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We revisit spectrum allocation (SA), a fundamental problem in optical network design, and we explain that
it can be modeled as a permutation problem. This new model eliminates spectrum symmetry, a property
that presents a significant challenge to conventional spectrum allocation solutions. Accordingly, we develop
parameterized first-fit (PFF), a new symmetry-free heuristic for the SA problem that has several desirable
features: it explores a pre-defined subset of the solution space whose size is tailored to the available

computational budget; it constructs this subset by sampling from diverse areas of the solution space rather
than from the neighborhood of an initial solution; it finds solutions by applying the well-known first-fit (FF)
algorithm and thus it can be deployed readily; its execution can be easily parallelized; and it is effective and
efficient in finding good quality solutions.

1. Introduction

The design and planning of optical networks encompasses the allo-
cation of optical spectrum resources to traffic demands as an integral
part of the optimization process [1]. Spectrum allocation (SA) [2], a
generalization of wavelength allocation (WA) [2,3], is tightly coupled
to other aspects of network design, including the routing process [4-6],
traffic grooming [7], virtual topology embedding [8,9], and network
survivability [10]. Therefore, since the early days of optical network-
ing, researchers and industry practitioners have focused on developing
effective spectrum allocation strategies. These efforts, however, have
been complicated by two features inherent to the SA and WA problems:
spectrum continuity and spectrum symmetry.

Due to the spectrum continuity property of optical elements, a
connection that optically bypasses a node must exit on the same
optical frequency it entered. Hence, the spectrum resources that are
in use on one link may affect the resources that may be allocated
on other links, creating resource contention among the links of the
network. As a result, the SA problem is computationally intractable in
general topologies [11], even when it is not coupled to other objectives
(e.g., routing).

Symmetry refers to the fact that spectrum slots are interchange-
able [12]. Hence, for each possible solution, a large number of equiva-
lent solutions may be derived simply by using a different permutation
of spectrum slots [13]. Symmetry is particularly challenging for con-
ventional ILP formulations of the SA problem, regardless of whether
these were developed specifically for SA or as part of formulations that

tackle the more general routing and spectrum allocation (RSA) prob-
lem [5,14-16]. Since an ILP solver will have to evaluate an exponential
number of distinct but equivalent optimal solutions, its running time
can be unnecessarily long [13]. ILP formulations based on maximal
independent sets (MIS), such as the one we developed in [17] for the
RWA problem in rings, do not suffer from symmetry. However, MIS-
based formulations are impractical for networks of general topology as
the number of variables increases exponentially with the network size.

Given these two challenges, the SA problem is typically solved using
heuristic algorithms that attempt to minimize spectrum contention.
These include the first-fit, best-fit, most-used, and least-loaded heuris-
tics [18], each representing a different tradeoff between algorithmic
complexity and amount of network state information required. In par-
ticular, first-fit (FF) is a simple algorithm that operates without any
global knowledge and performs well across various network topolo-
gies and traffic demands [1,2,19]. Consequently, the FF algorithm is
commonly employed for spectrum/wavelength allocation.

In recent work [20] we have proven an optimality property of the
FF algorithm that provides new insight into the SA problem and allows
us to model it as a permutation problem. We also leveraged this prop-
erty to develop recursive first-fit (RFF), an optimal branch-and-bound
algorithm for spectrum allocation. To the best of our knowledge, RFF is
the first spectrum symmetry-free SA algorithm for networks of general
topology, and our experiments indicate that it can find optimal or near-
optimal solutions to medium-size networks quickly [20]. Nevertheless,
since the SA problem is NP-hard, the RFF algorithm takes exponential
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time in the worst case even though it completely avoids symmetrical
solutions.

