 r

u
n
n
in

g
 t

im
e
 (

in
 s

e
c)

N

Comparison of running time for Models 3 and 4

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 100 200 300 400 500 600 700

A
v
g
 r

u
n
n
in

g
 t

im
e
 (

in
 s

e
c)

N

Comparison of running time for Models 3 and 4

Model 3, K = 5
Model 4, K = 5

Figure 4.86: Running Time for Variation 3 and 4

86

Chapter 5

Service Routing Planner

The principles of ChoiceNet resonate in the domain of Network functions virtualization (NFV) [66].

NFV decouples the network service functionality from the underlying network, compute, and

storage resources, and allows communication services to be composed by stitching together func-

tional building blocks that may not be co-located and may be offered by different providers.

Interest in NFV has grown dramatically over the past few years due to its perceived benefits to

both service providers and the users of these services. One of the main challenges in realizing the

potential of NFV relates to orchestration [66], i.e., the process of arrangement and coordination

of multiple network services so as to deliver a desired functionality. The role of orchestration in

the NFV architecture has been highlighted in previous works [67,68] that have mostly focused

on service abstraction, semantics, and the standardization of the APIs.

Whenever the NFV architecture spans networks operated by multiple distinct/competing

network providers and encompasses service components that are geographically apart, orches-

tration requires (a) a marketplace of services, and (b) specialized routing algorithms. A mar-

ketplace [1, 69] acts as a ‘‘service commons,’’ a meeting ground where providers publish and

advertise the services they offer, and users acquire services based on their requirements and

have them instantiated on demand. The concept of a marketplace was also highlighted in our

own ChoiceNet project [1] where we envisioned a broader set of network services but focused

on introducing a network ‘‘economy plane’’ so as to boost competition among service providers.

The marketplace is an essential component in opening up the network infrastructure [67] so as

to develop value added services including service composition, fault-tolerance, load balancing,

energy minimization, etc., by building upon more primitive virtual network function blocks.

Once the virtual services required by the user have been determined, user traffic must be

steered along a path that starts at the source and visits the nodes where the virtual services

are implemented, in the order in which they must be applied, before reaching the destination

One variant of this routing problem, referred to as the ‘‘node-constrained service chain routing

87

problem’’ was studied in [70], and was solved by using a layered graph model on which conven-

tional routing algorithms may be applied. Another variant, ‘‘service function chaining,’’ was

considered in [71], and an algorithm that balances the length of the service function path and

the load of service function instances was presented.

In this Chapter, we consider a general version of the service-concatenation routing problem

in NFV environments where the objective is to construct a path that visits a set of nodes

where virtual services are to be performed in a specific order. Specifically, our work makes the

following contributions:

• We show that the service-concatenation routing problem in NFV may be modeled as a

shortest path tour problem (SPTP), a problem that was first studied more than forty

years ago in a different context [72, 73].

• We implement all existing algorithms for SPTP that we were able to find in the literature;

some of these were originally developed for SPTP, whereas others were developed for

related problems and we have modified or extended them to solve SPTP.

• We develop a new algorithm for solving SPTP that outperforms all SPTP algorithms that

we are aware of.

• We carry out a comprehensive experimental study to evaluate the performance of all

SPTP algorithms and identify their relative merits.

5.1 System Model

We consider an NFV environment spanning multiple network domains, possibly administered

by distinct network providers. We assume that the NFV environment is shared by a set of ser-

vice providers who compete against each other to offer network services to users. The network

services may include path/routing, data storage, data modification, data analysis, and computa-

tion services. This is not an exhaustive list and may potentially be expanded to include services

that do not fit into any of these categories, or services that will be developed to satisfy future

demands. Service providers utilize NFV abstractions and APIs to deploy multiple instances of

each service at strategic points in the network so as to better serve a geographically diverse

population of users.

We further assume that the NFV architecture includes a marketplace [1, 69] as an inte-

gral component. The marketplace may be thought of as a repository of services and network

functions that are available to users. The repository provides APIs for providers to publish

(advertise) the services they offer, and for users (or agents acting on their behalf) to obtain lists

of service offerings that are relevant to their requirements. To aid users in selecting network

88

services that best match their needs, the orchestration module of NFV uses a planner [74, 75].

In a travel industry analogy, service providers include the airlines, hotels, and rental car com-

panies, whereas travel sites such as Expedia or Travelocity manage marketplaces that include

planning and orchestration functions. These functions construct itineraries based on traveler

(user) requirements and ensure that users may access seamlessly all the services acquired across

the various flight, accommodation, and car rental providers.

An NFV marketplace planner has two main tasks [74, 75]:

• it determines the set of services/virtual functions to meet a user’s requirements, and the

order in which these services are to be applied to the user’s traffic, and

• it constructs a path from source to destination that visits virtual nodes where instances

of these services/virtual functions have been deployed.

Some of our earlier work [76, 77] demonstrates a complete lifecycle of the network services

on a GENI slice [78], starting with how the network services are described using a semantics

language and advertised in a marketplace, followed by how the services are purchased/acquired

leading up to their instantiation, and finally how the services are used by the user. In this work,

we focus on the second task above, where the objective is to direct user traffic to virtual instances

of the service functions that must be applied. Note that it is the concatenation of the services

in the order specified that accomplishes the functionality that meets the user’s requirements.

Therefore, we refer to this problem as ‘‘service-concatenation routing,’’ and we define it as:

Given an ordering of a set of services, construct a path of minimum cost from

source to destination, that traverses nodes where virtual instances of these services

reside and may be applied in the specified order.

The services repository of the NFV marketplace may use any convenient format or data

structure to represent the services offered by the various providers. Nevertheless, we assume

that the service information stored in the marketplace may be represented in a graph format

that makes it possible to apply graph algorithms to solve the service-concatenation routing

problem. This graph representation may be maintained internally by the marketplace itself and

made available to the planner. Alternatively, the marketplace may provide appropriate APIs

that allow external services to repeatedly query the repository so as to construct the graph of

services, as we consider in [74]. In the latter case, planners may be offered as competing services

external to the marketplace. Either way, we expect that the graph will be highly dynamic in

that it will have to be updated every time users acquire new services, or release services they

no longer need.

Note that the planner of a travel site takes into consideration flights from multiple airlines,

many of which offer competing flights between the same pairs of cities, as well as multiple

89

hotels or rental car facilities within a given city. Similarly, the planner of an NFV marketplace

must consider virtual services/functions from multiple providers, including virtual operators

who may lease capacity from the same physical infrastructure. Consequently, the planner takes

as input a topology that is a superset of the topologies representing the underlying networks. In

particular, nodes and edges in the topology represent virtual entities rather than physical ones.

For instance, a physical node may include multiple virtual nodes, each virtual node operated

by a different service provider deploying a variety of virtual function instances. The graph

may also include parallel edges between nodes that represent competing path services. Such a

topology is expected to be significantly larger than the underlying physical network topology,

hence path finding algorithms must scale to large graph sizes.

As a final note, we assume that the planner has knowledge of the complete topology (graph)

of virtual nodes and services, and uses it to solve the service-concatenation routing problem by

applying a path finding algorithm. If the NFV architecture is deployed in a software defined

networking (SDN) environment, the planner may be implemented as an application of the SDN

controller and use the latter’s capabilities to construct and maintain this topology. However,

our work does not require an SDN environment and applies to any architecture in which the

planner has the means to discover and update the complete topology graph.

