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Abstract

We consider the problem of carrying IP packet traffic over a broadcast WDM network. The network operates under a
schedule that masks the transceiver tuning latency. Variable length IP packets are segmented at the transmitting end, the
fixed-size segments are transmitted in slots specified by the schedule and are then reassembled into the original packet at the
receiving end. We develop and analyze approximately a queueing model of the network in order to obtain the queue-length
distribution and loss probabilities at the transmitting and receiving side of nodes. The analysis is carried out assuming finite
buffer sizes, non-uniform destination probabilities, and an appropriate arrival process model. Our work makes it possible to
study the interactions among the various system parameters (such as load balancing and scheduling algorithms, the number
of channels, and the buffer capacity) and to predict, explain, and fine tune the performance of the network. To the best of our
knowledge, this is the first comprehensive performance study of optical local area networks under variable length packets.
 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, optical broadcast-and-select local area network (LAN) architectures based on wave-
length division multiplexing (WDM) have been a subject of research both theoretically [2,6,8–10,12,14–
17,19,23,24,28,34] and experimentally [11,18,13,7]. The issues that have been addressed include the
design of efficient media access control (MAC) protocols [6,8,31,34], the development of scheduling
algorithms to mask the transceiver tuning latency [2,5,25,28,30], multicasting [4,25,29,35], and dynamic
load balancing [3]. Because of the synchronization problems arising in a WDM environment, most of
the studies make the assumption that the traffic offered to the network consists of fixed-size packets.
Furthermore, the performance analysis of most architectures has been typically carried out under the un-
realistic [26] assumptions of symmetric traffic and memoryless arrival processes. On the other hand, we
have studied WDM broadcast star networks assuming bursty and correlated arrival processes, non-uni-
form destination probabilities, finite buffer capacities, and non-zero transceiver tuning delays in [22,31].
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The work in [31] derived a stability condition for a reservation-based MAC protocol, while in [22], we
analyzed a fairly general queueing network model of the broadcast-and-select WDM architecture.

While it has been widely accepted [21] that current IP networks will naturally evolve to take
advantage of WDM capabilities, it has also been recognized that there exists a gap between the optical
network and Internet technologies [1]. We have taken a first step towards bridging this gap with our work
in [25], where we designed a novel approach to provide support for LAN-wide MAC-layer multicast.
This multicast capability can be useful to many link-layer Internet protocols, as well as protocols such
as IP multicast and IGMP. In this paper, we address another important issue, namely the performance
of IP traffic over WDM LANs. Specifically, we extend our analysis in [22] to the case where arriving
packets are not fixed in size. Rather, we assume variable-size packets (such as IP datagrams) with an
arbitrarily distributed length. An IP packet is fragmented at the MAC layer into fixed-sized segments.
The segments are then individually transmitted over the broadcast star to the destination node, where
they are reassembled into the original packet at the MAC layer before they are passed to the IP layer. All
buffers in the MAC layer are finite in capacity. We construct and analyze a general queueing network
model of a broadcast WDM LAN that captures the complex interaction among the various system
parameters such as packet-length distribution, number of wavelengths (channels), the schedule itself,
and buffer capacity. The analysis of the queueing network is approximate and it is based on a ‘per
channel’ decomposition. To the best of our knowledge, such a performance study of a broadcast WDM
architecture with variable-length packets has not been reported in the literature.

In the next section we present the salient features of a broadcast optical local area network and
we provide some background information. We present the performance analysis of the network in
Sections 3 and 4, we give numerical results in Section 5, and we conclude the paper in Section 6.

2. The network under study

In this section we introduce a model for the media access control (MAC) layer in a broadcast-and-
select WDM LAN. The model consists of two parts, a queueing network and a transmission schedule.
We also present a traffic model to characterize the arrival process of IP packets to the network.

2.1. The queueing model

The optical network architecture consists of N nodes communicating over a broadcast passive star
that can support C � N wavelengths ½1; : : :; ½C (see Fig. 1). Each node is equipped with a laser that
enables it to inject signals into the optical medium, and a filter capable of receiving optical signals. The
laser at each node is assumed to be tunable over all available wavelengths. The optical filters, on the other
hand, are fixed to a given wavelength. Let ½. j/ denote the receive wavelength of node j . Since C � N ,
a setRc of nodes may be sharing a single receive wavelength ½c : Rc D f j j ½. j/ D ½cg; c D 1; : : :;C.
SetsRc will typically be obtained by running a load balancing algorithm [3].

Internally, the network operates by transmitting fixed-size units of data, hereafter referred to as
segments. The nodes operate in a slotted mode, with a slot time equal to a segment transmission time.
Since there are N nodes but C � N channels, each channel must run at a rate N=C times faster
than the rate at which users at each node can generate or receive data (N=C need not be an integer).
In other words, the MAC-to-network interface runs faster than the user-to-MAC interface. Thus, we
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Fig. 1. Queueing model of the network architecture with variable-length IP packets.

distinguish between arrival slots (which correspond to the segment transmission time at the user rate)
and service slots (which are equal to the segment transmission time at the channel rate within the
network). Obviously, the duration of a service slot is equal to C=N times that of an arrival slot. Without
loss of generality, we also assume that all N nodes are synchronized at service slot boundaries.

Each node consists of a transmitting side and a receiving side, as Fig. 1 illustrates. Network users
generate variable-length IP packets, which arrive at the transmitting side of a node and undergo
segmentation processing. As a result of this process, a packet is fragmented 1 into a number of segments,
where the last segment is padded, if necessary 2. These segments are buffered at a finite capacity queue, if
the queue is not full. If, however, the queue is full, all segments of the packet are dropped upon arrival3.
As Fig. 1 illustrates, the buffer space at the transmitting side of each node is assumed to be partitioned
into C independent queues. Each queue c; c D 1; : : :;C, at the transmitting side of node i; i D 1; : : :; N ,
contains segments destined for receivers which listen to wavelength ½c. This arrangement eliminates the
head-of-line problem, and permits a node to send several segments back-to-back when its laser is tuned
to a certain wavelength. We let B.in/ic denote the capacity, in segments, of the transmitting queue at node
i that corresponds to wavelength ½c.