In this work, an extension of [21], we present parameterized first-
fit (PFF), a new heuristic for the SA problem that builds upon the
permutation model and represents a significant departure from existing
heuristics. The PFF heuristic has several desirable properties: (1) it
employs an intuitive parameter to calibrate the size of the solution
space subset to explore according to the available computational re-
sources; (2) it constructs this subset by including solutions distributed
uniformly across the whole solution space (i.e., the explored subset is
not limited to any particular region of the solution space); (3) it applies
the well-known FF algorithm, hence it can be readily deployed; and (4)
it is amenable to multi-threaded implementation to explore the solution
space in parallel.

The rest of the paper is organized as follows. In Section 2 we discuss
the SA problem, explain the concept of spectrum symmetry, discuss the
optimality property of the FF algorithm, model the SA problem as a
permutation problem, and describe the symmetry-free RFF algorithm.
In Section 3 we present parameterized FF (PFF), a new heuristic for the
SA problem that allows the network designer to explore customizable
subsets of permutations that sample from diverse regions of the solution
space. We evaluate the PFF algorithm in Section 4, and we conclude the
paper in Section 5.

2. A symmetry-free model of spectrum allocation
2.1. The offline SA problem

Consider an optical network with topology graph G = (V, A), where
V is the set of nodes and A is the set of directed fiber links in the
network. Let N = |V| denote the number of nodes and L = |A| the
number of directed links. The traffic offered to the network consists of
a set 7 = {T;} of K connections. Each connection is represented by a
tuple T; = (s;,d;, p;,t;), where: s; is the source and d; the destination
node of the connection; p; is the path between nodes s; and d; that the
connection must follow; and #; is the number of spectrum slots required
to carry the traffic of the connection.

In this work we develop a new algorithm for the offline SA problem.
Offline SA problem takes as input a network topology graph G = (V, A)
and a set 7 = {7;} of K connections as defined above. The objective
of our algorithm is to allocate spectrum slots to each connection along
its physical path so as to minimize the index of the highest spectrum
slot used on any link of the network. The allocation of spectrum slots
must satisfy three constraints:

+ Contiguity: each connection 7; is allocated a block of #; contiguous
spectrum slots;

+ Continuity: each request is allocated the same block of spectrum
slots along all links of its path p;; and

+ Non-overlap: requests whose paths share a link are allocated non-
overlapping blocks of spectrum slots.

This objective attempts to pack the allocated spectrum slots as tightly as
possible, and hence it minimizes spectrum fragmentation and allows for
growth in demand; consequently, it is one that has been adopted widely
in the literature. Also, we assume that the path p; of each connection 7;
is fixed and pre-determined, i.e., any routing decision has been made
before the allocation of spectrum. Therefore, any algorithm that solves
this SA problem, including the one we present in the next section,
may be applied as part of a multi-step, iterative approach to the RSA
problem [2].

2.2. Spectrum symmetry
We have shown [11] that the offline SA problem is NP-hard even

for chain (i.e., single-path) networks with four or more links. But even
beyond computational intractability, a major challenge in tackling this
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SA problem or any of its variants that have been studied in the liter-
ature, relates to spectrum symmetry. Specifically, blocks of contiguous
spectrum slots of a certain size are interchangeable. Therefore, for any
optimal solution to the SA problem, one can derive a large number of
equivalent solutions simply by permuting the spectrum blocks.

Fig. 1 illustrates how spectrum symmetry leads to multiple equiv-
alent solutions. Fig. 1(a) shows a solution to the SA problem on a
four-link chain network with K = 9 connections in the set 7 =
{A,B,...,I}. Each connection is represented by a different color that
spans all the links in its path. For instance, the bottommost connection
(i.e., connection A) spans all four links of the network, indicating that
connection A has been allocated the contiguous block consisting of
spectrum slots 1 and 2 along each of these links. Note that the solution
shown in Fig. 1(a) is optimal: the highest assigned slot on Link 3 is
equal to the lower bound, i.e., the number of slots required to carry
the traffic requests whose path includes Link 3.