5.2 The Shortest Path Tour Problem (SPTP)

Consider the SPTP problem first studied in [72, 73]:

Problem 5 (SPTP) Given

• a graph G = {N , E} where N is the set of nodes and E is the set of edges,

• a source node s and a destination node d, s, d ∈ N , and

• K non-empty ordered node sets S1, S2, . . . , SK , such that Si ⊂ N , i = 1, . . . ,K,

find the shortest path from s to d under the constraint that the path visit one node ni ∈ Si of

every set Si, i = 1, . . . ,K, in the given order, i.e., n1, n2, . . . , nK .

We note that whenever each set Si is a singleton (i.e., Si = {ni}, i = 1, . . . ,K), SPTP

reduces to loose source routing as originally specified by the IP protocol [79]. Similarly, whenever

there is exactly one node set (i.e., K = 1), SPTP becomes similar to anycasting [80].

Recall now the service routing problem we introduced in the previous section, and let K

denote the number of virtual services that must be applied to the user’s traffic. Without loss of

generality, assume that the virtual services are labeled 1, 2, . . . ,K, in the order in which they

90

must be applied. Finally, let Si, i = 1, . . . ,K, denote the set of nodes where instances of virtual

service i reside. Since a path that solves SPTP visits a node for each virtual service, and in the

order in which services must be applied, and is the minimum-cost one among all such paths,

then it is also a solution to the service-concatenation routing problem defined in the previous

section.

Several variants of SPTP have been studied in the literature. The constrained shortest path

tour problem (CSPTP) [81] is defined as SPTP with the additional constraint that the path not

include repeated edges; whereas SPTP is solvable in polynomial time, this constraints makes the

problem NP-Hard. Another variant arises in travel planning applications [61], whereby there

exist additional constraints related to the minimum amount of time that a traveler must stay

at each node (city). The introduction of such constraints to SPTP converts the problem from

polynomial time solvable to pseudo-polynomial [82]. A related problem whose objective is to find

the shortest elementary path that visits all nodes in a set S in an arbitrary order (i.e., the input

does not include a fixed order on the nodes to be visited) is NP-Complete (NPC) [83]. Relaxing

the previous problem to include paths which are not elementary still places the problem in

class NPC [83]. Variants of SPTP have also been defined under the class of vertex constrained

shortest path (VCSP) problems [84].

5.3 Algorithms for SPTP

We now consider the basic SPTP problem we defined in the previous section, and we review

and classify all existing algorithms for the problem that we were able to find in the literature.

We also present a new algorithm for SPTP that, as we will show later, outperforms earlier

algorithms.

5.3.1 Path Tour Decomposition

Let us define S0 = {s} and SK+1 = {d}. It has been observed that SPTP may be decomposed

into K+1 sub-problems, such that the k-th sub-problem, k = 0, . . . ,K, consists of constructing

shortest paths from each node in Sk to each node in Sk+1.

When SPTP first appeared in the literature [72, 73], it was applied to telephone and trans-

portation networks with large, sparse topologies. Consequently, single source shortest path

(SSSP) algorithms were used to solve the SPTP sub-problems. More recently, SPTP has found

applications in warehouse management and control of robot motions [85,86], where the graphs

are small but dense. Therefore, researchers and developers have adopted all pair shortest path

(APSP) algorithms to solve the sub-problems of SPTP, as these are more efficient for this type

of graphs.

91

A third option for solving each subproblem of SPTP is to apply algorithms for the multiple

pairs shortest path (MPSP) problem. MPSP [87--89] has a range of applications, from multi-

commodity network problems to airline network problems, and is concerned with computing

shortest paths for a subset of all node pairs in the network. By using algebraic shortest path

algorithms [87--89], it is possible to reduce significantly unnecessary computations of either

APSP algorithms (which construct paths for all node pairs) or SSSP algorithms (which must

be executed multiple times, once with each node as the source node).

Therefore, we have three types of decomposition (DC) algorithms for SPTP:

• DC-APSP: The algorithm presented in [86] uses APSP to solve each subproblem of SPTP.

• DC-MPSP: Although to the best of our knowledge there has been no algorithm for SPTP

that uses MPSP for the subproblems, based on our observations above, we have imple-

mented two such algorithms:

– DC-MPSP-1: This implementation uses the MPSP algorithm in [87] to compute each

sub-path of the shortest tour between the source and destination nodes.

– DC-MPSP-2: In this version, we apply the MPSP algorithm in [88] at each interme-

diate stage1.

• DC-SSSP: We have implemented two algorithms that use SSSP:

– DC-SSSP-1: This is a straightforward application of Dijkstra’s algorithm to find

shortest paths from every node of Sk to every node of Sk+1. This algorithm is similar

to the one employed in [71] in the context of virtual network function deployment

across datacenters, and has also been discussed in [87].

– DC-SSSP-2: The algorithm in [73] also uses SSSP at each stage. It differs from

the straightforward algorithm DC-SSSP-1 in that it considers a virtual node v that

connects to each node in Sk with zero-cost edges, and applies Dijkstra’s algorithm

to find the shortest paths from v to each node in Sk+1. Hence, it is more efficient

since it makes only one call to Dijkstra’s algorithm in each stage.

Let T [] be a (K + 2) × N array such that T [k, n] denotes the cost of the shortest path

tour from the source node s to a node n ∈ Sk; this quantity is equal to infinity if n 6∈ Sk.

Also, let D(i, j) denote the cost of the shortest path from node i to node j in the network

graph. Then, the dynamic programming pseudocode of Algorithm 3 describes the operation of

a generic decomposition algorithm for the SPTP problem; the only algorithm-specific operation

1We have also implemented the MPSP algorithm in [89] for the SPTP, but it is significantly less efficient
than DC-MPSP-2 and hence we do not consider it in this study.

92

is the computation of the cost D(i, j) of the shortest path between nodes i and j, which may

be based on the APSP, MPSP, or SSSP algorithms.

Initialization:
T [k, n] = ∞, k = 0, . . . ,K + 1, ∀ n 6= s
T [0, s] = 0
for k = 0, . . . ,K do

for i ∈ Sk do
for j ∈ Sk+1 do

D(i, j) = cost of shortest path from i to j using APSP, MPSP, or SSSP
algorithms
T [k + 1, j] = min{T [k, i] +D(i, j), T [k + 1, j]}

end

end

end
Algorithm 3: Generic decomposition algorithm for SPTP

5.3.2 Layered Graph Model

A different approach that has been used in the literature for tackling SPTP is to augment the

network graph in a way that makes it possible to apply conventional shortest path algorithms to

construct the path tour of minimum cost between the source and destination nodes. Specifically,

the studies in [70, 85] create a layered graph of K + 1 layers, each layer consisting of an exact

copy of the original network topology. Nodes in adjacent layers are connected with new edges

such that any path from the source node (at the lowest layer) to the destination node (at the

highest layer) satisfies the path tour constraints. Then, an application of Dijkstra’s algorithm

is sufficient to determine the minimum-cost path tour.

We have, therefore, implemented this algorithm:

• LG: The algorithm described in [85] to solve SPTP on a layered graph; a similar layer

graph model is also discussed in [70], although an algorithmic description is not provided.

