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Abstract

We consider a photonic asynchronous transfer mode (ATM) switch based on the single-hop wavelength division multiplexing
(WDM) architecture with tunable transmitters and fixed frequency receivers. The switch operates under a schedule that
masks the transceiver tuning latency. We analyze approximately a queueing model of the switch in order to obtain the
queue-length distribution and the cell-loss probability at the input and output ports. The analysis is carried out assuming
two-state Markov modulated Bernoulli process (MMBP) sources that capture the notion of burstiness and correlation, two
important characteristics of ATM traffic, and non-uniform destination probabilities. We present results which establish that
the performance of the switch is a complex function of a number of system parameters, including the load balancing and
scheduling algorithms, the number of available channels, and the buffer capacity. We also show that the behavior of the switch
in terms of cell-loss probability as these parameters are varied cannot be predicted without an accurate analysis. Our work
makes it possible to study the interactions among the system parameters, and to predict, explain, and fine tune the performance
of the switch. © 1998 Elsevier Science B.V. All rights reserved.

Kevwords: Optical networks; Photonic ATM switch architecture: Markov modulated Bernoulli process (MMBP);
Wavelength division multiplexing (WDM): Discrete-time queueing networks

1. Introduction

One of the issues in evolving today’s asynchronous transfer mode (ATM) networks is that of developing
switch architectures that can effectively switch cells at very high data rates (currently, data rates on the
order of a few tens of Gigabits per second per port are envisioned). Over the last decade, a great deal of
research has been devoted to the design of fast cell switches suitable to a broadband integrated services
environment; surveys of some of these architectures may be found in [1,2]. Mainstream research and
development activities in the area of broadband switching are focused exclusively on electronics-based
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technologies which have attained a high level of maturity. On the other hand, the deployment of optics
is limited to mere point-to-point transmission where the technology has proven successful in a short time
span.

Given the continued rapid progress in lightwave technology (including the demonstration of fast tunable
transceivers [3,4], the development of erbium-doped fiber amplifiers [5], and guided-wave optical switching
[6]), and the anticipated total dominance of optical fiber in the wired network, the issue of deeper penetration
of optics naturally arises. Given the potential of optical solutions to cell switching, the possibility of
employing photonics to implement switching functions hitherto reserved for electronics is currently being
explored (see [7] and references thereof). However, there remain at least two major technical challenges
to be overcome before one can contemplate the design of all-optical switches. First, there is the difficulty
of “controlling light by light”, and secondly, the technologies for implementing buffering in the optical
domain are not yet mature enough. Consequently, the most likely scenarios for near-term photonic cell
switching will involve an optical switching fabric with electronic control and buffering.

Ithas long been recognized that wavelength division multiplexing (WDM) will be instrumental in bridging
the gap between the speed of electronics and the virtually unlimited bandwidth available within the optical
medium. The wavelength domain adds a significant new degree of freedom to network design, allowing
new network concepts to be developed. With a few exceptions (e.g., [8-11]), however, most broadcast
WDM architectures that have appeared in the literature require a large number of wavelengths and/or very
fast tunable transceivers [12,13]. Furthermore, the performance analysis of these architectures has been
typically carried out assuming uniform traffic and memoryless arrival processes (see most of the above
references, as well as [ 14,15]). However, it has been shown that, in order to study correctly the performance
of a switch, one needs to use traffic models that capture the notion of burstiness and correlation, and which
permit non-uniform output port destinations [16,17].

In this paper we revisit the well-known and widely studied single-hop broadcast-and-select WDM ar-
chitecture [18]. Unlike previous work, however, we develop a queueing-based decomposition algorithm to
study the performance of a single-hop ATM switch architecture operating under schedules that mask the
transceiver tuning latency [10]. The analysis is carried out using arrival models that capture the important
characteristics of ATM type of traffic, and non-uniform destination probabilities. Our work makes it possi-
ble to capture the complex interaction among the various system parameters such as the arrival processes,
the number of available channels, and the scheduling and load balancing algorithms. To the best of our
knowledge, such a comprehensive performance analysis of a single-hop WDM architecture has not been
done before.

Section 2 presents our system model and provides some background information. The performance
analysis of the switch is presented in Sections 3 and 4, numerical results are given in Section 5, and we
conclude the paper in Section 6.

2. The ATM switch under study
2.1. The switch architecture
We consider an optical switch architecture with N input ports and N output ports interconnected through

a broadcast passive star (the switch fabric) that can support C < N wavelengths A1, ..., Ac (see Fig. 1).
Each input port is equipped with a laser that enables it to inject signals into the optical medium. Similarly,
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Fig. 1. Queueing model of a switch architecture with N ports and C wavelengths.

each output port is capable of receiving optical signals through an optical filter. The laser at each input port
is assumed to be tunable over all available wavelengths. The optical filters, on the other hand, are fixed to
a given wavelength. Let A(j) denote the receive wavelength of output port j. Since C < N, a set R, of
output ports may be sharing a single receive wavelength A

Re={j 1Ay =hch e=1...C. 0

Sets R, will typically be obtained by running a load balancing algorithm [19].

The switch operates in a slotted mode. Since there are N ports but C < N channels, each channel must
run at a rate N/C times faster than the rate of the input links (N /C need not be an integer). The rate of an
output link is equal to the rate of an input link. Thus, we distinguish between arrival slots (which correspond
to the ATM cell transmission time at the input—output link rate) and service slots (which are equal to the
cell transmission time at the channel rate within the switch). Obviously, the duration of a service slot is
equal to C/N times that of an arrival slot. Without loss of generality, we assume that all input links are
synchronized at arrival slot boundaries; similarly for output links. On the other hand, all C channels internal
to the switch are synchronized at service slot boundaries.

The switch employs electronic queueing at both the input and output ports, as Fig. 1 illustrates. Cells
arrive at an input port i and are buffered at a finite capacity queue, if the queue is not full. Otherwise, they
are dropped. As Fig. | indicates, the buffer space at each input port is assumed to be partitioned into C
independent queues. Each queue c at input port i contains cells destined for the output ports which listen
to a particular wavelength A, ¢ = 1, ..., C. This arrangement eliminates the head-of-line problem, and
permits an input port to send a number of cells back-to-back when tuned to a certain wavelength. We let
B,-((',“) denote the capacity of the queue at input port i corresponding to wavelength ...