Consider now two blocks of spectrum slots in Fig. 1(a): the three-slot
block consisting of spectrum slots 3-5, and the five-slot block consisting
of spectrum slots 6-10. Fig. 1(b) shows the equivalent solution that can
be obtained by permuting these two blocks of slots. In the new solution,
the two connections B and C that were allocated slots in the range 3-5
in Fig. 1(a) are now shifted up and are allocated the corresponding slots
in the range 8-10, while the four connections D, E, F and G that were
allocated slots in the range 6-10, are now shifted down accordingly.
Otherwise, the two solutions in Figs. 1(a) and (b) are identical; they
are also equivalent in that they yield the same objective function value.
Finally, Fig. 1(c) shows a third optimal solution that is obtained from
the one in Fig. 1(b) by permuting the three-slot block consisting of
spectrum slots 8-10 with the three-slot block consisting of slots 11-13.
Furthermore, note that (1) it is possible to obtain many more solutions
equivalent to the three shown in Fig. 1 by permuting different blocks
of spectrum slots, and (2) although Fig. 1 shows optimal solutions,
spectrum symmetry applies to non-optimal solutions as well.

Based on the above discussion it is clear that, due to spectrum
symmetry, conventional ILP formulations [5,14-16] may yield an expo-
nentially large number of equivalent (optimal or suboptimal) solutions.
Consequently, ILP solvers are forced to explore a solution space that is
essentially the product of the connection permutation space and the
spectrum permutation space. As we explain next, however, exploring
such a vast solution space is unnecessary.

2.3. The FF optimality property

Consider an instance of the offline SA problem on graph G and
connection set 7 = {T;,i = 1,...,K}. The FF algorithm considers
connection requests in a fixed order and allocates to each connection
a contiguous block of spectrum slots that starts at the lowest-indexed
slot available along all links of the connection’s path. Let P be a per-
mutation (i.e., an ordering) of the connection requests 7. Let SOL(P)
denote the solution to the SA problem obtained by the FF algorithm
when it considers each connection in the order implied by permutation
P. Let OPT denote the objective value of an optimal solution to the SA
problem. Clearly, for any permutation P of the connections it must be
that OPT < SOL(P).

In recent work [20] we have proven that for any optimal solution
to the SA problem it is possible to construct, in polynomial time,
a permutation P}, of the K connections such that applying the FF
algorithm to the connections in the order implied by Py, yields an
equivalent (i.e., optimal) solution. This result implies the following
optimality property of the FF algorithm, which helps explain why
many studies of the SA and WA problems have confirmed that the
FF algorithm yields good solutions across a wide range of problem
instances:

Definition 2.1 (FF Optimality Property). For any instance of the offline
SA problem there exists a permutation Py of the K connections for which
the FF algorithm constructs an optimal solution, i.e., SOL(P; p)=OPT.
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Fig. 1. (a) An optimal solution to an SA problem instance on a 4-link chain with K =9 connections, A, B,C, D, E, F,G,H,I. (b) A second optimal solution obtained from the one
in (a) by swapping slots 3-5 with slots 6-10. (c) A third optimal solution obtained from the one in (b) by swapping slots 8-10 with slots 11-13.

Returning to Fig. 1, it is easy to verify that the solution shown
in Fig. 1(a) is the product of the FF algorithm on the permutation
[A,B,C,D,E,F,G,H,I] of the K = 9 connections. On the other
hand, the equivalent solution in Fig. 1(b) cannot be a product of
the FF algorithm. Consistent with our result in [20], by re-allocating
connection C (i.e., the one spanning only Link 1) to slots 5 and 6 from
slots 8 and 9, we obtain a new solution that would be produced by
the FF algorithm, say, on the permutation [A, D, E,C, F,G, B, H, 1] of
the K = 9 connections. Similar observations apply to the solution in
Fig. 1(c).

2.4. Spectrum allocation as a permutation problem

The FF optimality property opens up new directions for optical
network design. For the first time, it is now possible to design a new
class of SA algorithms that do not have to sift through the exponential
number of symmetric solutions derived from spectrum permutations
such as the ones in Figs. 1(b) and 1(b). Specifically, the FF optimality
property has two implications:

« First, it essentially transforms the SA problem into a permutation
problem: to find an optimal solution to the SA problem, it is
sufficient to examine the connection permutations.