5.3.3 Depth First Tour Search: A New Algorithm for SPTP

We now present a new algorithm for the SPTP problem that eliminates the exploration of nodes

in the graph (with respect to computing shortest path to them), whenever such exploration is

determined that it will not lead to a better path tour. As a result, our algorithm is quite effi-

93

cient, and we will present simulation results to demonstrate that it outperforms the algorithms

discussed above.

Our algorithm operates similar to Dijkstra’s algorithm, but with important enhancements

and modifications to make it more efficient and ensure that the SPTP constraints on the path

tour are satisfied. The algorithm does not decompose SPTP in subproblems, nor does it employ

a layered graph; it operates on the given network graph without modifying it. Specifically, it

starts with the source node s and explores nodes using the same criteria as Dijkstra’s algorithm,

until it reaches the destination node; at that time, the algorithm is guaranteed to have found

the shortest path tour that solves the given instance of SPTP. Unlike Dijkstra’s algorithm that

maintains a single set of encountered nodes (i.e., nodes for which the shortest path from the

source has been determined and will not change in the future), our algorithm maintains K + 1

sets Fi, i = 1, . . . ,K + 1, of encountered nodes: the first K sets Fi, i = 1, . . . ,K are associated

with reaching nodes in the K sets Si, respectively, and the last set is for reaching the destination

node d. Therefore, a node x may be in one or more sets Fi depending on which part of the tour

it has been encountered; for instance, x may be encountered as part of one tour from s to the

first set S1, but it may also be encountered as part of the same or another tour from S1 to 2.

The operation of the algorithm may be summarized as follows:

1. Initially, all the encountered sets are initialized to ∅ except F1 which is initialized to

contain the source node, i.e., F1 = {s}, Fi = ∅, i = 2, . . . ,K + 1.

2. At each iteration l of the algorithm, the node x with the minimum cost is selected. Un-

like Dijkstra’s algorithm, node x is selected among all the nodes that have not been

encountered as part of at least one set Fi. This operation is implemented efficiently by

maintaining K + 1 heaps, each associated with one of the tour stages, and then selecting

the minimum cost node among all the heaps. Also note that this feature allows the algo-

rithm to make forward progress towards the destination by continuing towards node set

Si+1 without waiting for all nodes in node set Si to be explored first.

3. Our implementation keeps track of which part of the tour node x has been encountered,

such that if it is part of the tour from set Si to set Si+1, then node x will now be included

in set Fi+1. Also, the cost of each neighbor y of x is updated appropriately (i.e., as in

Dijkstra’s algorithm), as long as y has not been encountered as part of at least one set Fi.

4. If node x is the last node of some set Si to be explored (i.e., partial tours that reach all

nodes in Si have now been constructed), then we disregard any partial tours that have

only reached nodes in sets Si−1, . . . , S1. Any such partial tours will have higher cost once

extended to reach nodes in Si, hence they cannot be part of the shortest path tour.

5. The algorithm iterates from Step 2 above, until the destination node d has been reached.

94

Since this algorithm makes progress towards the destination beyond a set Si without waiting

until all nodes of that set have been explored, it bears some similarities with depth first search;

hence, we will call our algorithm depth first tour search (DFTS)2.

Let T [] be a (K + 1)×N array such that T [k, n] denotes the cost of the shortest path tour

from the source node s to a node n ∈ N . Let Cxy be the cost of the directed edge from x to y,

where x, y ∈ N . Algorithm 4 provides a pseudocode description of the DFTS algorithm.

Initialization:
F1 = {s}
Fk = ∅, k = 2, ...,K + 1
T [k, n] = ∞, k = 1, ...,K + 1
T [1, s] = 0
I = 1
while d /∈ FK+1 do

T [i, w] = min{T [i, v] + Cvw} s.t. v ∈ Fi, w /∈ Fi, v /∈ Si, i = I, ...,K + 1
if w /∈ Si then

Fi = Fi ∪ {w}
else

Fi = Fi ∪ {w}
Fi+1 = Fi+1 ∪ {w}

end
if Fi ∩ Si = Si then

I = i+ 1
end

end
Algorithm 4: The DFTS algorithm for SPTP

We have the following result regarding the correctness of DFTS.

Theorem 5.3.1 For every connected directed graph with nonnegative edge costs, DFTS cor-

rectly constructs the shortest path tour from the source s to the destination d.

Proof. Let L[k, n] be the true shortest path tour from the source node s to a node n ∈ N . The

proof is by induction and follows the proof of correctness of Dijkstra’s algorithm.

Base Case: T [1, s] = L[1, s] = 0.

Inductive Hypothesis: All previous found shortest path tours are correct, i.e., ∀ n ∈ N r :

T [k, n] = L[k, n].

2Note also that the decomposition algorithms are akin to breadth first search, since they explore all nodes of
a set Si before proceeding to explore nodes in set Si+1

95

Table 5.1: Time Complexity

Algorithm Complexity

DC-APSP [86] O(N3) + O(KM2)

DC-MPSP-1 [87] O(N3) + O(KM2)

DC-MPSP-2 [88] O(N3) + O(KM2)

LG [85] O(KN2) +O(KElog(KN))

DC-SSSP-1 [71] O(2ElogN) +O((K − 1)MElogN)

DC-SSSP-2 [73] O((K + 1)ElogN)

DFTS (this work) O((K + 1)ElogN) +O((K + 1)N)

Current Iteration: We pick an edge (v∗, w∗) which is the minimum cost edge such that

v∗ ∈ Fi but v
∗ /∈ Si and w∗ /∈ Fi, and we let:

T [k, w∗] = T [k, v∗] + Cv∗w∗ = L[k, w∗] + Cv∗w∗

We distinguish two cases.

Case 1: If w∗ ∈ Si we add w∗ to both Fi and Fi+1. Since w∗ is present in Si we are now

crossing the frontier of Si and we need to start exploring nodes in Si+1, so we add w∗ to Fi+1.

Case 2: If w∗ /∈ Si we add w∗ to Fi. Since w∗ is not present in Si we are not yet crossing

the frontier of Si corresponding to this node and we need to continue exploring nodes in Si, so

we add w∗ to Fi.

We now note that every path tour from s to w∗ must have cost ≥ L[k, w∗]+Cv∗w∗ , therefore

this is the cost of any shortest path tour. To show this, let us assume that there is a tour P

which has cost < L[k, w∗] + Cv∗w∗ . This tour has to cross from some node explored in Fi to

nodes not explored in Fi or nodes not explored in Fi+1. If it does, then the edge of cost Cv∗w∗

selected by the algorithm at this iteration is not the minimum-cost edge, a contradiction.

5.3.4 Algorithm Complexity

In Table 5.1, we summarize the running time complexity of the seven algorithms we described

earlier in this section; we evaluate experimentally the algorithms in the following section.

The DC-APSP [86], DC-MPSP-1 [87], and DC-MPSP-2 [88] algorithms internally use three

nested for loops to calculate the cost D(i, j) of shortest paths between nodes in adjacent node

sets; this computation takes time O(N3), where N is the number of nodes in the graph, and is

shown as the first term of the complexity expression in the top three rows of Table 5.1. The

96

second term in these complexity expressions corresponds to the time it takes to carry out the

dynamic programming Algorithm 3. Therefore, APSP and MPSP are efficient when the graph

size is not very large, the node sets Si are large such that it is necessary to compute paths for

a substantial fraction of source-destination pairs, and the graph is strongly connected.