Segments buffered at a transmitting queue are sent on a FIFO basis onto the optical medium by
the node’s laser. A schedule (discussed shortly) ensures that transmissions on a given channel will not
collide, hence a transmitted segment will be correctly received by its destination node. Upon arrival at
the receiving side of its destination node, the segments are buffered in a reassembly queue. At each
node, there is one reassembly queue per source. Each reassembly queue has a finite capacity and it can
accommodate a packet of maximum length. Segments accumulate in this queue until an entire packet
has been completely received. At that instant, the packet is transferred instantaneously to the receiving
queue (see Fig. 1), which also has a finite capacity. If adequate space is not available at the receiving
queue, the entire packet is dropped.

1 We emphasize that this segmentation process takes place at the MAC layer. Hence, it differs from IP-level fragmentation in
that the segmentation and reassembly is transparent to the IP layer.
2 We will omit implementation of specific issues of how segmentation is performed, and instead we will focus on an abstract
queueing model that is applicable to a wide range of environments.
3 This operation is reminiscent of the ‘Partial Packet Discard’ feature of some ATM switches.
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We note that, due to the nature of the system, segments arrive at a reassembly queue in order.
Furthermore, no losses can occur at a reassembly queue, since this queue can accommodate a packet of
maximum size. We let B.out/

j denote the buffer capacity, in segments, of the receiving queue at node j .
Packets in a receiving queue are also served on a FIFO basis.

2.2. Transmission schedules

One of the potentially difficult issues that arises in a WDM environment is that of coordinating the
various transmitters=receivers. Some form of coordination is necessary because (a) a transmitter and a
receiver must both be tuned to the same channel for the duration of a segment’s transmission, and (b) a
simultaneous transmission by one or more nodes on the same channel will result in a collision. The issue
of coordination is further complicated by the fact that tunable transceivers need a non-negligible amount
of time to switch between wavelengths.

The problem of scheduling packet transmissions in such an environment has received significant
attention recently, and several scheduling algorithms have been proposed [2,5,25,28,30]. Although these
algorithms differ in terms of their design and operation, surprisingly the resulting schedules are very
similar. The underlying structure of these schedules is shown in Fig. 2. Typically, in a schedule, a node
i is assigned aic contiguous service slots for transmitting segments on channel ½c. These aic slots are
followed by a gap of gic ½ 0 slots during which no node can transmit on ½c. This gap may be necessary
to ensure that the laser at node i C 1 has sufficient time to tune from wavelength ½c�1 to ½c before
it starts transmission. Note that in Fig. 2 we have assumed that an arrival slot is an integer multiple
of service slots. This may not be true in general, and it is not a necessary assumption for our model.
Observe also that, although a schedule begins and ends on arrival slot boundaries, the beginning or end
of transmissions by a node does not necessarily coincide with the beginning or end of an arrival slot
(although they are, obviously, synchronized with service slots).

Fig. 2. (a) Schedule for channel ½c. (b) Detail corresponding to transmitting queue 2.
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We assume that transmissions by the transmitting queues onto wavelength ½c follow a schedule as
shown in Fig. 2. This schedule repeats over time. Each frame of the schedule consists of M arrival
slots. Quantity aic; i D 1; : : :; N ; c D 1; : : :;C, can be seen as the number of service slots per frame
allocated to node i , so that the node can satisfy the required quality of service of its incoming traffic
intended for wavelength ½c. By fixing aic, we indirectly allocate a certain amount of the bandwidth
of wavelength ½c to node i . This bandwidth could, for instance, be equal to the effective bandwidth
[27] of the total traffic carried by node i on wavelength ½c. In general, the estimation of the quantities
aic; i D 1; : : :; N ; c D 1; : : :;C, is part of the connection admission algorithm [27], and it is beyond
the scope of this paper. We note that as the traffic varies, aic may vary as well. In this paper, we
assume that quantities aic are fixed, since this variation will more likely take place over larger scales
in time.

2.3. The arrival process

Let T denote the maximum IP packet size, in segments, in the network. In other words, the size
of a packet arriving to a transmitting queue will be anywhere between 1 and T segments. In order to
capture the behavior of the various network users, a different arrival process is associated with each
transmitting queue (i; c) (i.e., the queue at node i corresponding to wavelength ½c; i D 1; : : :; N ; c D
1; : : :;C). Specifically, we assume that a packet arriving at queue (i; c) consists of s; s D 1; : : :; T ,
segments with probability fic.s/. These probabilities can be determined through careful analysis of
traffic patterns (see, for instance [33, fig. 3]). Thus, our analysis is valid for arbitrary packet size
distributions.

The rate diagram of the packet arrival process to a transmitting queue is shown in Fig. 3. There
is a geometrically distributed idle period (state 0) during which no arrivals occur, followed by the
arrival of a packet. The length s of the packet, expressed in segments, is distributed between 1 and
T with probability fic.s/. Thus, from state 0, the process can jump to any state s between 1 and T
that corresponds to the number of segments in the arriving packet. Subsequently, the process moves
from state s to s � 1 until the last segment is received (when s D 1). At that moment, the state
of the arrival process will change to either state s D 0 (if the process becomes idle), or to state
s; 1 � s � T , if another packet arrives. The latter transition models a back-to-back transmission of
packets by the user.

For the arrival process to queue .i; c/; i D 1; : : :; N ; c D 1; : : :;C, the transition probability matrix
Qic is

Qic D

26666666666664

q.0;0/ic q.0;1/ic q.0;2/ic : : : q.0;T�1/
ic q.0;T /ic

q.1;0/ic q.1;1/ic q.1;2/ic : : : q.1;T�1/
ic q.1;T /ic

0 q.2;1/ic D 1:0 0 : : : 0 0

0 0 q.3;2/ic D 1:0 0 : : : 0
:::

: : :
: : :

: : :
: : :

:::

0 0 : : : 0 q.T;T�1/
ic D 1:0 0

37777777777775
(1)
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Fig. 3. State machine of the packet arrival process to a transmitting queue.

and the arrival probability matrix Aic

Aic D

26666664
0 0 0 : : :

0 1 0 : : :

:::
:::

: : :
: : :

0 : : : 0 1

37777775 (2)

where q.k;l/ic ; k; l D 0; : : :; T , is the probability that the process will make a transition to state l, given
that it is currently at state k. Obviously,

P
l q.k;l/ic D 1;8 k. Transitions between states of Qic occur only

at the boundaries of arrival slots (recall that the segment transmission time at the user rate is equal to an
arrival slot).