Cells buffered at an input port are transmitted on an FIFO basis onto the optical medium by the port’s
laser. This transmission takes place on an appropriate service slot which guarantees that the cell will be
correctly received by its destination output port. Upon arriving at the output port, the cell is once again
placed in a finite capacity buffer. Let B°™ denote the buffer capacity of output port j. Cells arriving at an
output port to find a full buffer are lost. Cells in an output buffer are also served on an FIFO basis.
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Interest in such a photonic switch architecture arises for several reasons:

e it is highly modular, allowing the switch to grow relatively easily by adding ports and wavelengths;

e it is scalable, since the number of wavelengths need not be equal to the number of ports, and since the
data rate within the switch needs only be N /C times the rate of the input—output links;

e its hardware requirements, in terms of the number of transceivers per port, is minimum;

e it can be reconfigured [19] to adapt to changing traffic patterns or to overcome failures of ports or
transceivers; and,

e it does not require extremely fast tunable transmitters (as explained below), and thus can be built using
currently available tunable optical devices.

2.2. Transmission schedules

One of the potentially difficult issues that arises ina WDM environment is that of coordinating the various
transmitters /receivers. Some form of coordination is necessary because (a) a transmitter and a receiver
must both be tuned to the same channel for the duration of a cell’s transmission, and (b) a simultaneous
transmission by one or more input ports on the same channel will result in a collision. The issue of
coordination is further complicated by the fact that tunable transceivers need a non-negligible amount of
time to switch between wavelengths. For the Gigabit per second rates envisioned here, and for 53 byte ATM
cells, the tuning latency of state-of-the-art tunable lasers or filters can be as long as several times the size of
a service slot [3]. Consequently, approaches that require each tunable transmitter to send a single cell and
then switch to a new wavelength, will suffer a high tuning overhead and will result in a very low throughput.

In a recent paper [10], it was shown that careful scheduling can mask the effects of arbitrarily long tuning
latencies, making it possible to build high-throughput photonic ATM switches using currently available
lightwave technology. The key idea is to have each tunable transmitter send a block of cells on a wavelength
before switching to another one. The main result of Rouskas and Sivaraman [ 10] was a set of new algorithms
for constructing near-optimal (and, under certain conditions, optimal) schedules for transmitting a set of
traffic demands {a;.}. Quantity a;. represents the number of cells to be transmitted by input port i onto
channel A, per frame. The schedules are such that no collisions occur. Furthermore, they are easy to
implement in a high speed environment, since the order in which the various input ports transmit is the
same for all channels [10].

Quantitya;c, i = 1,..., N, ¢ =1, ..., C,canbe seen as the number of service slots per frame allocated
to input port /, so that the port can satisfy the required quality of service of its incoming traffic intended for
wavelength A.. By fixing a;., we indirectly allocate a certain amount of the bandwidth of wavelength A..
to port i. This bandwidth could be equal to the effective bandwidth [20] of the total traffic carried by input
port i on wavelength A.. In general, the estimation of the quantities a;., i = 1,....N, ¢ =1,...,C. is
part of the call admission algorithm, and it is beyond the scope of this paper. We note that as the traffic
varies, a; may vary as well. In this paper, we assume that quantities a;. are fixed, since this variation will
more likely take place over larger scales in time.

We assume that transmissions by the input ports onto wavelength 2. follow a schedule as shown in Fig. 2.
This schedule repeats over time. Each frame of the schedule consists of M arrival slots. Within each frame,
input port / is assigned a;. contiguous service slots for transmitting cells on channel 4.. These ;. slots are
followed by a gap of g;- > 0 slots during which no port can transmit on .. This gap may be necessary
to ensure that input port i + 1 has sufficient time to tune from wavelength A._; to A, before it starts
transmission. The algorithms in [ 10] are such that the number of slots in most of the gaps is equal to either
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Fig. 2. (a) Schedule for channel 4. (b) The detail corresponding to input port 2.

zero or a small integer. Thus, the length of the schedule is very close to the lower bound max; {Zle aic}.
Note that in Fig. 2 we have assumed that an arrival slot is an integer multiple of service slots. This may
not be true in general, and it is not a necessary assumption for our model. Observe also that, although the
frame begins and ends on arrival slot boundaries, the beginning or end of transmissions by a port does not
necessarily coincide with the beginning or end of an arrival slot (although it is, obviously, synchronized
with service slots).

Since the schedule is based on per-port traffic information which is available at the switch itself, it can be
computed once and become available to all ports via shared memory (each input port needs access to a dif-
ferent part of the schedule; similarly for output ports). We also emphasize that, in a WDM environment with
a large tuning latency, per-port throughput may be low. This observation provides the motivation for using
the schedules in [10] which achieve a high aggregate throughput even in the presence of large latencies.
Finally, under low loads, the length of the schedule may be determined by the transmitter tuning require-
ments, meaning that many slots may be empty. Fortunately, we have shown [9] in a similar environment
that having empty slots does not affect the throughput, precisely because the traffic load is low.

2.3. Traffic model

The arrival process to each input port of the switch is characterized by a two-state Markov modulated
Bernoulli process (MMBP), hereafter referred to as 2-MMBP. A 2-MMBP is a Bernoulli process whose
arrival rate varies according to a two-state Markov chain. It captures the notion of burstiness and the
correlation of successive interarrival times, two important characteristics of ATM type of traffic. For details
on the properties of the 2-MMBP, the reader is referred to [21]. (We note that the algorithm for analyzing
the switch was developed so that it can be readily extended to MMBPs with more than two states.)