The LG [85] approach first constructs a modified layered graph which has KN nodes and

KE edges; this takes time O(KN2), where K is the number of layers (node sets). It then applies

Dijkstra’s algorithm just once on this graph, and the time for this computation is represented

by the second term in the appropriate row of Table 5.1.

For the DC-SSSP-1 algorithm, the first expression in the table denotes the use of Dijkstra’s

algorithm once from s to reach the nodes in S1, and a second time from d to reach the nodes in

SK , if we reverse the direction the edges. The second expression corresponds to the application

of Dijkstra’s algorithm a further (K−1)×M times to find the shortest cost distance from every

node in Si to every node in Si+1, i = 1, . . . ,K − 1, where M = max{|Si|}. This approach works

well for problem instances in which each node set Si is relatively small compared to the whole

graph. DC-SSSP-2 applies Dijkstra’s algorithm (K+1) times for finding the shortest cost path

from any node in Si to every node in Si+1, i = 0, . . . ,K +1. DFTS applies Dijkstra’s algorithm

just once, but every edge may potentially be traversed (K + 1) times (first term in the table),

and at each iteration it selects the shortest cost edge among (K + 1) sets (second term). To

fairly compare the last four algorithms, we have implemented them using binary min-heaps,

hence the logarithmic terms in the expressions shown in Table 5.1.

5.4 Experimental Study and Results

We now present simulation results to evaluate the seven algorithms we described in Section 5.3,

namely, DC-APSP, DC-MPSP-1, DC-MPSP-2, DC-SSSP-1, DC-SSSP-2, LG, and DFTS. We

evaluate the algorithms on random graphs generated using BRITE [64], a universal topology

generator. We obtained undirected graphs by configuring BRITE to generate AS-Level Barabasi

models; we then converted these graphs into directed ones that we used in our experiments. In

generating random instances for the SPTP problem, we considered the following parameters

and varied their values as described below:

• The number N of nodes in the graph was varied from 1000 to 5000 in increments of 1000.

• The average nodal degree ∆ of the graph was set to an integer in the range [2, 5].

• The number K of node sets in the tour took integer values in the interval [1, 4]; recall

that in the service routing problem, K represents the number of services to be applied to

the user’s traffic.

97

 0

 0.5

 1

 1.5

 2

 0 1000 2000 3000 4000 5000

T
im

e
 (

s
e
c
)

N

Figure 5.1: Running time comparison, most efficient algorithms, ∆ = 3,K = 2,M = 5

• The number M of nodes in each node set was varied from 5 to 25 in increments of 5.

Since all algorithms produce the same solution to any instance of SPTP, our evaluation

focuses on one metric, running time. We note that the orchestration process in an NFV envi-

ronment must operate in real time and scale to large network topologies with many services

and multiple virtual instances of each service. Hence, the various figures in this section explore

the running time of the algorithms as a function of the various parameters listed above. With

two exceptions that we discuss shortly, each data point in these figures is the average running

time over 10,000 problem instances generated from the stated values of the parameters. All ex-

periments were performed on a HPC cluster that included three processor families, Intel Xeon

E5520 (2.27GHz), E5620 (2.40GHz) and E5540 (2.53GHz), all with four cores, each core having

4GB of DRAM and 8KB of cache.

5.4.1 Overall Comparison

Figures 5.1 and 5.2 plot the running time of the seven algorithms as a function of the number

N of nodes in the network. For the problem instances used in these figures, the nodal degree

was set to ∆ = 3, the number of node sets was K = 2, and the number of nodes in each node

set was M = 5. Our first observation is that the four algorithms (DFTS, LG, and the two

98

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000

T
im

e
 (

s
e
c
)

N

DC-MPSP-1

DC-APSP

DC-MPSP-2

Figure 5.2: Running time comparison, least efficient algorithms, ∆ = 3,K = 2,M = 5

DC-SSSP algorithms) shown in Figure 5.1 take less than two seconds on average to solve these

problem instances, whereas the other three (DC-APSP and the two DC-MPSP algorithms),

shown in Figure 5.2 are two-to-three orders of magnitude slower - hence, it was necessary to

separate them in a different figure. Furthermore, each data point in Figure 5.2, as well as in the

similar Figure 5.4 discussed shortly, represents the average of only 50 problem instances, rather

than the 10,000 that we used for all other figures. This value was selected as it allowed us to

obtain each data point in no more than 24 hours for the largest problem instance considered

in these two figures. Another interesting observation from Figure 5.1 is that no data points are

shown for the LG algorithm and networks with more than N = 3000 nodes. Recall that the LG

algorithm constructs a graph of K layers of the original network topology. Consequently, as

the network size grows, it is memory, not running time, that becomes the limiting factor, and

we were not able to solve larger instances with the LG algorithm in the HPC cluster available

to us.

Figures 5.3 and 5.4 are similar to the ones above but present results for instances generated

with ∆ = 5, K = 4, and M = 25. Since the problem instances are larger in this case, the running

times are higher than the corresponding algorithms in the previous two figures. Similarly, in

both sets of figures, the running time of a particular algorithm increases with the network size

99

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000

T
im

e
 (

s
e
c
)

N

DFTS

DC-SSSP-2

DC-SSSP-1

Figure 5.3: Running time comparison, most efficient algorithms, ∆ = 5,K = 4,M = 25

N .

From the four figures, it is clear that the three least efficient algorithms (DC-APSP, DC-

MPSP-1, DC-MPSP-2) do not scale well and are not appropriate for real-time operation. Also,

since LG replicates the network topology K times, its memory requirements become a challenge

for larger problem instances. Finally, as Figure 5.3 illustrates, the DC-SSSP-1 algorithm, which

applies Dijkstra’s algorithm multiple times at each stage, becomes one order of magnitude slower

than the two best algorithms, DFTS and DC-SSSP-2, at larger problem instances considered

here.

We have observed the relative behavior illustrated in the four figures above across a wide

range of experiments. Therefore, in the remainder of this section we will explore further only the

behavior of the two best algorithms, the DC-SSSP-2 algorithm of [73], and the new algorithm

we developed, DFTS.

5.4.2 Comparison of DC-SSSP-2 and DFTS

Let us now investigate the performance of the two algorithms as a function of the parameters

∆,K, andM . Figures 5.5 and 5.6 plot the running time of the DC-SSSP-2 and DFTS algorithms

by varying the nodal degree ∆ of the graph and keeping the values of the other parameters

100

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000

T
im

e
 (

s
e
c
)

N

DC-MPSP-1

DC-APSP

DC-MPSP-2

Figure 5.4: Running time comparison, least efficient algorithms, ∆ = 5,K = 4,M = 25

fixed. Each figure includes two sets of plots, one for networks with N = 1000 nodes and one

with N = 5000. In the problem instances of Figure 5.5, the path tour must visit a node from

just one set (K = 1) that includes five nodes (M = 5); whereas for Figure 5.6 the problem

instances were generated with K = 4,M = 25.

As the average nodal degree ∆ increases, the size of the network (in terms of the number

of edges) grows, hence the running of the two algorithms also increases; however, as we can

observe from the two figures, this increase in running time is rather moderate. Similarly, the

running time curves for the larger network (N = 5000) sit higher than those for the smaller

network (N = 1000) in the same figure (i.e., for the same values of the other parameters); this

behavior is also expected and is due to the increase in network size and consistent with the

complexity results in Table 5.1. Also, as K and M increase, the path tour must traverse a

larger number of node sets, and there are more options (in terms of number of nodes, M) to

be explored, hence the running time values in Figure 5.6 are higher than for the corresponding

curves in Figure 5.5.