The transition rates, q.Ð;Ð/i;c , can be derived from the known (or easily measurable) parameters of the
arriving IP traffic stream as follows. Let ²ic denote the probability that an arrival slot will contain a
segment for transmitting queue (i; c). Let also g denote the mean inter-packet gap. Therefore,

²ic D E.packet size/

E.packet size/C E.inter-packet gap/
D

TX
sD1

s fic.s/

TX
sD1

s fic.s/C g

: (3)

Since the length of the inter-packet gap is assumed to be geometrically distributed with a mean
of g, it can be easily seen that the transitions at each slot within the gap (and after the last slot
of the preceding packet) are governed by a Bernoulli distribution. Denote the parameter for the
Bernoulli distribution as q, such that g D 1=.1 � q/. Based on our description of the arrival process,
we have that q D q.0;0/ic D q.1;0/ic . The remainder of the probability mass (1 � q) may then be
distributed according to the (known or measured) packet-length distribution, fic.s/; in other words,
q.0;s/ic D q.1;s/ic D .1� q/ fic.s/ 8 s > 0.

3. Queueing analysis

In this section we analyze the queueing network described in Section 2 and shown in Fig. 1. We
obtain the queue-length distribution in the transmitting queues .i; c/; i D 1; : : :; N ; c D 1; : : :;C, and
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the receiving queues j; j D 1; : : :; N , from which performance measures such as the packet-loss and the
segment-loss probabilities can be obtained.

3.1. Transmitting side analysis

Each transmitting queue (i; c) is served by a single wavelength ½c. This wavelength, in fact, is shared
by all transmitting queues .l; c/; l D 1; : : :; N . Within each frame, queue (i; c) is only served during aic

service slots, and it is not served during the remaining service slots of the frame. The actual service slots
allocated contiguously to queue (i; c) are determined by the transmission schedule. We define vic.x/ as
the number of contiguous service slots allocated to transmitting queue (i; c) during arrival slot x . We
then have that

M�1X
xD0

vic.x/ D aic: (4)

In view of the above service discipline, each transmitting queue (i; c) can be analyzed separately and
independently of all other queues .l; c/; l 6D i .

Let us now consider transmitting queue (i; c) in isolation. This queue can be analyzed numerically by
solving its underlying Markov chain. The state of this chain will include the following: (a) the arrival
slot number within a frame; (b) the number of packets and their sizes (in terms of segments) in the
queue; (c) the state of the arrival process; and, (d) the state of the server, i.e., which segment of the
packet is being served. Obviously, this Markov chain cannot be practically analyzed due to its large
dimensionality.

In order to make the analysis of the transmitting queue more manageable, we reduce the most
significant source of complexity, i.e., keeping track of the number of packets and their length. Instead,
we only keep track of the number of segments in the queue. We also simplify the analysis by not
tracking which segment of a packet is currently being served. We then analyze transmitting queue (i; c)
by constructing an approximate Markov chain embedded at arrival slot boundaries. The state of this
Markov chain consists of the tuple (x; y; z), where
ž x represents the arrival slot number within a frame (x D 0; 1; : : :;M � 1),
ž y indicates the number of segments in the transmitting queue (y D 0; 1; : : :; B.in/ic ), and
ž z indicates the state of the arrival process to this queue (z D �.T � 1/; : : :;�1; 0; 1; : : :; T ).

We note that the definition of z does not follow exactly the process shown in Fig. 3. Instead, we use
a modified process in order to account for a discarded packet which is partially enqueued. Specifically,
consider a segment arriving to find a full queue. In this case, the following take place: (a) the arriving
segment is dropped, (b) other segments of the same packet which are already enqueued are discarded,
and (c) the remaining segments of the packet which have not yet been received are also discarded. In
order to account for the last possibility, the state description of the arrival process is augmented by an
additional set of states, as shown in Fig. 4. The states identified by non-negative labels in Fig. 4 are
identical to the corresponding states of Fig. 3. The states identified by negative labels, on the other hand,
indicate that a segment from a discarded packet is being received (and, hence, the segment is discarded).
Specifically, if the arrival process is in state z; 2 � z � T , and the queue discards an arriving segment as
described, the process will transition to state�.z � 1/, not state z � 1.

The order in which events occur in the Markov chain is as follows. The service (i.e., transmission)
completion of a segment occurs at an instant just before the end of a service slot. An arrival may occur
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Fig. 4. State machine for arrival process accounting for buffering and dropping of packet segments.

at an instant just before the end of an arrival slot, but after the service completion instant of a service
slot whose end is aligned with the end of an arrival slot. The arrival process may make a state transition
immediately after the arrival instant. Finally, the Markov chain is observed at the boundary of each
arrival slot, after the state transition of the arrival process. The order of these events is shown in Fig. 5b.
The transition probabilities out of state (x; y; z) are given in Table 1. We note thatý denotes modulo-M
addition, where M is the number of arrival slots per frame; also, I f .x/ is an indicator function which is
equal to 1 if the boolean condition f .x/ is true, and it is 0 otherwise.

From Table 1 we note that the next state after (x; y; z) always has an arrival slot number equal to
x ý 1. In the first row of Table 1, we assume that the arrival process makes a transition from state z
to state z0 (from Eq. (1), this event has a probability q.zz 0/

i of occurring), and a segment arrives and is

Fig. 5. (a) Service period of node i on channel ½c. (b) Detail showing the relationship among service completion, arrival,
arrival process state transition, and observation instants within a service slot and an arrival slot.
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Table 1
Transition probabilities out of state (x; y; z) of the Markov chain

Current state Next state Transition probability

.x; y; z/ .x ý 1;maxf0; y � vic.x ý 1/g C 1; z0/ q.zz0/
ic I vic.x/>0 or y<Bic ð I [z>1 and z0D.z�1/] or .zD1/

.x; y; z/ .x ý 1;maxf0; y � vic.x ý 1/g; z0/ q.jzjjz
0 j/

ic ð I .zD0;�1/ or [.z<�1/ and .z0DzC1/]

.x; y; z/ .x ý 1; Bic � s; z0/ fic.s C z/q.zjz
0 j/

ic Ivic .x/D0 and yDBic ð I [z>1 and z0D�.z�1/] or .zD1 and z0½0/

buffered by the queue. This event can only occur if z0 is positive (see Fig. 4) and either vic.x/ > 0
or y < Bic. The latter conditions are imposed to ensure that the new queue length will not exceed
the capacity B.in/ic of the transmitting queue 4. This arriving segment cannot be serviced during this
slot, and has to be added to the queue. Since at most vic.x ý 1/ segments are serviced during arrival
slot x ý 1, and since exactly one segment arrives, the queue length at the end of the slot is equal to
maxf0; y � vic.x ý 1/C 1g.