+ Second, it shows that in selecting among the various connection
permutations there is no need to consider a spectrum allocation
other than the one produced by the FF algorithm.

These observations suggest a procedure for finding the unknown
permutation Py

Enumerate all connection permutations and select the one for which the
FF algorithm Yyields the smallest objective value.

Although the number K! of connection permutations is exponential,
reducing spectrum allocation to a permutation problem allows for the
elimination of all symmetric solutions and drastically reduces the size
of the solution space that needs to be explored.

Accordingly, we developed recursive first-fit (RFF), a symmetry-
free optimal branch-and-bound algorithm for the SA problem [20]. RFF
searches the entire space of connection permutations to find one that
is optimal for the problem instance at hand, applying the FF algorithm
as it incrementally builds each permutation during the search. RFF
represents a significant improvement over existing approaches as it
completely sidesteps the spectrum symmetry challenge.

In a network with N nodes and traffic between all node pairs, the
size K of the connection set 7 is O(N?). Therefore, any algorithm,
such as RFF, that considers all possible connection permutations to
determine the optimal spectrum allocation must take time that is
exponential in the size of the network, O(N?!). Next, we present a

Fig. 2. PFF(M) explores the spectrum of connection permutations between the two
extremes, FF and RFF.

parameterized heuristic that is inspired by the permutation model of
spectrum allocation. The heuristic applies the FF algorithm to a subset
of the permutation space whose size can be customized to the available
computational budget.

3. Parameterized First Fit (PFF)
3.1. Motivation

Our motivation for a new algorithm for the SA problem stems from
the observation, illustrated in Fig. 2, that the FF heuristic and the
optimal RFF algorithm we developed in [20] represent two opposite ex-
tremes in exploring the solution space of connection permutations. The
FF heuristic applies the FF algorithm to a single permutation, whereas,
given sufficient time, RFF will explore all K! permutations. While RFF
can be executed in parallel [20], exploring the entire permutation space
for SA problem instances encountered in practice would be infeasible.
Typically, there exists a budget in terms of the amount of computational
resources (or time) allotted to tackling network design problems such
as spectrum allocation. Therefore, any algorithm, either optimal or
heuristic in nature, that runs for a limited amount of time is bound to
explore only the region of the solution space around its starting point,
and hence fail to find optimal solutions that may exist in different parts
of the space.

Furthermore, algorithms that operate in a branch-and-bound fash-
ion, including RFF and those employed by integer linear programming
(ILP) solvers, are sensitive to the values of the input parameters, in
this case the spectrum demands #,. Consequently, given two different
problem instances on the same topology graph G = (V, A) and number
of connections K, branch-and-bound algorithms will explore a different
number of permutations (i.e., a different fraction of the solution space)
for each instance within a prescribed amount of running time. In
addition, it cannot be known a priori for which instance the algorithm
will explore a larger or smaller fraction of the solution space; and it may
be difficult to determine the relative size of the solution space explored
for each instance after the algorithm has completed.

Parameterized first fit, PFF(M), where M is a parameter such that
1 < M < K, is a generalization of the FF and RFF algorithms that
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operates in the vast space between these two extremes, as shown in
Fig. 2. Rather than searching the whole solution space of size O(K!)
from some initial and often arbitrary starting point, the key idea of
PFF(M) is to completely explore a subset of the solution space of
size O(M!), where M < K, and, typically, M <« K. Ideally, the M!
connection permutations to be explored should be distributed evenly
across the whole solution space. One strategy for achieving this goal
would be to generate the M! permutations randomly. Instead, PFF(M)
takes a structured approach to generating the M| permutations that has
several benefits for network designers:

- it provides a well-defined tradeoff between the size of the per-
mutation space to be explored and the amount of computational
resources available, via the choice of the value of parameter M;
it employs a method that is readily reproducible, works for every
value of parameter M, and explores the exact same subset of the
solution space for any two instances of the same SA problem,

it explores connection permutations that are spread over diverse
regions of the solution space, and

it provides better and more even coverage of the solution space
as the value of M increases.