Finally, we make two important observations. First, the running time of either algorithm

does not exceed one second even for the largest of the problem instances we present in the

above two figures (i.e., instances with N = 5000 nodes, nodal degree ∆ = 5, K = 5 node sets,

101

 0

 0.02

 1 2 3 4 5 6

T
im

e
 (

s
e
c
)

Figure 5.5: Running time vs nodal degree, K = 1,M = 5

and M = 25 nodes per set). Therefore, we conclude that these two algorithms scale well and

are suitable for real-time applications. Furthermore, our new algorithm, DFTS, consistently

outperforms the next best algorithm, DC-SSSP-2, across the range of parameter values that we

investigated.

The next two figures, 5.7 and 5.8, are similar to the ones we just discussed but plot the

running time of the DFTS and DC-SSSP-2 algorithms by varying the number K of sets in a

tour while keeping the other parameters fixed. With a larger number of sets, the path tour

must traverse more nodes, hence it takes longer time to explore all the options to construct the

tour; this intuition is confirmed by the results in the two figures. As before, we also observe

that our DFTS algorithm outperforms DC-SSSP-2, and that its running time does not exceed

one second, even for the largest instances.

The last pair of figures, 5.9 and 5.10, compare the running time of the two algorithms as

a function of the number of set elements in a set, with all other parameters fixed. All our

observations above regarding the relative and absolute performance of the algorithms are also

valid for these sets of results. However, we also observe that the running time of either algorithm

is largely insensitive to the size M of the node sets. This is mainly due to the way the two

algorithms operate. As we mentioned in Section 5.3, DC-SSSP-1 applies Dijkstra’s algorithm

102

 0

 0.025

 0.05

 0.075

 1 2 3 4 5 6

T
im

e
 (

s
e
c
)

 1

Figure 5.6: Running time vs nodal degree, K = 4,M = 25

once to find the shortest path from any node in set Si to any node in set Si+1; as a result, the

running time is not affected much by the size of the node sets. Similarly, our DFTS algorithm

does not wait until all nodes in a set have been explored, hence, its performance is relatively

independent of the set size.

There are 400 unique combinations of the values of parameters N,∆,K, and M that we

considered in our experiments (refer to the top of this section). In Table 5.2, we list the improve-

ment in running time of our DFTS algorithm over the next best algorithm, DC-SSSP-2, for

problem instances generated with each of these 400 parameter value combinations. As we can

see, our algorithm runs faster than DC-SSSP-2 in all but 10 combinations which are highlighted

in bold in the table. Across all problem instances, our algorithm achieves an improvement in run-

ning time averaging 13.62%. Overall, these results demonstrate that the new DFTS algorithm

exhibits superior performance compared to existing algorithms, it scales well and is suitable for

real-time applications.

103

 0

 0.025

 0.05

 0.075

 0 1 2 3 4 5
Number of Sets

T
im

e
 (

s
e
c
)

 1

Figure 5.7: Running time vs number of sets, ∆ = 3,M = 15

 0

 0.025

 0.05

 0.075

 0 1 2 3 4 5
Number of Sets

T
im

e
 (

s
e
c
)

 1

Figure 5.8: Running time vs number of sets, ∆ = 5,M = 15

104

 0

 0.025

 0.05

 0.075

 0 5 10 15 20 25 30
Number of Set Elements

T
im

e
 (

s
e
c
)

DFTS, N=1000
DC-SSSP-2, N=1000

 0.6

 0.8

 1

 1.2
DFTS, N=5000

DC-SSSP-2, N=5000

Figure 5.9: Running time vs number of set elements, ∆ = 3,K = 4

 0

 0.025

 0.05

 0.075

 0 5 10 15 20 25 30
Number of Set Elements

T
im

e
 (

s
e
c
)

DFTS, N=1000
DC-SSSP-2, N=1000

 0.2

 0.6

 0.8
DFTS, N=5000

DC-SSSP-2, N=5000

Figure 5.10: Running time vs number of set elements, ∆ = 5,K = 1

105

Table 5.2: Running Time Improvement (in %) of DFTS Relative to DC-SSSP-2

K = 1 K = 2 K = 3 K = 4

N ∆ M = 5 M = 10 M = 15 M = 20 M = 25 M = 5 M = 10 M = 15 M = 20 M = 25 M = 5 M = 10 M = 15 M = 20 M = 25 M = 5 M = 10 M = 15 M = 20 M = 25

1000 2 26.51 23.83 28.70 31.73 30.56 25.37 19.48 20.74 24.23 20.91 23.00 20.14 18.45 100.00 16.23 16.33 14.46 -1.16 14.13 11.51

3 21.85 24.77 24.19 25.16 25.56 19.77 13.38 19.89 8.75 9.38 17.57 16.71 15.82 15.94 19.10 14.70 6.68 17.01 14.30 11.20

4 22.03 15.69 20.84 13.91 18.73 11.79 8.30 8.43 13.58 8.97 9.51 -0.13 9.29 9.90 9.92 -5.41 2.86 -10.65 -8.03 3.11

5 17.51 18.58 16.87 19.77 19.38 13.94 7.42 15.45 6.03 10.21 11.72 7.78 10.62 7.53 7.06 7.56 6.50 6.04 5.90 5.04

2000 2 24.87 26.03 29.13 27.82 29.09 19.63 23.31 19.02 24.36 20.83 16.01 15.63 14.10 16.02 15.94 14.25 11.36 13.07 11.67 14.21

3 18.65 20.32 9.57 15.60 18.02 14.10 11.90 12.01 12.87 12.50 12.40 14.22 10.72 8.98 9.34 10.22 7.42 5.41 6.13 6.27

4 17.54 19.41 6.00 15.43 16.43 8.67 10.89 12.44 12.22 12.51 10.87 8.41 8.97 8.47 -0.76 9.95 6.52 10.39 5.36 5.91

5 15.69 14.98 8.54 16.75 17.56 1.76 12.07 10.95 11.61 12.08 14.10 12.37 6.81 8.90 9.24 7.83 5.17 6.76 -5.60 -3.17

3000 2 18.35 20.83 19.72 20.10 20.72 7.49 14.93 11.72 14.73 15.55 14.96 11.06 10.60 11.72 11.30 12.98 9.59 8.94 8.21 21.75

3 20.49 17.35 17.24 25.33 18.74 4.67 26.96 11.08 11.44 16.87 10.77 9.37 8.29 8.51 8.61 10.04 6.73 6.55 6.73 4.43

4 15.48 15.43 15.42 14.83 14.98 3.44 9.69 10.48 8.61 9.72 0.37 7.49 7.81 7.47 10.65 8.55 5.92 10.09 5.30 5.21

5 16.20 15.08 15.06 20.35 17.05 11.14 10.39 7.08 14.00 14.52 14.21 11.39 10.98 10.39 5.91 21.84 -5.53 3.66 -4.29 4.09

4000 2 21.25 20.17 14.16 19.16 23.08 21.27 15.02 14.07 16.62 16.40 14.15 11.72 10.44 11.76 12.63 13.20 10.40 7.30 12.23 8.03