In the second row of Table 1, we assume that the arrival process makes a transition from state z to
state z0 such that the arriving segment is not enqueued. This event will occur unconditionally only if the
buffer has already overflowed or the source is idle (i.e., z � 0, also refer to the arrival probability matrix
in Eq. (2)). Again, at most vic.x ý 1/ segments are serviced during arrival slot x ý 1, resulting in the
queue length at the end of the slot being maxf0; y � vic.x ý 1/g.

Finally, the third row of Table 1 assumes that a segment arrives to the transmitting queue causing it
to overflow. This event occurs if and only if the queue has not yet overflowed, the buffer is full, and the
buffer receives no service during the arrival slot (i.e., y D Bic, z > 0, and vic.x/ D 0). In this case, the
arrival process transitions to the appropriate state reflecting that future segments of this packet are to be
dropped. Also, the queue will lose s segments of the arriving packet which have already been buffered,
provided that the packet size was s C z segments.

The probability transition matrix of this Markov chain has the following block form:

Sic D

26666666666664

0 Ric.0/ 0 0 : : : 0

0 0 Ric.1/ 0 : : : 0

0 0 0 Ric.2/ : : : 0
:::

:::
:::

:::
:::

:::

0 0 0 0 : : : Ric.M � 2/

Ric.M � 1/ 0 0 0 : : : 0

37777777777775

0

1

2

:::

M�2

M�1

(5)

This block form is due to the fact that at each transition instant (i.e., at each arrival slot boundary), the
random variable x changes to x ý 1. Changes in the other two random variables, y and z, are governed
by the matrices Ric.x/. There are M different Ric matrices, one for each arrival slot x in the frame.

4 Due to the nature of the system, segment loss can only occur if both of these conditions are not true and an arrival occurs.
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Let us define matrices X ic.Ð j x; y/ and Y ic as:

X ic. Ð jx; y/ D Ãic Q̃ic

�
Ivic.x/D0 and yDBic

Ð
and Y ic D .I � Ãic/ Q̃ic.0/; (6)

where I is the identity matrix and Ãic and Q̃ic.Ð/ are given in Eqs. (7)–(9). Matrix X ic. Ð j x; y/
(respectively, Y ic) is the arrival process’ state transition probability matrix given that an arrival is
(respectively, is not) accepted by the transmitting queue. For the sake of clarity, X ic. Ð j x; y/ will be
denoted simply as X ic.Ð/ for the remainder of the paper.

Ãic D

0BBBBBBBB@

�.T�1/ ÐÐÐ �1 j 0 ÐÐÐ T

�.T�1/ j
::: 0 j 0

�1 j
0 j
::: 0 j Aic

T j

1CCCCCCCCA
; (7)

Q̃ic.0/ D

0BBBBBBBBBBBBB@

#k
l! �.T�1/ ÐÐÐ �1 j 0 1 ÐÐÐ T

�.T�1/ j
::: q jkjjljic j 0

�2 j
�1 0 j q jkjjljic

0 j
::: 0 j Qic

T j

1CCCCCCCCCCCCCA
; (8)

and

Q̃ic.1/ D

0BBBBBBBBBBBBB@

#k
l! �.T � 1/ ÐÐÐ �1 j 0 j 1 ÐÐÐ T

�.T�1/ j j
::: 0 j 0 j 0

0 j j
1 0 j q jkjjljic j q jkjjljic

2 j j
::: q jkjjljic j q jkjjljic j 0

T j j

1CCCCCCCCCCCCCA
: (9)
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Then, the transition matrix Ric.x/ associated with arrival slot x can be written as:

Ric.x j vic.x ý 1/ > 0/ D

26666666666664

Y ic X ic.Ð/ 0 0 0 0 : : :

:::
:::

:::
:::

:::
:::

:::

Y ic X ic.Ð/ 0 0 0 0 : : :

0 Y ic X ic.Ð/ 0 0 0 : : :

0 0
: : :

: : :
: : : 0 : : :

0 : : : 0 Y ic X ic.Ð/ 0 : : :

37777777777775

0

:::

vic.xý1/

vic.xý1/C1

:::

B.in/ic

(10)

The structure of matrix Ric.x/ given in Eq. (10) can be explained as follows. Suppose that the number
of segments y in the queue at the end of slot x is at most vic.x ý 1/. Since up to vic.x ý 1/ segments can
be served within slot x ý 1, the number in the queue at the end of that slot will be 1 or 0, depending on
whether an arrival occurred or not. This point is indicated by the transitions in rows 0 through vic.x ý 1/
of matrix Ric.x/. However, if at the end of slot x we have y > vic.x ý 1/, then the number in the
queue at the next transition will be y � vic.x ý 1/ (plus one if an arrival occurred), as indicated by the
transitions in rows vic.x ý 1/C 1 through Bic of Ric.x/. Of course, y cannot exceed the queue capacity
B.in/ic . Since the number of service slots vic.x ý 1/ depends on the particular slot x ý 1 within the frame,
Ric.x/ is a function of x .

Matrix Ric.x/ is slightly different when vic.x ý 1/ D 0; its structure is shown in Eq. (11). In this
case, if the state of the transmitting queue is y D B.in/ic , not only will a new arrival be discarded, but
some number of currently enqueued segments may also be discarded. Let matrix Pn. Ð j x/ represent the
probability that segment n of an n0-segment packet causes the overflow of the buffer with the arrival
process in a given state z; z > 0, during arrival slot x . The structure of Pn. Ð j x/ may be described
simply: Pn is a square matrix with indices on both dimensions running from�.T � 1/ to T . The matrix
may have non-zero values only for rows z; 0 < z � .T � nC 1/. The reason for this boundary is that for
an arrival to occur, z must be greater than 0. Also, if exactly n segments (including the currently arriving
segment) are to be lost, and the total packet size is bounded by T , z (before the arrival occurred) must
be bounded by T � .n � 1/. Given the arriving traffic description shown in Fig. 4, the complete packet
size (in terms of segments) may be inferred exactly as z C n � 1, occurring with the probability shown
in Eq. (12).