We assume that the arrival process toporti, i =1, ..., N, 1s given by a 2-MMBP characterized by the
transition probability matrix Q;, and by A; as follows:

(00) (01) [(0)}
g: q; o. QO
Q=" ! and A; = ! .
! (]-(l()) C]-(H) t 0 O!U)

! 4 4
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In (2), ql.(k” , k, 1 =0, 1, is the probability that the 2-MMBP will make a transition to state / given that it is

currently at state k. Obviously, q,,(ko) —+—ql.(kl) =1, k=0,1.Also, ai(o) (ai(l)) is the probability that an arrival
will occur in a slot at state 0 (1). Transitions between states of the 2-MMBP occur only at the boundaries
of arrival slots. We assume that the arrival process to each input port is given by a different 2-MMBP.
Let r;; denote the probability that a cell arriving to input port i will have j as its destination output port.
We will refer to {r;;} as the routing probabilities; this description implies that the routing probabilities can
be input port dependent and non-uniformly distributed. The destination probabilities of successive cells are
not correlated. That is, in an input port, the destination of one cell does not affect the destination of the cell
behind it. This assumption is reasonable when the switch is used as part of a backbone network. Given these

assumptions, the probability that a cell arriving to port i will have to be transmitted on wavelength A is

ric=2r1‘j, i=1....,N. 3)

JER,

3. Queueing analysis

In this section, we analyze the queueing network shown in Fig. 1, which represents the tunable-transmitter,
fixed-receiver switch under study. The arrival process to each input port is assumed to be a 2-MMBP, and the
access of the input ports to the wavelengths is governed by the schedule described in Section 2.2. We analyze
this queueing network in order to obtain the queue-length distribution in an input or output port, from which
performance measures such as the cell-loss probability and the cell delay can be obtained. Although we do
not present a delay analysis in this paper, an approximate expression for the delay distribution to traverse
the switch can be found in [22].

3.1. Input side analysis

In this section, we obtain the queue-length distribution of an input queue. We first sketch an exact
decomposition of the corresponding queueing network which, however, is not scalable to large systems.
Then, we present in detail an approximation method which, as we will show later, gives accurate results.

3.1.1. Exact queueing analysis

We first observe that we can analyze the input side of the switch by decomposing it into N sub-systems,
each corresponding to an input port, and analyzing each sub-system in isolation. Because of the fact that (a)
the arrival processes to the various input queues are independent, (b) the way the schedule is constructed
(i.e., that different inputs transmit to the same wavelength at different times), and (c) the operation of the
input ports is independent of the operation of output ports, this decomposition is exact. Furthermore, we
can analyze the sub-system corresponding to input port i by defining a (C + 2)-dimensional stochastic
process (x, vi, ..., ¥¢, z), where:
e x represents the arrival slot number within a frame (x = 0,1, ..., M — 1),
e y. indicates the number of cells in the input queue servicing Ao (y. =0, 1, ..., Bf:_"); c=1,...,C),and
e Z indicates the state of the 2-MMBP describing the arrival process to this port, i.e., z = 0, 1.

It is easy to verify that this process defines a Markov chain, and thus, the steady-state joint occupancy
distribution of the C queues of input port i can be obtained. Unfortunately, the state space of the Markov
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Fig. 3. Queueing sub-network for wavelength ..

chain grows in size as O(2M Hf:, Bi(i_m). As aresult, this analysis can only be applied to trivial systems.
In the next section, we describe an approximate decomposition that can be applied to large systems.

3.1.2. Approximate queueing analysis

Our main approximation is to assume that arrivals to each queue of a given input port are independent
and are generated by the original 2-MMBP (which characterizes the arrival process to the input port)
appropriately thinned using the routing probabilities r;,.

Assuming independence of arrivals among the queues of each input port, the original queueing network
can now be decomposed into C sub-networks, one per wavelength, as in Fig. 3. For each wavelength A, the
corresponding sub-network consists of N input queues, and all the output queues that listen to wavelength
2. Each input queue of the sub-network is the queue associated with wavelength A, in each input port of
the switch. That is, the ith input queue of this sub-network is the cth queue of input port /. Since throughout
this section we only consider the sub-network corresponding to i., we will simply refer to this queue as
“input queue i”. These input queues will transmit to the output queues of the sub-network over wavelength
A¢. In view of this decomposition, it suffices to analyze a single sub-network, since the same analysis can
be applied to all other sub-networks.

Consider now the sub-network for wavelength A.. We will analyze this sub-network by decomposing
it into individual input and output ports. As discussed in the previous section, each input queue i of the
sub-network is only served for a;. consecutive service slots per frame. During that time, no other input
port is served. Input queue / is not served in the remaining slots of the frame. In view of this point, there is
no dependence among the input queues of the sub-network, and consequently each one can be analyzed in
isolation in order to obtain its queue-length distribution.

From the queueing point of view, the queueing network shown in Fig. 3 can be seen as a polling system
in discrete time. Despite the fact that polling systems have been extensively analyzed, we note that very
little work has been done within the context of discrete time (see, e.g., [23]). In addition, this particular
problem differs from the typical polling system since we consider output queues, which are not typically
analyzed in polling systems.

3.1.3. The queue-length distribution of an input queue
Consider input queue i of the sub-network for A, in isolation. This input queue receives exactly a;,
service slots on wavelength A., as shown in Fig. 4(a). The block of g, service slots may not be aligned with
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Fig. 4. (a) Service period of input port i on channel A., and (b) detail showing the relationship among service completion,
arrival, 2-MMBP state transition, and observation instants within a service and an arrival slot.

the boundaries of the arrival slots. For instance, in the example shown in Fig. 4(a), the block of ¢;. service
slots begins at the second service slot of arrival slot x — 1, and it ends at the end of the second service slot
in arrival slot x + 1. Here, x — 1, x, and x + 1 represent the arrival slot number within a frame.

For each arrival slot, define v;.(x) as the number of service slots allocated to input queue i that lie within
arrival slot x.2 Then, in the example in Fig. 4(a), we have: v;.(x — 1) = 3, v (x) = 4, vjo(x + 1) = 2,
and vj.(x") = O for all other x’. Obviously we have

M-—1
Z Vie(X) = aje. 4)
=0

We analyze input queue i by constructing its underlying Markov chain embedded at arrival slot bound-
aries. The order of events is as follows. The service (i.e., transmission) completion of a cell occurs at an
instant just before the end of a service slot. An arrival may occur at an instant just before the end of an
arrival slot, but after the service completion instant of a service slot whose end is aligned with the end of an
arrival slot. The 2-MMBP describing the arrival process to the queue makes a state transition immediately
after the arrival instant. Finally, the Markov chain is observed at the boundary of each arrival slot, after the
state transition by the 2-MMBP. The order of these events is shown in Fig. 4(b).

The state of the input queue is described by the tuple (x, v, z), where:

e x represents the arrival slot number within a frame (x =0, 1,..., M — 1),
e y indicates the number of cells in the input queue (v =0, 1, .. ., Bi(('?""), and
e z indicates the state of the 2-MMBP describing the arrival process to this queue, i.e., z = 0, 1.