3.2. The PFF algorithm

In determining a solution to an instance of the SA problem, PFF(M)
considers only subsets of the solution space of size equal to that of a
(smaller) permutation space, i.e., one of size O(M!), M < K. It then
generates M! connection permutations that are spread over the entire
original solution space.

To achieve this objective, PFF(M) first partitions the set 7 of K
connections into M < K subsets, 7;,75,..., Ty, and generates all M!
permutations of the M subsets. We assume that the connections within
each subset are listed in a fixed order, and we consider this list as a
single meta-connection. In essence, then, this operation produces all M!
meta-connection permutations.

PFF(M) then generates the M! connection permutations to evaluate
by parsing each meta-connection permutation and replacing each meta-
connection with the list of its constituent connections. This approach
produces connection permutations that are spread over the entire solu-
tion space. To see this, note that two meta-connection permutations
that differ in the first meta-connection will produce two connection
permutations that are far apart in the connection permutation space;
similar observations apply to permutations that differ in the second,
third, etc., meta-connection. In other words, replacing each meta-
connection with its individual connections involves large jumps in the
connection permutation space, achieving our objective of generating
connection permutations that cover the entire solution space.

Finally, PFF applies the FF algorithm to the M! connection permu-
tations created in this manner, and selects the permutation that results
in the best solution to the SA problem.

Fig. 3 illustrates this concept for the set 7 = {A, B,C, D, E, F,G} of
K =7 connections partitioned into three subsets, i.e., meta-connections,
T,,T,, and 73. There are several options for partitioning the set 7 into
subsets. In this work, we only consider partitions in which the sizes of
the various subsets vary by at most one. Therefore, each subset 7; is
such that |7;| = |[K/M| or |[K/M | + 1. Without loss of generality, we
determine the subsets such that |7;| > |7,| > --- > |Tj,|. Therefore, the
M = 3 subsets of T are: 7, = {A,B,C}, T, = {D,E}, and T3 = {F,G}.
Each subset is shown in Fig. 3 in a different color.

The left column of Fig. 3 shows the M! = 6 subset permutations
(or meta-connection permutations, as we mentioned above). The right
column of the figure shows the corresponding 6 connection permu-
tations obtained by replacing each subset (meta-connection) with its
constituent connections. Although this is a small number compared to
the 7! = 5040 possible connection permutations to provide adequate
coverage of the solution space, it is evident that these six permutations

Optical Switching and Networking 49 (2023) 100742

Fig. 3. PFF permutation space for the set 7 = {A, B,C, D, E, F,G} of K =7 connection
requests, partitioned into M =3 subsets, 7, = {A,B,C},7T, = {D,E},T; = {F,G}.

are spread across different regions of the space. In this example, PFF
will evaluate only the 6 permutations shown in the right column of the
figure by running the FF algorithm on each.

Algorithm 1 shows the operation of PFF(M). The preprocessing step
in Lines 1-6 generates the M subsets of the connection set 7, and from
them the M! connection permutations that the algorithm considers.
This step takes time O(M!), but since M is determined by the network
designer and is not part of the input to the problem, the running time
can be considered as having a fixed value. Note that a network designer
may have to solve multiple instances for a given SA problem defined
by the network topology G = (V, A) and number of spectrum requests
K; for instance, this may be due to carrying out a “what-if” analysis to
explore the sensitivity of design decisions to forecast traffic demands.
In this case, the designer only needs to perform the preprocessing step
once, store the M! permutations, and use them to solve all instances
that are part of the analysis. Therefore, the computational cost of this
step can be amortized over multiple problem instances.