Ric.x j vic.x ý 1/ D 0/

D

26666666664

Y ic X ic.Ð/ 0 0 0 0 0

0 Y ic X ic.Ð/ 0 0 0 0
:::

: : :
: : :

: : :
: : :

: : : 0

0 : : : 0 0 0 Y ic X ic.Ð/
0 : : : 0 P T .Ð/X ic.Ð/ : : : P2.Ð/X ic.Ð/ Y ic C P1.Ð/X ic.Ð/

37777777775
; (11)



344 M.W. McKinnon et al. / Performance Evaluation 36–37 (1999) 333–358

Pn.z; z/ D

8><>:
X

kD0;1

 ic.k j x 	 n/q.k;zCn�1/
ic 8 z s:t: .T � n C 1/ ½ z > 0;

0:0; otherwise:

(12)

We define  ic.s j x/ as the probability that the arrival process occupies state s immediately before
arrival slot x of the frame. The value  ic.s j 0/ may be found by solving for the steady-state occupancy
of the arrival process at the boundaries of the schedule. The matrix containing transition probabilities
between the boundaries of the repeating schedule’s frame (i.e., on either side of M arrival slots), is
denoted K ic, and is obtained as:

K ic D QM
ic : (13)

The other values of  .Ð/ may be found using Eq. (14) as follows:

 ic.s j x/ D  ic.s j x 	 1/Qic: (14)

It can be verified that the Markov chain with probability transition matrix Sic in Eq. (5) is irreducible,
and therefore a steady-state distribution exists. Transition matrix Sic defines a p-cyclic Markov chain,
and therefore it can be solved using any of the techniques for p-cyclic Markov chains in [32, ch. 7]. We
have used the LU decomposition method to obtain the steady-state probabilities ³ic.x; y; z/.

3.2. Receiving side analysis

As shown in Fig. 1, each receiver j consists of an optical filter, N reassembly queues, and one
receiving queue. The receiver filters out segments from the passive star coupler, allowing only those
segments transmitted on wavelength ½. j/, the receive wavelength of node j , to pass. As segments
are received, from a particular transmitter, they are buffered in the appropriate reassembly queue until
a complete packet is formed. At that instant, the packet is transferred to the receiving queue. If the
receiving queue does not have enough space to accommodate the entire packet, the packet is lost. The
reassembly queue is large enough to accommodate a packet of maximum length (i.e., it can hold T
segments). Thus, no segment can be lost upon arrival at the reassembly queue.

In the following, we use the transmitting queue steady-state probabilities, ³ic.x; y; z/; i D
1; : : :; N ; c D 1; : : :;C, derived in the previous section, to analyze each receiver in isolation. We
note that quantities ³ic.x; y; z/ do not provide any information about the size, in segments, of individual
packets arriving at the reassembly part of the receivers. Therefore, one of the main tasks of our analysis
is to reconstruct the packet sizes from the given information about segments transmitted by transmitting
queues. This reconstruction must be performed in such a manner that the resulting packet sizes follow
the original packet-length distribution as closely as possible. We also note that this approach is similar
to the ‘Kleinrock independence approximation’ [20], whereby packets are assumed to take on new sizes
as they travel through the nodes of a network. Just as the ‘Kleinrock independence approximation’ made
the analysis of packet switched networks tractable, our assumption regarding the independence of packet
sizes between transmitting and receiving queues significantly reduces the complexity of the analysis.
Nevertheless, it does introduce some problems; these problems and our heuristic solution are discussed
later in the section.
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Fig. 6. (a) Arrivals to reassembly queue i of receiver j . (b) Detail showing the relationship of departure, arrival, and
observation instants.

3.2.1. Analysis of the reassembly queue
Each of the N reassembly queues of receiver j can be considered in isolation. For each reassembly

queue, we define a Markov chain, (x; � ), where x indicates the arrival slot number within the
frame (x D 0; 1; : : :;M � 1), and � indicates the occupancy of the reassembly queue in segments
(� D 0; : : :; T ). The ordering of the events is shown in Fig. 6, and the transition probabilities are shown
in Table 2 5. As we can see in Fig. 6b, at the end of an arrival slot a batch departure may occur. This
batch departure corresponds to the accumulation of a complete packet in the reassembly queue, which is
then transferred to the receiving queue (refer also to Fig. 1).

The term P.Ð/ in Table 2 is the probability of receiving �add segments from the appropriate

Table 2
Transition probabilities out of state (x; � ) of the Markov chain for reassembly queue i of
receiver j

Current state Next state Transition probability

.x; � / .x ý 1; � 0/
vic .xý1/X

�addDmax.� 0��;0/
[P.�add j x/ ðF.� 0 j �; �add; x/]

5 We note that, for this analysis, we impose the restriction that the minimum packet size must be greater than or equal to m
segments, where m is the number of service slots that fully lie within one arrival slot. Thus, we assume at most one packet
can be accumulated during an arrival slot. Allowing for multiple packets to be accumulated at a reassembly queue during an
arrival slot would simply add a layer of complexity in the following discussion, which would only detract from our analysis.



346 M.W. McKinnon et al. / Performance Evaluation 36–37 (1999) 333–358

transmitting queue during slot x ý 1. We have that

P.�add j x/ D

8>>>>>>>>>><>>>>>>>>>>:

1:0; vic.x ý 1/ D 0 and �add D 0;

0:0; vic.x ý 1/ D 0 and �add 6D 0;

M
X

z

³ic.x; �add; z/; �add < vic.x ý 1/ and vic.x ý 1/ > 0;

M
BicX

y0Dvic.xý1/

X
z

³ic.x; y0; z/; �add D vic.x ý 1/: and vic.x ý 1/ > 0:

(15)

We note that M
P

z ³ic.x; y; z/ is the conditional probability of having y segments in transmitting
queue (i; c) given slot x regardless of the state of the arrival process. The first two expressions in
Eq. (15) simply state that no segments can be received if transmitting queue (i; c) is not served during
slot x ý 1. The third expression states that, if the transmitting queue is served for vic.x ý 1/ slots, then
�add < vic.x ý 1/ segments will be received only if the transmitting queue had exactly �add segments at
the beginning of the slot. Finally, exactly vic.x ý 1/ segments will be received if the transmitting queue
had at least that many segments, as the last expression indicates.