3 17.86 17.81 17.10 8.56 17.61 12.88 12.30 11.71 10.61 11.97 12.07 7.87 8.27 8.37 0.49 9.91 6.88 6.66 6.45 10.68

4 23.93 18.24 21.14 21.59 21.13 15.20 15.37 14.10 15.36 10.70 9.18 10.67 11.65 15.33 12.89 10.63 10.96 21.37 9.29 14.22

5 18.70 12.95 14.80 13.55 14.50 14.01 8.73 6.87 9.42 9.47 7.79 19.59 19.75 4.23 6.42 5.24 5.09 8.95 4.86 4.38

5000 2 21.44 21.83 23.67 24.06 24.58 18.38 18.02 18.51 18.95 18.42 15.14 13.71 8.31 15.52 14.16 14.14 12.19 12.24 12.15 8.32

3 17.39 14.04 15.66 16.15 16.88 12.16 10.72 10.97 9.74 10.66 10.73 8.26 8.16 7.70 7.34 9.50 7.06 6.14 5.87 6.23

4 22.16 21.45 22.13 22.43 22.87 17.62 13.77 14.53 16.05 16.01 14.00 11.13 11.80 11.27 11.02 13.54 9.01 8.93 8.57 8.45

5 19.58 24.37 20.19 20.89 21.06 15.95 15.97 16.45 16.96 16.26 13.31 12.41 12.98 14.69 14.08 11.53 9.69 11.33 10.85 11.37

106

5.5 Concluding Remarks

The service-concatenation routing problem arises as an integral part of the orchestration pro-

cess in NFV architectures. We have shown that service-concatenation routing is equivalent to

the shortest path tour problem (SPTP). Most existing algorithmic approaches to SPTP work

well only for specific classes of problem instances, and do not scale well to the large instances

that arise in NFV applications. We have developed a new algorithm that applies several novel

modifications to Dijkstra’s algorithm to construct the shortest path tour efficiently. Our ex-

perimental study has demonstrated that our algorithm scales well to large instances and is

appropriate for real-time NFV applications across a wide range of graphs.

107

Chapter 6

Summary and Future Work

The main contribution of this research has been on two fronts:

• Developing a framework where the principles of Choicenet can be realized:

– A semantics language which provides a level playing field for services to be compared

and composed

– A economy plane protocol which defines the interactions between the various entities

of ChoiceNet, essential to signing the contract for using the service

– A mechanism for extracting services selectively from the Marketplace based on the

user request

• Developing three complementary Planners which perform Network Service Orchestration

– The first Planner presents the user with k composed services using the services ad-

vertised in a Marketplace, which supports combining multiple service functionalities

into one service advertisement.

– The second Planner presents the user with multiple flavors of composed services.

∗ Non dominated and resource constrained composed services

∗ Non dominated composed services

∗ Resource constrained k composed services

∗ k composed services

The composed services returned by the Planner is used to perform in-advance path

reservation.

– The third Planner presents the users with a composed service by solving the shortest

path tour problem

108

We have showed how all the components developed in this research fit together to accom-

plish the goal of ‘‘Innovation” by enabling ‘‘Choice” in the Future Internet Design. We have

performed extensive simulation and obtained insightful results which show the framework and

the Planners work efficiently.

6.1 Future Work

In this work the Planners were designed to find optimal solutions for the user by performing

orchestration of services, which were designed to run on a predetermined set of network nodes.

This work can be extended in the following ways:

• Service Placement: We envision a Planner being part of the Network design. This Plan-

ner works in developing optimal Network topologies which aids the Provider in placing

network services at strategic points based on user preferences and historical data. The

goals of the Planner which tries to find the optimal composed service for the user may or

may not be aligned with the goals of the Planner which tries to build optimal network

topologies by placing services prudently.

• Optimality Gap: The Planners should be able to provide the ‘‘Choice” of optimal vs

approximate solutions to the user. The trade-off is the running time to find the optimal

solution vs the optimality gap between the approximate and the optimal solution. For the

resource constrained single source shortest path problem, Lagrangian Relaxation methods

and preprocessing can lead to improvements in both time and space. Similarly, for the

pareto optimal paths problem the trade-off is the complete set of pareto paths vs the

subset of the pareto paths, using one attribute which is a weighted average of all the

attributes provides the subset of pareto paths very quickly, assuming ratio restricted

lengths for the various attributes also helps in finding the pareto set quickly.

• k-connectivity: Developing a new Planner which can exploit the graph structure in

particular the k-connectivity might be beneficial in further increasing the efficiency. For

small values of k we can divide the graph into k sub-graphs and run our Planner on these

sub-graphs and build the intelligence in the Planner to combine these results.

109

REFERENCES

[1] Tilman Wolf, James Griffioen, Kenneth L. Calvert, Rudra Dutta, George N. Rouskas,

Ilya Baldin, and Anna Nagurney. Choicenet: Toward an economy plane for the internet.

SIGCOMM Comput. Commun. Rev., 44(3):58--65, July 2014.

[2] A.C. Babaoglu and R. Dutta. A verification service architecture for the future internet. In

Computer Communications and Networks, 2013. ICCCN 2013. Proceedings.22nd Interna-

tional Conference on, 2013.

[3] Sylvia Ratnasamy, Scott Shenker, and Steven McCanne. Towards an evolvable internet

architecture. SIGCOMM Comput. Commun. Rev., 35(4):313--324, August 2005.

[4] Vytautas Valancius, Nick Feamster, Ramesh Johari, and Vijay Vazirani. Mint: A market

for internet transit. In Proceedings of the 2008 ACM CoNEXT Conference, CoNEXT ’08,

pages 70:1--70:6, New York, NY, USA, 2008. ACM.

[5] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,

1:269--271, 1959.

[6] A. W. Brander and M.C. Sinclair. A comparative study of k-shortest path algorithms. In

Proceedings of the 11th UK Performance Engineering Workshop, September 1995.

[7] S. Chen and K. Nahrstedt. An overview of quality of service routing for next-generation

high speed networks: Problems and solutions. IEEE Network, 12(6):64--79, Novem-

ber/December 1998.

[8] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast routing for multimedia

communication. IEEE/ACM Transactions on Networking, 1(3):286--292, June 1993.

[9] Mehmet Onur Ascigil and Ken Calvert. Implications of source routing. In Proceedings of

the 2012 ACM Conference on CoNEXT Student Workshop, CoNEXT Student ’12, pages

11--12, New York, NY, USA, 2012. ACM.

110

[10] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. Pathlet routing. In Pro-

ceedings of the ACM SIGCOMM 2009 Conference on Data Communication, SIGCOMM

’09, pages 111--122, New York, NY, USA, 2009. ACM.

[11] Karthik Lakshminarayanan, Ion Stoica, and Scott Shenker. Routing as a service. Technical

Report UCB/CSD-04-1327, EECS Department, University of California, Berkeley, 2004.

[12] Landon P. Cox and Brian D. Noble. Samsara: Honor among thieves in peer-to-peer storage.

In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP

’03, pages 120--132, New York, NY, USA, 2003. ACM.

[13] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin Vahdat. Sharp: An

architecture for secure resource peering. In Proceedings of the Nineteenth ACM Symposium

on Operating Systems Principles, SOSP ’03, pages 133--148, New York, NY, USA, 2003.