ZIn Fig. 4, we assume that each arrival slot contains an integral number of service slots. If this is not the case, vio(x) 18
defined as the number of service slots that are concluded within arrival slot x (i.e., if there is a service slot that lies partially
within arrival slots x and x + 1, it will be counted in v;.(x + 1)).
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Table 1

Transition probabilities out of state (x, y, z) of the Markov chain

Current state  Next state Transition probability
(x,.2) (x @ 1, max(0, y — vie(x & 1)), 7) g — aPric)
(x.y.2) (@ L min(BM™ max{0, y —vex @ D} + 1), 20 ¢

It is straightforward to verify that, as the state of the queue evolves in time, it defines a Markov chain.
Let & denote modulo-M addition, where M is the number of arrival slots per frame. Then the transition
probabilities out of state (x, y, z) are given in Table 1. Note that the next state after (x, y, z) always has
an arrival slot number equal to x @ 1. In the first row of Table 1 we assume that the 2-MMBP makes a

transition from state z to state z’ (from (2), this event has a probability qi(“,) of occurring), and that no cell
arrives to this queue during the current slot (from (2) and (3), this occurs with probability 1 — al-(:)r,-(»).
Since at most v;c(x @ 1) cells are serviced during arrival slot x @ 1, and since no cell arrives, the queue
length at the end of the slot is equal to max{0, y — v;-(x & 1)}. In the second row of Table 1 we assume
that the 2-MMBP makes a transition from state z to state z" and a cell arrives to the queue. This arriving
cell cannot be serviced during this slot, and has to be added to the queue. Finally, the expression for the
new queue length ensures that it will not exceed the capacity BL{") of the input queue.
We observe that the probability transition matrix of this Markov chain has the following block form:

0 R;.(0) 0 0 e 0 0
0 0 R;.(1) 0 cee 0 |
0 0 0 R;.(2) --- 0 2
Sic = : : : : : : (5)
0 0 0 0 - RijeM —2) | M2
_R,'C(M— B 0 0 0 0 | M-

This block form is due to the fact that at each transition instant (i.e., at each arrival slot boundary), the
random variable x changes to x @ 1. Changes in the other two random variables, v and z, of the state of the
queue are governed by the matrices R;.(x). There are M different R, matrices, one for each arrival slot x
in the frame. Let us define matrices X;. and Y;. as follows:

Xie=ricAi Qi and Y;e = —-ric A} Q, (6)

where 1 is the identity matrix. Then the transition matrix R;.(x) associated with arrival slot x can be written
as

Yie X, 0 0 0 0 0 0 0
Y. X;o O 0 0 0O o0 ... 0 Vi (xB1)
Ricx)=1 0 Y Xo5e 0 0 0 0 - 0] vex@h+l (7)
0 0 Y Xiv O 0 0 - 0 viexdl)+2
L0 0 - 0 Yi Xie O - 0] g™
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The structure of matrix R;.(x) given in (7) can be explained as follows. Suppose that the number of cells
v in the queue at the end of slot x is at most v;.(x @ 1). Since up to v;.(x @ 1) cells can be served within
slot x & 1, the number in the queue at the end of that slot will be 1 or 0, depending on whether an arrival
occurred or not. This is indicated by the transitions in rows 0 through v;.(x @ 1) of matrix R;.(x). However,
if at the end of slot x we have y > v;.(x & 1), then the number in the queue at the next transition will be
v — vie(x @ 1) (plus one if an arrival occurred). This is indicated by the transitions in rows vic(x @ 1) + 1
through B;. of R;.(x). Of course, y cannot exceed the queue capacity BI.((’,D). Since the number of service
slots v;.(x @ 1) depends on the particular slot x & 1 within the frame, R;.(x) is a function of x.

Matrix R;.(x) is slightly different when v;.(x @ 1) = 0. This is because, in this case, if the state of the
input queue is such that y = B/, a new arrival will be discarded. So when y = B'™, the 2-MMBP is
allowed to make a transition, but regardless of whether or not an arrival is generated, the number of cells
in the queue will remain equal to B{"™ . Thus, the last row of R;.(x) will be [0 0 --- 0 Q;].

It is now straightforward to verify that the Markov chain with transition matrix S;, is irreducible, and
therefore a steady-state distribution exists. Transition matrix S;. defines a p-cyclic Markov chain [24], and
therefore it can be solved using any of the techniques for p-cyclic Markov chains in [24, Ch. 7]. We have
used the LU decomposition method in [24] to obtain the steady-state probability ;. (x, y, z) that at the end
of arrival slot x, the 2-MMBP is in state z and the input queue has y cells. The steady-state probability that
the queue has y cells at the end of slot x, independent of the state of the 2-MMBP is

Tic(x, y) = Z TielX, ¥, 2). 8)

z=0.1

Finally, we note that all the results obtained in this section can be readily extended to MMBP-type arrival
processes with more than two states. For this, it would suffice to appropriately modify matrices X;. and
Yi..

3.2. Output side analysis

We now obtain the queue-length distribution of an output queue. Our analysis follows steps similar to
the input side case.

3.2.1. Exact queueing analysis
Let us suppose that the (exact or approximate) queue-length distribution of the input queues is known.
Given that transmissions on different channels are independent, and that output queue receivers operate on
one wavelength, the output side of the switch may be decomposed into C independent sub-systems, one
per wavelength. Let us consider the sub-network corresponding to channel A., and let k. be the number of
output ports sharing this channel. We can then define a (k. + 1)-dimensional Markov chain, where:
e x indicates the arrival slot number within the frame (x =0, 1, ..., M — 1), and
e wy, Yn = 1,... k. indicates the number of cells at the nth output queue which shares i, (w, =
0.1..... B,
The transitions out of state (x, wy, ..., wg,.) can be computed given the schedule and the queue-length
distribution of the input ports. However, for realistic switch dimensions, this method will lead to a state
space explosion since the total number of states is of the order of M x [] jeR, B;Ou”. We now proceed to
describe an approximation method that can be used for large systems. ‘
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3.2.2. Approximate queueing analysis

Consider the sub-network for wavelength A, and observe that the arrival process to the output queues
sharing A. is the combination of the departure processes from the input queues corresponding to A.. An
interesting aspect of the departure process from the input queues is that for each frame, during the sub-period
ajc we only have departures from the ith input queue. This period is then followed by a gap g;. during
which no departure occurs. This cycle repeats for the next input queue. Thus, in order to characterize the
overall departure process offered as the arrival process to these output queues, it suffices to characterize
the departure process from each input queue, and then combine them. (We note that this overall departure
process is quite different from the typical superposition of a number of departure processes into a single
stream, where, at each slot, more than one cell may be departing.)