The term F.Ð/ in Table 2 is the probability that the system will be in state � 0 given that it had
� segments in it and it received �add segments from a transmitting queue. In other words, it is the
conditional probability that a packet consisting of a number max.0; � � � 0 C �add/ of segments was
transferred to the receiving queue. Then,

F.� 0 j �; �add; x/ D
8<:Fic.�

0 j � /; �add � � 0 � � and �add D vic.x ý 1/;

fic.� � � 0 C �add j � /; otherwise:
(16)

In Eq. (16), fic.s0 j s/ is defined to be the conditional probability that the packet size is equal to s 0
segments, given that it is greater than s segments:

fic.s
0 j s/ D

8><>:
fic.s0/
Fic.s/

; s0 > s;

0:0; otherwise:
(17)

Also in Eq. (16), Fic.s j s0/ is the conditional cumulative probability distribution of the packet size in
terms of segments, given that the packet size is greater than s 0, i.e.,

Fic.s/ D
TX
PsDsC1

fic.Ps/; (18)

Fic.s j s0/ D

8><>:
Fic.s/

Fic.s0/
; s > s0;

0:0; otherwise:
(19)

Let ýi j .x; � / denote the steady-state probability that reassembly queue (i; j ) has � segments at the
end of slot x . The transition probability matrix for each reassembly queue (i; j ) can be constructed
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using the above analysis, and the occupancy probability ýi j .x; � / may be determined using the LU
decomposition method [32].

We note, however, that our model does not keep track of the actual number of segments in each
packet once the segments are buffered at a transmitting queue. Thus, in order to compute ýi j .x; � /, we
used a probabilistic model for the reassembly of segments into packets which accounts for the original
packet-size distribution through expression Eq. (16). Let us consider the following example. Let us
assume that users generate packets which are always between four and seven segments long. Now, let us
consider a packet, originally six segments long, that is forwarded one segment at a time to a reassembly
queue. In a real system, the reassembly queue will wait for all six segments, and it will then reconstruct
the original packet and forward it to the receiving queue. In our model, on the other hand, expression
Eq. (16) will evaluate the probability that the arriving segments belong to a packet of size four, five,
six, or seven segments long, and all these probabilities will contribute to the occupancy distribution
ýi j .x; � /. Let us consider the scenario where, after the fifth segment has arrived, the reassembly queue
forwards the five segments as a complete packet to the receiving queue. When the last segment arrives, it
will remain in the reassembly queue until it becomes part of another packet. In a lightly loaded system,
this packet will have to wait for a long time before more segments arrive and it can be considered as part
of another packet. The fact that under our model this scenario has a non-zero probability of occurring,
may affect the accuracy of the estimated buffer occupancy distribution ýi j .x; � / under low loads. In the
next section, we introduce a heuristic that significantly improves the accuracy ofýi j .x; � /.

3.2.2. Analysis of a receiving queue
As in the previous section, we obtain the queue-length distribution of receiving queue j at arrival slot

boundaries. Let (x; w) be the state associated with receiving queue j , where x indicates the arrival slot
number within the frame (x D 0; 1; : : :;M � 1), and w indicates the number of segments at the queue
(w D 0; 1; : : :; B.out/

j ). The ordering of events is shown in Fig. 7.
Observe now that (a) at each state transition, x advances by one (modulo-M), (b) exactly one segment

departs from the queue as long as the queue is not empty, (c) a number 0 � s � T of segments may be
transmitted from each of the relevant reassembly queues to receiving queue j within arrival slot x ý 1,
and (d) the queue capacity is B.out/

j . Based on the first item above, it can be easily seen that the transition
matrix T j of this Markov chain has the same structure as matrix Sic given by Eq. (5). We have that:

T j D

26666666666664

0 U j .0/ 0 0 : : : 0

0 0 U j .1/ 0 : : : 0

0 0 0 U j .2/ : : : 0
:::

:::
:::

:::
:::

:::

0 0 0 0 : : : U j .M � 2/

U j .M � 1/ 0 0 0 : : : 0

37777777777775

0

1

2

:::

M�2

M�1

(20)

The construction of the matrices U j .x/ is somewhat complicated. This is mainly due to the fact that
during an arrival slot x , more than one transmitting queue can transmit on the same channel. In this case,
determining which packets are accepted by a receiving queue which is close to being full may be quite
involved. The construction of a matrix U j .x/ is summarized in the algorithm given below. We note that the
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Fig. 7. (a) Arrivals to receiving queue j from reassembly queues i and i C 1. (b) Detail showing the relationship of departure,
arrival, and observation instants.

elements of matrix U j .x/ are denoted as U j .x; k; l/, where k is the row index and l is the column index.

U j .x/ [0]
loop: 8 w 2 f0; 1; : : : ; B j g
I j .x/ an ordered set of the transmitting queues serviced by channel ½c

during slot x with cardinality jI j .x/j

loop: 8 s 2 ff
jI j .x/jz }| {

0; 0; : : : ; 0g; f0; 0; : : : ; 1g; : : : ; fT; T; : : : ; T gg
w0  w

loop: 8 i 2 f1; : : : ; jI j .x/jg
if fw0 C si � B jg ) fw0  w0 C si g

if fw > 0g ) fw0  w0 � 1g
U j .x;w;w0/ U j .x;w;w0/C

QjI j .x/j
iD1 Li .si j x/

In the preceding algorithm, Li.si j x/ is the probability that a packet consisting of si segments is
transmitted during slot x from reassembly queue i to receiving queue j 6. We have that:

Li .si j x/ D rcj fic.si/ð pi j .packet generated j x/ð
Y

x 02A.si /
i j .x/

.1:0� pi j .packet generated j x 0//
(21)

6 Since in most cases only one or two transmitting queues will transmit to the same channel within an arrival slot (refer also
to Fig. 5), and since a packet can only be completed in a reassembly queue while the transmitting queue is transmitting over
the given channel, the dimension of the vector s will generally be only one or two. Thus, this loop can be executed very fast,
in spite of the exponential time implied by the general form presented.
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where

pi j .packet generated j x/

D M
T�1X
�D0

ýi j .x; � /ð
vic.xý1/X
�addD1

8<:
�add�1X
� 0D0

P.�add j x/F.� � � 0 C �add j �; �add; x/

9=; (22)

and rcj is the probability that a packet transmitted on channel c is intended for node j .
Eq. (21) for calculating Li .si j x/ is derived so as to reduce the error introduced when reconstructing

a packet in the reassembly queue. In Eq. (21), A.si /
i j .x/ denotes the set of arrival slots during which

reassembly queue (i; j ) may receive segments. This set consists of the si � 1 service slots prior to arrival
slot x . Using this set, we are able to take into account an appropriate minimal packet inter-arrival time,
in service slots, given the size si of the packet and the time x of arrival within the schedule. We note that,
depending on the values involved, the set A.si /

i j .x/ may contain more than M arrival slots. In this case,
the set will span multiple frames, and a particular slot may be encountered in the set multiple times,
each time in a different frame.