ACM.

[14] Sebastian Angel and Michael Walfish. Verifiable auctions for online ad exchanges. In

Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13,

pages 195--206, New York, NY, USA, 2013. ACM.

[15] Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and Bernardo A. Huberman. Tycoon:

An implementation of a distributed, market-based resource allocation system. Multiagent

Grid Syst., 1(3):169--182, August 2005.

[16] Rachel Singer Gordon. Understanding web services (book). Library Journal, 128(2):111,

2003.

[17] Liyang Yu. A Developers Guide to the Semantic Web. Springer Berlin Heidelberg.

[18] Michael Jeronimo and Jack Weast. UPnP Design by Example: A Software Developer’s

Guide to Universal Plug and Play. Intel Press, 2003.

[19] Andre L.C. Tavares and Marco Tulio Valente. A gentle introduction to osgi. SIGSOFT

Softw. Eng. Notes, 33(5):8:1--8:5, August 2008.

111

[20] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition meth-

ods. In Proceedings of the First International Conference on Semantic Web Services and

Web Process Composition, SWSWPC’04, pages 43--54, Berlin, Heidelberg, 2005. Springer-

Verlag.

[21] Bin Xu and Sen Luo. Efficient composition of semantic web services with end-to-end qos

optimization. In Brian Blake, Liliana Cabral, Birgitta Knig-Ries, Ulrich Kster, and David

Martin, editors, Semantic Web Services, pages 345--355. Springer Berlin Heidelberg, 2012.

[22] Freddy Lcu, Eduardo Silva, and LusFerreira Pires. A framework for dynamic web services

composition. In Thomas Gschwind and Cesare Pautasso, editors, Emerging Web Services

Technology, Volume II, Whitestein Series in Software Agent Technologies and Autonomic

Computing, pages 59--75. Birkhuser Basel, 2008.

[23] S. Shanbhag and T. Wolf. Automated composition of data-path functionality in the future

internet. Network, IEEE, 25(6):8--14, Nov 2011.

[24] Manoj Vellala, Anjing Wang, George N. Rouskas, Rudra Duttai, Ilia Baldine, and Dan

Stevenson. A composition algorithm for the silo cross-layer optimization service architec-

ture. ANTS, IEEE, 2007.

[25] J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science,

17(11):712--716, 1971.

[26] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Co.,

New York, 1979.

[27] M. Ziegelmann. Constrained Shortest Paths and Related Problems. PhD thesis, Universi-

taet des Saarlandes, 2001.

[28] Y. Xiao, K. Thulasiraman, G. Xue, and A. Jttner. The constrained shortest path problem:

algorithmic approaches and an algebraic study with generalization. AKCE International

Journal of Graphs and Combinatorics, (2):63--86, December 2005.

112

[29] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2):652--673,

1998.

[30] N. Shi. k constrained shortest path problem. IEEE Transactions on Automation Science

and Engineering, 7(1):15--23, January 2010.

[31] M. Balman, E. Chaniotakisy, A. Shoshani, and A. Sim. A flexible reservation algorithm

for advance network provisioning. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (SC 2010), pages 1--11, Nov

2010.

[32] E.S. Jung, Y. Li, S. Ranka, and S. Sahni. An evaluation of in-advance bandwidth schedul-

ing algorithms for connection-oriented networks. In Proceedings of the International Sym-

posium on Parallel Architectures, Algorithms, and Networks (I-SPAN 2008), pages 133--

138, May 2008.

[33] S. Sahni, N. Rao, S. Ranka, Y. Li, E.S. Jung, and N. Kamath. Bandwidth scheduling

and path computation algorithms for connection-oriented networks. In Proceedings of the

Sixth International Conference on Networking (ICN 2007), pages 47--47, April 2007.

[34] Zbigniew Tarapata. Selected multicriteria shortest path problems: An analysis of com-

plexity, models and adaptation of standard algorithms. Int. J. Appl. Math. Comput. Sci.,

17(2):269--287, June 2007.

[35] David J. Thuente. {TWO} {ALGORITHMS} {FOR} {SHORTEST} {PATHS}

{THROUGH} {MULTIPLE} {CRITERIA} {NETWORKS}. In PETER C.C. WANG,

, Arthur L. Schoenstadt, , Bert I. Russak, , and Craig Comstock, editors, Information

Linkage Between Applied Mathematics and Industry, pages 567 -- 573. Academic Press,

1979.

[36] Pierre Hansen. Bicriterion Path Problems, pages 109--127. Springer Berlin Heidelberg,

Berlin, Heidelberg, 1980.

113

[37] Ernesto Queirs Vieira Martins. On a multicriteria shortest path problem. European

Journal of Operational Research, 16(2):236 -- 245, 1984.

[38] Joao Carlos Namorado Climaco and Ernesto Queiros Vieira Martins. A bicriterion shortest

path algorithm. European Journal of Operational Research, 11(4):399--404, 1982.

[39] Joo C. N. Clmaco, Jos M. F. Craveirinha, and Marta M. B. Pascoal. A bicriterion approach

for routing problems in multimedia networks. Networks, 41(4):206--220, 2003.

[40] Eugene L. Lawler. A procedure for computing the k best solutions to discrete optimization

problems and its application to the shortest path problem. Management Science, 18(7):401-

-405, 1972.

[41] Ernesto de Queirs Vieira Martins, Marta Margarida Braz Pascoal, Jos Luis Esteves Dos

Santos, and S. Olariu. Deviation algorithms for ranking shortest paths. International

Journal of Foundations of Computer Science, 10(3):247, 1999.

[42] H.C Joksch. The shortest route problem with constraints. Journal of Mathematical Anal-

ysis and Applications, 14(2):191 -- 197, 1966.

[43] Gabriel Y. Handler and Israel Zang. A dual algorithm for the constrained shortest path

problem. Networks, 10(4):293--309, 1980.

[44] Mordechai I. Henig. The shortest path problem with two objective functions. European

Journal of Operational Research, 25(2):281 -- 291, 1986.

[45] Arthur Warburton. Approximation of pareto optima in multiple-objective, shortest-path

problems. Operations Research, 35(1):70--79, 1987.

[46] Refael Hassin. Approximation schemes for the restricted shortest path problem. Math.

Oper. Res., 17(1):36--42, February 1992.

[47] Martin Desrochers and Francois Soumis. A generalized permanent labelling algorithm for

the shortest path problem with time windows. INFOR, 26(3):191 -- 212, 1988.

114

[48] Horst W. Hamacher, Stefan Ruzika, and Stevanus A. Tjandra. Algorithms for time-

dependent bicriteria shortest path problems. Discret. Optim., 3(3):238--254, September

2006.

[49] S. Bhat and G. N. Rouskas. On routing algorithms for open marketplaces of path services.

In 2016 IEEE International Conference on Communications (ICC), pages 1--6, May 2016.

[50] Y. P. Aneja, V. Aggarwal, and K. P. K. Nair. Shortest chain subject to side constraints.

Networks, 13(2):295--302, 1983.

[51] J. E. Beasley and N. Christofides. An algorithm for the resource constrained shortest path

problem. Networks, 19(4):379--394, 1989.

[52] I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algorithms for

the weight-constrained shortest path problem. Networks, 42(3):135--153, 2003.