However, the arrival processes to the output queues listening on 4. are not independent. Specifically,
if j and j’ are two output ports on A., and there is a transmission from input port i to output port j in a
given service slot, then there can be no arrival to output port j in the same service slot. As in the input side
case, we will nevertheless make the assumption that these arrival processes are indeed independent, and
that each is an appropriately thinned (based on the routing probabilities) version of the departure process
from the input queues. Note that this is an approximation only when there are multiple output ports with
receivers fixed on channel A.

3.2.3. The queue-length distribution of an output queue

As in the previous section, we obtain the queue-length distribution of output port j at arrival slot bound-
aries. Recall that an arrival slot to an input queue is equal to a departure slot from an output queue. Also,
arrival and departure slots are synchronized. Therefore, during an arrival slot x, a cell may be transmitted
to the outgoing link from the output queue. However, during slot x, there may be several arrivals to the
output queue from the input queues.

Let (x, w) be the state associated with output port j, where:

e x indicates the arrival slot number within the frame (x =0, 1,..., M — 1), and
e w indicates the number of cells at the output queve (w =0, 1, ..., B}Out) ).

We assume the following order of events. A cell will begin to depart from the output queue at an instant
immediately after the beginning of an arrival slot and the departure will be completed just before the end
of the slot. A cell from an input port arrives at an instant just before the end of a service slot, but before the
end-of-departure instant of an arrival slot whose end is aligned with the end of the service slot. Finally, the
state of the queue is observed just before the end of an arrival slot and after the arrival associated with the
last service slot has occurred (see Fig. 5(b)).

Let u;(x) be the number of service slots of any input queue on wavelength A, within arrival slot x. We
have that

N
uj (A) = Z v,-(-(x). (9)

f==]

where v;¢(x) is as defined in (4). Quantity u j(x) represents the maximum number of cells that may arrive
to output port j within slot x. In the example of Fig. 5(a) where we show the arrival slots during which
cells from input ports i and i + 1 may arrive to output port j, we have u ix = 1) = vic(x — 1) = 4,
uj(x) = vjie(x) + vit1.(x) =142 =3, and ui(x + 1) = vy (x + 1) = 4.
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Fig. 5. (a) Arrivals to output port j from input ports i and / 4 1. (b) The detail showing the relationship of departure, arrival,
and observation instants.

Table 2

Transition probabilities out of state (x, w) of the Markov chain

Current state ~ Next state Transition probability

(x,0) (x@® Lomin{B* 5,0 <s <u;(x@ 1) Yoy esyms Ty Litsi 1)

(x,wh,w>0 (xd1, min{B;OUU, w+st-1D.0<s<u;(x 1) ZS|+-~+SN=S nlN:l Li(s; | x)

Observe now that (a) at each state transition x advances by one (modulo-M), (b) exactly one cell departs
from the queue as long as the queue is not empty, (c) a number s < u;(x & 1) of cells may be transmitted

from the input ports to output port j within arrival slot x & 1, and that (d) the queue capacity is B(Om) Then
the transition probabilities out of state (x, w) for this Markov chain are given in Table 2.

In Table 2, L;(s; | x) is the probability that input port i transmits s; cells to output port j given that the
system is at the end of arrival slot x (in other words, it is the probability that s; cells are transmitted within
slot x @ 1). ¥ To obtain L;(s; | x), define r ij as the conditional probability that a cell is destined for output
port j, given that the cell is destined to be transmitted on 4., the receive wavelength of output port j:

’ rij rij
rij Zken(‘ - e (10)

This “thinning” of the arrival processes using the r; rouung probabilities discounts the correlation between
arrival streams and is the crux of the apprommatlon for the output side of the switch. The error introduced
by this approximation will be discussed later in this work.

3 Since in most cases only one or two input ports will transmit to the same channel within an arrival slot (refer also to Fig. 2),
the summation and product in the expression in the last column of Table 2 do not necessarily run over all N values of , only
over one or two values of 7. Thus, this expression can be computed very fast, not in exponential time as implied by the general
form presented in the table.
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Define m;.(y | x) as the conditional probability of having y cells at the ith input queue given that the
system is observed at the end of slot x:
niC(xa Y)

Tic(y | X) = T(-x_)— =M mic(x, y). (1T)

Then, for 7] ;< 1, the probability L;(s; | x) is given by

B(in)
Z Tie(y | %) (mm{y vic(x @ 1)}) (rl_fl_)si(l _ rl{j)min{y,vic(x@l)]-si’
Li(si | x) =1 y=x ‘ (12)
si S vie(x B 1),
0, otherwise.

Expression (12) can be explained by noting that input port i will transmit s; cells to output port j during
arrival slot x @ 1 if (a) v;c(x ® 1) > s;, (b) input port i has y > s; cells in its queue for A, at the beginning
of the slot (equivalently, at the end of slot x), and (c) exactly s; of min{y, v;c(x @ 1)} cells that will be
transmitted by this queue in this arrival slot are for output ;.

If ri’ ;= 1, in which case j is the only port listening on wavelength A, the expression for L; (s; | x) must
be modified as follows:

n’lt(sl ‘x)a 05“‘[ <Uic(x@1)a
{in)
Lii [X) =1 3" mc(y [2). si=vic(x 1), (13)
y=5;
0, otherwise.

Expressions (12) and (13) are based on the assumption that v;.(x & 1) < Bi(én) which we believe
is a reasonable one. In the general case, quantity v;.(x @ 1) in both expressions must be replaced by
min{vic(x & 1), B2V}

The transition matrix T; of the Markov chain defined by the evolution of the state (x, w) of output queue
J has the following form, which is similar to that of matrix S;. given by (5):

0 U;(0y 0 0o - 0 ] o
0 0 Uiy o .- 0 I
0 0 0 U@ - 0 2
T, = : ) X ) . ) . (14)
0 0 0 0 - UM-2) | M2
UM -1) 0 0 0o - 0 | M-

Uj(x) is a (B;OUO + 1) x (B (out) + 1) matrix that governs changes in random variable w of the state
of the output queue. The elements of this matrix can be determined using Table 2 and expressions (12) or
(13). Since L;(s; | x) depends on v;c(x) and u;(x), U;(x) also depends on x, the slot number within the
frame.