Finally, we solve for the steady-state occupancy probability of receiving queue j during a slot x ,
³ j .x; w/, using the LU decomposition method.

3.3. Summary of the decomposition algorithm

Below we summarize the approximation described above.
(1) Given each arrival process, defined by Aic and Qic, formulate Ãic, Q̃ic.0/, and Q̃ic.1/ per

Eqs. (7)–(9), respectively. Additionally, compose the matrices Pn corresponding to each arrival
process per Eq. (12).

(2) For each arrival slot x , use the schedule and Eq. (4) to compute the quantities vic.x/; i D
1; : : :; N ; c D 1; : : :;C.

(3) For each transmitting queue (i; c), construct the transition probability matrix Sic from Eqs. (1), (2),
(5), (6) and (10). Solve this matrix for ³ic.x; y; z/.

(4) For each reassembly queue (i; j ), use ³ic.x; y; z/ and Eqs. (15) and (16) to build its transition
probability matrix. Solve the matrix to obtainýi j .x; � /, the steady-state probability that reassembly
queue (i; j ) has � segments at the end of slot x .

(5) For each receiving queue j 2 Rc, use ³ic.x; y; z/, ýi j .x; � /, and Eq. (21) to construct the
transition matrix T j given by Eq. (20). Solve the matrix to obtain ³ j.x; w/, the steady-state
probability that receiving queue j has w cells at the end of slot x .

4. Loss probabilities

We now use the queue-length distributions ³ic.x; y; z/, ýi j .x; � /, and ³ j.x; w/, derived in the
previous section, to obtain the segment and packet loss probability at the transmitting and receiving
queues.
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4.1. Segment and packet loss probability at a transmitting queue

Let 
ic be the probability that a packet arriving to transmitting queue (i; c) will be lost. 
ic can be
expressed as:


ic D E[number of packets lost per frame at transmitting queue .i; c/]

E[number of arrivals per frame at transmitting queue .i; c/]
: (23)

For the denominator, we have that:

E[number of arrivals per frame at transmitting queue .i; c/]

D
M�1X
xD0

 X
y

³ic.x; y; z D 1/C
X

y

³ic.x; y; z D �1/

!
: (24)

To calculate the numerator we observe that all packets must begin their transmission periods in one of
the states for which z ½ 1. Thus, we have that:

E[number of packets lost per frame at transmitting queue .i; c/]

D
M�1X
xD0

X
y

³ic.x; y; z D �1/C
X

x: vic.x/D0

³ic.x; y D Bic; z D 1/ fic.1/: (25)

Using this same approach, the segment loss probability, !ic, may also be calculated:

!ic D E[number of segments lost per frame at transmitting queue .i; c/]

E[number of arriving segments per frame at transmitting queue .i; c/]

D

X
8 x;yI 8 z<0

³ic.x; y; z/C
X

8 xI 8 z>0

³ic.x; y D Bic; z/

X
8 x;yI 8 z 6D0

³ic.x; y; z/
: (26)

4.2. Segment and packet loss probability at a receiving queue

The packet and segment loss probabilities at a receiving port are more complicated to calculate, since
we may have multiple packet arrivals (each from a different transmitting queue) to the given receiving
queue within a single arrival slot. Additionally, the order of the arrivals must be accounted in order
to determine which packets are lost. The packet and segment loss probabilities, 
 j .x/ and ! j .x/, are
not easily expressed in closed form, but they can be calculated using a slightly modified version of the
algorithm for calculating U j .x/ that was presented in Section 3.2.2.

5. Numerical results

We now discuss the accuracy of our analysis by applying the approximation algorithm to a network
with eight nodes, and comparing the loss probabilities to simulation results. We consider four different
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Table 3
Packet length distributions for each arrival process

Packet length Percentage of all packets

Arrival Arrival Arrival Arrival
Process 1 Process 2 Process 3 Process 4

5 segments 100% 25% 16.7% 0%
6 segments 0% 25% 16.7% 0%
7 segments 0% 25% 16.7% 0%
8 segments 0% 25% 50% 100%

Mean Sgmts=Pkt 5 6.5 7 8

Table 4
Channel sharing for C D 2; 3

C D 2 C D 3

R1 f1; 3; 5; 7g f1; 4; 7g
R2 f2; 4; 6; 8g f2; 5; 8g
R3 f3; 6g

packet-length distributions (and, hence, arrival processes). In varying these four distributions, the mass
of the packet-length distribution was shifted from favoring short packets to favoring long ones. The four
packet-length distributions are shown in Table 3. The mean utilization of the arrival process to each
transmitting queue remained fixed at 10% for all experiments.

In the numerical results presented below, the number of channels in the network is either two or
three. The eight receivers were assigned to the channels using a round-robin assignment algorithm.
The receiver assignments for each channel is shown in Table 4; Rc is a set that contains the receivers
assigned to channel ½c. Finally, for all transmitting and receiving queues we have assumed that
B.in/ic D B.out/

j D B. The buffer length B was varied from 10 to 20 segments.
The quantities aic, i.e., the number of service slots allocated to node i onto channel ½c per frame,

were fixed to be as close to 0.5 arrival slots as possible. Recall that, while the length of an arrival slot
is independent of C and is taken as our unit of time, the length of a service slot depends on the number
of channels. In cases in which this value was not an integral number of service slots, the value aic was
rounded up to ensure that every queue was granted at least 0.5 arrival slots of service during each frame
(i.e., aic D dN=2Ce 8 i; c). We have assumed that the time it takes a laser to tune from one channel to
another is equal to one arrival slot. The schedules which were used in these experiments are shown in
Fig. 8.

We only present results for segment loss probability because the packet loss probability is identical to
segment loss probability. The number of segments arriving to (respectively lost by) a transmitting queue
is related to the number of packets arriving to (respectively lost by) the same queue by a factor of the
average number of segments per packet. Since the average packet size is constant for the duration of a
single experiment and packet arrivals (and their lengths) are independent of the occupancy level of the
transmitting queue, packet and segment loss probabilities are essentially equal.
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Fig. 8. Channel sharing schedules for C D 2; 3.