[53] T.A Brown and R.E Strauch. Dynamic programming in multiplicative lattices. Journal

of Mathematical Analysis and Applications, 12(2):364 -- 370, 1965.

[54] N. Shi. K constrained shortest path problem. IEEE Transactions on Automation Science

and Engineering, 7(1):15--23, Jan 2010.

[55] Guy Desaulniers and Daniel Villeneuve. The shortest path problem with time windows

and linear waiting costs. Transportation Science, 34(3):312--319, August 2000.

[56] R. A. Guerin and A. Orda. Networks with advance reservations: the routing perspective.

In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nine-

teenth Annual Joint Conference of the IEEE Computer and Communications Societies

(Cat. No.00CH37064), volume 1, pages 118--127 vol.1, 2000.

[57] M. Balman, E. Chaniotakisy, A. Shoshani, and A. Sim. A flexible reservation algorithm

for advance network provisioning. In 2010 ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 1--11, Nov 2010.

115

[58] P.C. Fishburn. Utility Theory for Decision Making. Wiley, New York, 1970.

[59] Jacques Desrosiers, Yvan Dumas, Marius M. Solomon, and Franois Soumis. Chapter 2 time

constrained routing and scheduling. In C.L. Monma M.O. Ball, T.L. Magnanti and G.L.

Nemhauser, editors, Network Routing, volume 8 of Handbooks in Operations Research and

Management Science, pages 35 -- 139. Elsevier, 1995.

[60] Wei Wu and Qiuqi Ruan. A hierarchical approach for the shortest path problem with

obligatory intermediate nodes. In Signal Processing, 2006 8th International Conference

on, volume 4, pages --, Nov 2006.

[61] Jean-Franois Brub, Jean-Yves Potvin, and Jean Vaucher. Time-dependent shortest paths

through a fixed sequence of nodes: application to a travel planning problem. Computers

and Operations Research, 33(6):1838 -- 1856, 2006.

[62] Ning Shi, Shaorui Zhou, FanWang, Yi Tao, and Liming Liu. The multi-criteria constrained

shortest path problem. Transportation Research Part E: Logistics and Transportation

Review, 101:13 -- 29, 2017.

[63] J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science,

17(11):pp. 712--716, 1971.

[64] A. Medina, I. Matta, and J. Byers. Brite: A flexible generator of internet topologies.

Technical report, Boston, MA, USA, 2000.

[65] William B. Norton. The internet peering playbook : Connecting to the core of the internet.

2014.

[66] SDN and OpenFlow World Congress. Network Function Virtualization, updated white

paper. https: //portal.etsi.org/nfv/nfv white paper2.pdf. October 2013.

[67] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and S. Shenker.

E2: A framework for nfv applications. In Proceedings of the 25th Symposium on Operating

Systems Principles, SOSP ’15, pages 121--136, New York, NY, USA, 2015. ACM.

116

[68] A. Gember, A. Krishnamurthy, S. St. John, R. Grandl, X. Gao, A. Anand, T. Benson,

A. Akella, and V. Sekar. Stratos: A network-aware orchestration layer for middleboxes in

the cloud. CoRR, abs/1305.0209, 2013.

[69] G. Xilouris, E. Trouva, F. Lobillo, J. M. Soares, J. Carapinha, M. J. McGrath, G. Gardikis,

P. Paglierani, E. Pallis, L. Zuccaro, Y. Rebahi, and A. Kourtis. T-nova: A marketplace

for virtualized network functions. In 2014 European Conference on Networks and Com-

munications (EuCNC), pages 1--5, June 2014.

[70] A. Dwaraki and T. Wolf. Adaptive service-chain routing for virtual network functions

in software-defined networks. In Proceedings of the 2016 Workshop on Hot Topics in

Middleboxes and Network Function Virtualization, HotMIddlebox ’16, pages 32--37, New

York, NY, USA, 2016. ACM.

[71] A. M. Medhat, G. Carella, C. Luck, M-I. Corici, and T. Magedanz. Near optimal service

function path instantiation in a multi-datacenter environment. In 2015 11th International

Conference on Network and Service Management (CNSM), pages 336--341, Los Alamitos,

CA, USA, 2015. IEEE Computer Society.

[72] C. P. Bajaj. Some constrained shortest-route problems. Unternehmensforschung, 15(1):287-

-301, 1971.

[73] A. Kershenbaum, W. Hsieh, and B. Golden. Constrained routing in large sparse networks.

In IEEE International Conference on Communications,” pp. 38.14-38.18, Philadelphia,

PA, 1976.

[74] S. Bhat and G. N. Rouskas. On Routing Algorithms for Open Marketplaces of Path

Services. In Proceedings of IEEE ICC 2016, May 2016.

[75] X. Huang, S. Shanbhag, and T. Wolf. Automated service composition and routing in

networks with data-path services. In Computer Communications and Networks (ICCCN),

2010 Proceedings of 19th International Conference on, pages 1--8, Aug 2010.

117

[76] S. Bhat, R. Udechukwu, R. Dutta, and G. N. Rouskas. Inception to Application: A GENI

based prototype of an Open Marketplace for Network Services. In Computer Communica-

tions Workshops (INFOCOM WKSHPS), 2016 IEEE Conference on, April 2016.

[77] R. Udechukwu, S. Bhat, R. Dutta, and G. N. Rouskas. Language of choice: On embedding

choice-related semantics in a realizable protocol. In 2016 37th IEEE Sarnoff Symposium,

Sep 2016.

[78] Mark Berman, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao, Max Ott, Dipankar

Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni: A federated testbed for innovative

network experiments. Computer Networks, 61(0):5 -- 23, 2014. Special issue on Future

Internet Testbeds Part I.

[79] Internet Engineering Task Force. RFC 791 Internet Protocol - DARPA Inernet Programm,

Protocol Specification, September 1981.

[80] Internet Engineering Task Force. RFC 1546 -- Host Anycasting Service, November 1993.

[81] D. Ferone, P. Festa, F. Guerriero, and D. Lagan. The constrained shortest path tour

problem. Computers & Operations Research, 74:64 -- 77, 2016.

[82] S. Irnich and G. Desaulniers. Shortest Path Problems with Resource Constraints, pages

33--65. Springer US, Boston, MA, 2005.

[83] T. Ibaraki. Algorithms for obtaining shortest paths visiting specified nodes. SIAM Review,

15(2):309--317, 1973.

[84] J. E. Beasley and N. Christofides. An algorithm for the resource constrained shortest path

problem. Networks, 19(4):379--394, 1989.

[85] P. Festa. Complexity analysis and optimization of the shortest path tour problem. Opti-

mization Letters, 6(1):163--175, 2012.

118

[86] P. Festa, F. Guerriero, D. Lagan, and R. Musmanno. Solving the shortest path tour

problem. European Journal of Operational Research, 230(3):464 -- 474, 2013.

[87] I-L. Wang, E. L. Johnson, and J. S. Sokol. A multiple pairs shortest path algorithm.

Transportation Science, 39(4):465--476, 2005.

[88] B. A. Carre. A matrix factorization method for finding optimal paths through networks.

Computer Aided Design, 51(4):388--397, 1969.

[89] B. A. Carre. An elimination method for minimal-cost network flow problems. J.K.Reid

(Ed.), Large sparse sets of linear equations (Proc. I.M.A. Conf., Oxford, 1970). Academic

Press: London, 1971.

119