We observe that T; also defines a p-cyclic Markov chain. We have used the LU decomposition method
as prescribed in [24] to obtain 7; (x, w), the steady-state probability that output queue j has w cells at the
end of slot x.
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3.3. Summary of the decomposition algorithm

Below we summarize our approach to analyzing the sub-network of Fig. 3 corresponding to wavelength
Ac. We assume that quantities {a;.} and the corresponding schedule (see [10]) are given.

1. For each arrival slot x, use the schedule and expressions (4) and (9) to compute the quantities v;.(x)
anduj(x),i =1,..., N, j:A(j) = Ac.

2. For each input queue i, construct the transition probability matrix S;. from (2), (3), (5), (6), and (7).
Solve this matrix and use (8) to obtain the steady-state probability m;.(x, y) that input queue i has y
cells at the end of the xth slot of the frame.

3. For each output port j € R, use w;(x, y) derived in Step 2, and (12) and (13) to construct the transition
matrix T; given by (14). Solve the matrix as in Step 2 to obtain 7;(x, w), the steady-state probability
that port j has w cells in its queue at the end of slot x.

Note that the complexity of this approach is dominated by Step 2. For each of the N input queues we have
to solve a matrix of dimensions [2M (B,-(Zn) + D] x[2M (Bi(;n) + 1)], where M is the length of the schedule
(in arrival slots) and BI-(:,H ) is the capacity of the respective queue. (Inverting a K x K matrix takes time
O(K?), although we can take advantage of the fact that the matrix is sparse to solve for the queue-length
distributions at a significantly faster rate.) Thus, in the worst case, the overall complexity of our algorithm
is O(NM3B3), where B = max,-{B,(;n)}.

4. Cell-loss probability

We now use the queue-length distributions for the input and output ports, m;.(x, y) and m;(x, w), re-
spectively, derived in the previous section, to obtain the cell-loss probability at the input and output ports.

4.1. The cell-loss probability at an input port

Let £2;. be the cell-loss probability at the cth queue of input port i, i.e., the probability that a cell arriving
to that queue will be lost. £2;, can be expressed as

E[number of cells lost per frame at queue ¢ of port {]

Qi = (15)

E[number of arrivals per frame at queue c of port i]

Obtaining the expectation in the denominator is easy. From (2) and [21], the steady-state arrival probability
for the arrival process to this queue is

10) (0 01) (1

g10a® | O®

Vi = o1
ql_( )

T (16)

1

+4q
Then
E[number of arrivals per frame at queue c of porti] = M y; rj,. (17)

To obtain the expectation in the numerator, let us refer to Fig. 4(b) which shows the service completion,
arrival, and observation instants within slot x. We observe that, due to the fact that at most one cell may
arrive in slot x, if the number v;.(x) of slots during which this queue is serviced within arrival slot x is not
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zero (i.e., vic(x) > 0), no arriving cell will be lost. Even if the cth queue at input port / is full at the beginning
of slot x, v;c(x) > 1 cells will be serviced during this slot, and the order of service completion and arrival
instants in Fig. 4(b) guarantees that an arriving cell will be accepted. On the other hand, if v;.(x) = O for slot
x, then an arriving cell will be discarded if and only if the queue is full at the beginning of x (equivalently,
at the end of the slot before x). Since the 2-MMBP can be in one of two states, we have that

E[number of cells lost per frame at queue ¢ of port ]

1
= Z Zaj(Z)riC”ic(Bic, zlxel). 18)

X0 (x)=0 z=0

In (18), © denotes regular subtraction with the exception that, if x = 0,thenx &1 = M — 1, and the
summation runs over all x for which v (x) = 0. Using (15), (17) and (18), and the fact that 7;.(x) = /M
for all x, we obtain an expression for £2;. as follows:

1 (2) (in)
Qic _ Zx:vic(x):(] ZZ:O al JTlC(-x e 1’ BiC 7Z)‘ (19)
Vi

4.2. The cell-loss probability at an output port

The cell-loss probability at an output port is more complicated to calculate, since we may have multiple
cell arrivals to the given output port within a single arrival slot (refer to Fig. 5(a)). Let us define 2i(n|x)
as the conditional probability that » cells will be lost at output queue j given that the current arrival slot is

x. An output port will lose n cells in slot x if (a) the port had w, 0 < w < Bj(om), cells at the beginning of

slot x, and (b) exactly Bfom) — w + n cells arrived during slot x. We can then write
B;OUU
Qi |x)= Y miw|xo )PrB™ —w+ncellsamive to J | x], (20)
w=0

where 7j(w | x © 1) = Mm(x © |, w) similar to (11). The last probability in (20) can be obtained using
(12) or (13), as in Table 2:

N
Pr{s cells arrive to output port j | x] = Z n Lisi|xe1l). 2D

Spttsy=s =1
Note that at most u; (x) cells may arrive (and get lost) in arrival slot x. Using (20), we can then compute
the expected number of cells lost in slot x as

ujix)
E[number of cells lostat j | x] = Z n$2i(n| x). 22)
n=|
The expected number of arrivals to port j in slot x can be computed using (21):
u;(x)
E[number of arrivalsto j | x] = Z s Pr {s cells arrive to j | x]. (23)

s=1
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Finally, the probability £2; that an arriving cell to output port j will be lost regardless of the arrival slot x
can be found as follows:

_ E[number of lost cells in a frame] _ Zi”:_ol E[number of lost cells at j | x]

= als i = M- ' (24
E[number of arrivals in a frame] Y =0 E[number of arrivals to j | x]

5. Numerical results

We now apply our analysis to a switch with N = 16 ports. The arrival process to each of the ports of the
switch is described by a different 2-MMBP. In Fig. 6, we plot two important parameters of each of the 16
2-MMBPs we have used: the mean interarrival time in slots (yl.'l in (16)), and the squared coefficient of
variation of the interarrival time given in [21]. As can be seen, the arrival processes exhibit a wide range of
behavior in terms of these two parameters. The routing probabilities we used are

010, i=1,...,16, j=1,

"= V1006, i=1,...,16, j=2....,16. )