Fig. 9. Transmitting queue segment loss probability !1;1 for C D 2.
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Fig. 10. Transmitting queue segment loss probability !1;1 for C D 3.

Figs. 9 and 10 show the segment loss probabilities (derived analytically) for transmitting queue
(1,1) and the four different arrival processes, as a function of buffer size B. Fig. 9 shows results for a
two-wavelength switch, while Fig. 10 shows results for a three-wavelength switch. We present results
only for the queue of node 1 which corresponds to the first wavelength, ½1, as it is representative of
the other transmitting queues. Note that, in Fig. 9 for Arrival Process 3 and B D 20, and in Fig. 10 for
Arrival Process 2 and B D 18, the loss probabilities are not shown. For these parameters, our analyses
reported loss probabilities significantly smaller than 1ð 10�6; to improve the readability of the graphs,
these values are omitted.

As one would intuitively expect, loss measures generally increased with average packet sizes and
decreased as more buffer space was available. However, in Fig. 10, we observe that the loss measures
for Arrival Process 2 are lower than those of Arrival Process 1. This behavior is the result of two factors
which act synergistically: (a) the change in the inter-packet gap distribution between the two arrival
processes, and (b) the worst-case instantaneous impact of a packet’s arrival on buffer occupancy.

First, the fact that the mean segment arrival rates are constant at 10%, means that the occupancy
probabilities for each arrival process are different. As Eq. (3) implies, the mean utilization (a known,
fixed value in our experiments) affects parameters q.0;0/ic and q.1;0/ic and the mean inter-packet gaps (see
Table 3). By increasing the mean inter-packet gap length, we are allowing for more service to occur
between packet arrivals which, in turn, reduces the queues’ occupancy levels.

Second, consider the case in which C D 3. Up to six segments per frame can arrive at a transmitting
queue by the user, since the frame is six arrival slots long (see Fig. 8b). However, at most two segments
can be transmitted from any of the transmitting queues in every frame, again due to the structure of our
schedule. Packet and segment loss are dependent on a new packet arriving to a queue at a particular
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Fig. 11. Receiving queue segment loss probability !1 for C D 2.

point in the schedule and finding the queue vulnerable to overflow at some point while receiving the
packet. Observe the effect of the arrival of a five-segment packet at various times during the frame on the
occupancy of transmitting queue of say, node 8 for wavelength ½1. If the packet arrives at the end of the
first arrival slot of the frame, the buffer’s occupancy will temporarily rise to as much as five segments
above its occupancy level when the packet began to be received by the buffer. If the packet arrives at
any other time during the frame, the buffer will peak only three segments above its initial point. Under
the same conditions, observe that a six-segment packet may cause the buffer’s occupancy to temporarily
increase by as much as only four packets, a seven-segment packet may cause the buffer’s occupancy
to peak between three and five segments above the buffer’s initial level, and an eight-segment packet
between four and six segments above the buffer’s initial level. With the interactions of these two effects,
it seems reasonable that the loss measures for Arrival Process 2 are lower than those of Arrival Process 1
in Fig. 10.

Simulation was used to determine the error of our algorithm’s results and 30 replications of 100,000
service slots each were executed; the simulation results were not plotted because they are extremely
small when compared to the scales shown in the graphs. Instead, we present in Table 5 the mean errors
associated with each curve shown in Figs. 9 and 10 7. Overall, we observed that simulation results
closely matched those obtained through our analysis.

Figs. 11 and 12 show the segment loss probabilities for receiving queue 1, !1, for C D 2 and C D 3,
respectively. Again, packet loss is not shown for the same reasons discussed earlier in this section.
As one would expect, the loss probability decreases with buffer size and as the average packet size

7 The mean absolute error is defined as the average of the absolute difference between all pairs of corresponding points
(simulated and analysis) for a given experiment (i.e., for a given arrival process and number of channels).
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Fig. 12. Receiving queue segment loss probability !1 for C D 3.

Table 5
Mean absolute transmitting queue errors for C D 2; 3

Arrival Process 1 Arrival Process 2 Arrival Process 3 Arrival Process 4

C D 2 3:2ð 10�6 3:5ð 10�6 7:8ð 10�5 2:0ð 10�4

C D 3 5:9ð 10�5 3:2ð 10�6 1:1ð 10�3 1:0ð 10�3

decreased. A significant drop in loss probabilities is observed as B increases from 14 to 16. This is
mainly due to the fact that a buffer size of 16 can accommodate two complete eight-segment packets.

Confidence intervals derived from simulation results were, again, not shown as part of Figs. 11 and 12
as they were extremely small; instead, mean absolute errors are presented in Table 6. In comparing these
errors to those in Table 5, it is immediately obvious that our receiving side analysis is not as accurate as
the transmitting side analysis. This error is primarily attributable to the fact that our function Li.Ð/ is a
heuristic and not an exact expression; this point was discussed in depth in Section 3.2.2. Comparing the

Table 6
Mean absolute receiving queue errors for C D 2; 3

Arrival Process 1 Arrival Process 2 Arrival Process 3 Arrival Process 4

C D 2 7:4ð 10�4 5:3ð 10�3 4:7ð 10�3 5:3ð 10�2

C D 3 1:2ð 10�4 2:4ð 10�2 2:8ð 10�2 3:2ð 10�2
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order of the error terms to the loss probability estimates shown, however, indicates that the average error
associated with these curves is at least one order of magnitude less than the majority of the data points
given.

6. Concluding remarks

We presented a discrete-time queueing network model of a broadcast WDM network architecture
carrying IP packet traffic. Variable-length IP packets are segmented at the MAC layer of the source, and
the fixed-size segments are transmitted in slots specified by a schedule that masks the transceiver tuning
latency. Segments are then reassembled into the original packet at the receiving node. IP packets arriving
at the network were assumed to follow an arbitrary length distribution. The queueing network model
was analyzed approximately and the queue-length distribution and loss probabilities at the transmitting
and receiving side of nodes were obtained. By comparing our analytical results to ones obtained through
simulation, we established the accuracy of our approximation. Using our analysis it is possible to
study the interactions among the various system parameters and to predict, explain, and fine tune the
performance of the network. To the best of our knowledge, this is the first comprehensive performance
study of optical local area networks under IP traffic, and it represents a first step towards bridging the
gap between the optical and Internet technologies.
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