That is, output port 1 is a hot spot, receiving 10% of the total traffic, while the remaining traffic is evenly
distributed to the other 15 ports. The total rate at which cells are generated by users of the network is 1.98
cells per arrival slot. Most of the traffic is generated at port 1, as the rate of new cells generated at this port
is 0.583 cells per arrival slot. The cell generation rate decreases monotonically for ports 2-16. For load
balancing purposes, we have allocated one of the C channels exclusively to port 1, since this port receives
a considerable fraction of the total traffic. The remaining C — 1 channels are shared by the other 15 output

200 T T T T T T T

x Mean Iinterarrival Time -o—
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Fig. 6. Mean arrival rate and squared coefficient of variation of the interarrival time for the arrival processes to the 16 input
ports of the switch.
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Table 3
Channel sharing for C = 4, 6, 8

C=4 C=6 C=28
R {1} {1} n
Ra {2,5.8,11, 14} [2.7.12) (2,9, 16}
Rs {3,6.9, 12,15} (3,8, 13) {3, 10}
R4 {4,7. 10,13, 16) (4,9, 14) (4,11}
Rs {5, 10,15} {5, 12}
Rs {6.11, 16} 6, 13}
Ry (7. 14}
Rs {8, 15}

ports. The allocation of the output ports to the remaining wavelengths was performed in a round-robin
fashion, and is given in Table 3 for C =4, 6, 8.

The quantities a;. of the schedule, i.e., the number of cells to be transmitted by port i onto channel A,
per frame (refer to Section 2.2 and Fig. 2) were fixed to be as close to (but no less than) 0.5 arrival slots as
possible. Recall that, while the length of an arrival slot is independent of C and is taken as our unit of time,
the length of a service slot depends on the number of channels. In cases in which 0.5 arrival slots is not an
integral number of service slots, the value g; is rounded up to the next integer to ensure that every queue is
granted at least 0.5 arrival slots of service during each frame * (i.e., a;c = [N/2C1Vi, ¢). In constructing
the schedules, we have assumed that the time it takes a laser to tune from one channel to another is equal

to one arrival slot. > Finally, for all the results we present in this section we have let all input and output
queues have the same buffer capacity B (i.e., B,-(cl_n) = b’;out) =
need to be controlled.

In Fig. 7 we show the part of the schedule corresponding to channel A; for three different values of
the number of channels C = 4, 6, and 8; the parts of the schedules for other channels are very similar.
The schedules will help explain the performance results to be presented shortly. Since the number of ports
N = 16, for C = 4 each arrival slot is exactly four service slots long. Each input port is allocated 0.5 arrival
slots, or 2 service slots for transmissions on each channel, as Fig. 7(a), illustrates. For C = 4 the switch
is bandwidth limited [10], i.e., the length of the schedule is determined by the bandwidth requirements on
each channel (= 16 x 0.5 = 8 arrival slots), not the transmission and tuning requirements of each input
port (= 4 x 0.5+ 4 x 1 = 6 arrival slots). The schedule for C = 6 in Fig. 7(b) is an example where there
is a non-integral number of service slots within each arrival slot. More precisely, one arrival slot contains
N/C = %6-, or 2% service slots. Each input port is assigned two service slots (a;. = 2) for transmissions on
each channel, since one service slot is less than 0.5 arrival slots. For C = 6, the switch is again bandwidth
limited, and the total schedule length becomes 16 x 2 = 32 service slots, or 12 arrival slots.

B) to reduce the number of parameters that

4 Other schemes for allocating a;. have been implemented, including setting a;. proportional to r;., setting a;. proportional
to max:{ai(f,) }, and setting a;. to the effective bandwidth [20] of port i’s total traffic carried on channel A.. Although the
cell-loss probability results do depend on the actual values of ;.. the overall conclusions drawn regarding our analysis are
very similar. Thus, we have decided to include only the simplest case here.

5 Again, due to the synchronous nature of this switch, if one arrival slot is not an integral number of service slots, the number
of service slots for which a transmitter cannot transmit is rounded up to the next integer, thereby setting the required time for
tuning to some value slightly greater than one arrival slot. As a result, the tuning time is always [N/ C] service slots.
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Fig. 7. Transmission schedules for A; and C = 4, 6, 8 (the unit of time is fixed across the schedules and is equal to an arrival
slot).
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Fig. 8. Input queue cell-loss probability £2; | for C = 4, 6, 8 as a function of buffer size.

Finally, when C = 8, a;c = 1 service slot = 0.5 arrival slots, and the corresponding schedule is shown
in Fig. 7(c). However, in this case the switch is tuning limited [10), i.e., the port transmission and tuning
requirements determine the schedule length. Since each input port has to transmit for 0.5 arrival slots on
each channel, and to tune to each of the 8 channels (recall that the tuning time is one arrival slot), the total
schedule length is 8 x 0.5 + 8 x 1 = 12 arrival slots. But the transmissions on each channel only take
16 x 0.5 = 8 arrival slots; the remaining 4 arrival slots in Fig. 7(c) are not used.

Figs. 8—11 show the cell-loss probability (CLP) at four different input queues as a function of the buffer
size B for C = 4, 6, 8. We only show results for two input ports, namely, the port with the highest traffic
intensity (port 1) in Figs. 8 and 10, and a representative intermediate port (port 8) in Figs. 9 and 11. We also
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Fig. 9. Input queue cell-loss probability £2g | for C = 4, 6, 8 as a function of buffer size.
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Fig. 10. Input queue cell-loss probability §2; ; for C = 4, 6, 8 as a function of buffer size.

consider only input queues 1 and 2 (out of C) at each port. Queue 1 at each port is for traffic to be carried on
wavelength A, which is dedicated to output port 1 (the “hot spot”). Thus, the amount of traffic received by
this queue does not change as we vary the number of channels, since the first channel is dedicated to output
port 1. Queue 2 at each port is for traffic to be carried on wavelength A,. The amount of traffic received
by this queue will decrease as the number of channels increases, since channel A, will be shared by fewer
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Fig. 11. Input queue cell-loss probability £2g » for C = 4, 6, 8 as a function of buffer size.
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Fig. 12. Output queue cell-loss probability §21 for C = 4, 6, 8 as a function of buffer size.

output ports. The behavior of queue 2 is representative of the behavior of the other C — 2 queues, 3 through
C.

Fig. 8 plots the CLP §2; ; (i.e., the CLP at input queue 1 of port 1) as a function of the buffer size B for
C =4, 6, 8. As expected, the CLP decreases as the buffer size increases. For a given buffer size, however,
the CLP changes dramatically and counter to intuition, as the number C of channels is varied. Specifically,
the CLP increases with C; i.e., adding more channels results in worse performance. When B is 10, there
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Fig. 13. Output queue cell-loss probability £23 for C = 4, 6, 8 as a function of buffer size.

is roughly nine orders of magnitude difference between the CLP for C = 4 and C = 8, and three orders
of magnitude difference between C = 4 and C = 6. As we discussed above, the traffic load of this queue
does not change with C; the queue receives the traffic for destination 1, which is always 10% of the total
traffic generated at port 1 (see (25)). What does change as C varies is the service rate of the queue, and this
change can help explain the results in Fig. 8. Referring to Fig. 7, we note that when C = 4, each frame
of the schedule is M = 8 arrival slots long, and a| ) = 2. Hence, at most 8 cells may arrive to this queue
during a frame while as many as 2 cells will be serviced. When C = 6, M = 12 and ¢} = 2, indicating
a decrease in the service rate of the queue. Similarly, for C = 8, M = 12 and a; ; = |, a further decrease
in available service per frame for this queue. This decrease is the reason behind the sharp increase in CLP
with C in Fig. 8. Very similar behavior is observed in Fig. 9 where we plot £2g 1, the CLP at input queue
I of port 8. The main difference between Figs. 8 and 9 is in the absolute values of CLP. The very small
CLP numbers for §2g | are due to the fact that the amount of traffic entering queue 1 of port 8 (0.004 cells
per arrival slot) is significantly smaller than the traffic entering the same queue of port 1 (0.058 cells per
arrival slot — recall that the traffic sources were chosen so that the cell generation rate decreases as the port
index increases). In fact, for buffer sizes B = 9 and B = 10 and C = 4 our analysis gave CLP values
that are essentially zero; these values are not plotted in Fig. 9 because we believe that they are the result of
round-off errors.

Figs. 10 and 11 plot the CLP at input queue 2 of ports 1 and 8, respectively, against the buffer size. From
(25) and Table 3 we note that the traffic received by this queue decreases from 30% of the overall switch
traffic when C = 4 to 18% when C = 6 or 8; this decrease is due to the fact that 5 output ports share
wavelength A; when C = 4, but only 3 output ports share it when C = 6 or 8. Thus, the CLP behavior
at this queue will depend not only on the change in the service rate as C varies, but also on the change in
the amount of traffic received due to the addition of new channels. In Fig. 10, and for a given buffer size,
the CLP decreases as C increases from 4 to 6 (compare to Fig. 8). In this case, the decrease in the traffic
arrival rate (from an average rate of 0.175 to 0.105 cells per arrival slot) more than offsets the decrease
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in the service rate that we discussed above. On the other hand, the CLP values for C = 6 are higher than
those for C = 4 in Fig. 11 (input queue 2 of port 8) due to the fact that the decrease in the offered load
(from 0.012 to 0.007 cells per arrival slot) is not substantial enough to offset the decrease in the service
rate; still, this increase is less severe than the one in Fig. 9 where there was no decrease in the arrival rate.
As C increases to 8 there is no change in the offered traffic for either queue; as expected, the CLP rises
with the decrease in the service rate.

Finally, Figs. 12 and 13 plot the CLP at output queues 1 and &, respectively. Output queue 8 is represen-
tative of queues 2-16 in that it receives 6% of the total switch traffic (see (25)). Again, the CLP decreases
with increasing buffer size. Also, the lower values of CLP in Fig. 13 compared to Fig. 12 reflect the fact
that only 6% of the total traffic is destined to output queue 8. as opposed to 10% for the hot spot queue 1.
What is surprising in Figs. 12 and 13, however, is that, for a given buffer size, the CLLP decreases as the
number C of channels increases. This behavior is in sharp contrast to the one we observed in the input side
case, and can be explained as follows. First, higher losses at the input queues for larger values of C means
that fewer cells will make it to the output queues, thus losses will be lower at the latter. But the dominant
factor in the CLP behavior in Figs. 12 and 13 is the change in the service rate of the output queues as C
varies (refer to Fig. 7). For C = 4, as many as 32 cells may arrive to each output queue within a frame, and
8 cells may be served. When C = 6 the number of potential arrivals in a frame remains at 32, but the frame
is 12 arrival slots long, meaning that up to 12 cells may be served, leading to a drop in the CLP. Finally, for
C = 8 the number of cells served in a frame is the same as in C = 6, but the maximum number of cells
that may arrive becomes only 16, explaining the dramatic drop in the CLP.

In order to validate the accuracy of the approximation algorithm, we ran several experiments involving
different switch configurations. The switch sizes varied from two ports and one wavelength to 16 ports
and 10 wavelengths. We observed that the smallest relative error © for cell-loss occurred at an output port
which was allocated to a dedicated wavelength. The relative error observed in this case was approximately
1 x 1073, The relative error increased as the number of ports sharing a single wavelength increased. The
worst relative error observed was 5 x 1072, We observed a similar behavior for the cell-loss at the input
ports.

6. Concluding remarks

In this paper we introduced a model for a photonic single-hop ATM switch architecture. The model
consists of a queueing network of input and output queues, and a schedule that masks the transceiver tuning
latency. We developed a decomposition algorithm to obtain the queue-length distributions at the input
and output queues of the switch. We also obtained analytic expressions for the cell-loss probability at the
various queues. Finally, we presented a study case to illustrate the significance of our work in predicting
and explaining the performance of the switch in terms of the cell-loss probability.

Overall, the results presented in this paper indicate that the performance of an optical WDM switch can
exhibit behavior that is counter to intuition, and which may not be predictable without an accurate analysis.
The performance curves shown also establish that the cell-loss probability in such an environment depends
strongly on the interaction among the scheduling and load balancing algorithms, the routing probabilities,

b Relative error is taken here to mean the ratio of the absolute difference between the mean simulated value and the value
calculated by our algorithm divided by the algorithm’s value.
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and the number of available channels. Our work has made it possible to investigate the behavior of optical
ATM switches under more realistic assumptions regarding the traffic sources and the system parameters
(e.g., finite buffer capacities) than was possible before, and it represents a first step towards a more thorough
understanding of ATM switch performance in a WDM environment. Our analysis also suggests that simple
slot allocation schemes similar to the ones used for our study case are not successful in utilizing the
additional capacity provided by an increase in the number of channels. The specification and evaluation of
more efficient slot allocation schemes should be explored in future research.
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