The main part of the algorithm in Lines 7-13 simply runs the FF al-
gorithm on each of the M! permutations generated in the preprocessing
step, and selects the one that offers the best solution to the problem at
hand. Each application of the FF algorithm takes time O(K L), as each
permutation consists of K requests and each request may involve any of
the L links in the network. Therefore, the total running time of this part
of the algorithm is O(K LM!), where M is again considered as having
a fixed value.

We also note that Steps 9-11 of PFF are applied separately to each
connection permutation. Therefore, these steps may be executed in
parallel by locking access to the variables BestSOL and BestP and
spawning multiple threads, each thread executing Steps 9-11 on a
different connection permutation. Assuming that up to R threads may
execute in parallel, applying the FF algorithm to the M! permutations
will require [M!/R] batches of parallel threads, reducing the time
complexity of the PFF algorithm to O(KL(M!/R)).

The PFF(M) algorithm encompasses the FF heuristic (for M = 1)
and the optimal RFF algorithm (for M = K), as special cases. Parameter
M affords the network designer a wide range of options between
these two extremes, and its value can be selected so as to strike an
appropriate balance between the quality of solution and the running
time O(KL(M!/R)) of the FF application step of the algorithm. In
particular, the degree of parallelism, R, which generally depends on the
operating system and/or computing environment, has a direct impact
on the maximum value of M that can be used. Let us assume that
Steps 9-11 of PFF (i.e., the FF algorithm) take s time units to execute
on a single permutation, and there is a time budget of S > s units for
obtaining a solution. Then, the value of M must be selected such that
M! < RS/s. In other words, the number of permutations that may be
explored within a given time budget increases linearly with R.

As a final note, let SOL’I‘fFF denote the value of the best solution
returned by PFF(M). Incrementing the value of parameter M from,
say, m to m + 1, results in an increase in the size of the solution
space explored by a factor of m + 1. Nevertheless, despite the fact
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Algorithm 1 Parameterized First Fit

Input:
G = (V, A): network topology
T =A{T, = (s;,d;, p;, 1;}: set of connections
K = |T|: number of connections
Output:
Best P: best connection permutation
BestSOL: SA solution corresponding to BestP

PFF(M,1 < M <K)
1: {Preprocessing: Generate M! connection permutations}
2: Partition 7 into M subsets, 7, 7,, -+, Ty, such
that |7;| = |[K/M| or |K/M] +1;
3: Generate all M! permutations of the M subsets;
4: fori=1;i < M!;i++ do
5: P, « connection permutation created by replacing
each subset in subset permutation i with its connections;
: end for
: {Main: Apply FF to the M! connection permutations}
fori=1;i < M!;i++ do
S < SOL(P)); {solution obtained by FF on P}
10:  if S < BestSOL then
11: BestSOL = S; BestP = P;
12:  end if
13: end for
14: return;

that PFF(m + 1) evaluates a larger number of connection permutations
than PFF(m), it does not necessarily follow that SOLE;IF < SOL'I'; FE
Intuitively, since PFF(m + 1) and PFF(m) each evaluate a different set
of connection permutations, it is conceivable that a permutation in the
set of PFF(m) may yield a solution that is better than those produced
by permutations in the set of PFF(m + 1). Our experiments confirm this
observation as we have occasionally found that SOLY .. < SOL’;;'F
on the same problem instance. Therefore, in this work we apply the

PFF(M) algorithm as follows:

(1) Run PFE(m) forallm=1,..., M.

(2) Return SOLppp =min,_;  »{SOL} .}

Consequently, the solutions in Step 2 above are monotonically non-
increasing as a function of m.

4. Simulation study
4.1. Simulation setup

We now present the results of simulation experiments we have
carried out to evaluate the performance of the PFF(M) heuristic we pre-
sented in the previous section. We run the experiments on the Henry2
Linux HPC cluster at NC State University [22-24] which consists of
more than 1000 compute nodes and over 10,000 cores.

The experimental setup is similar to the one we used in [20]. Specif-
ically, we consider two network topologies, NSFNET and GEANT2
shown in Fig. 4, and route each connection along the minimum-hop
path between its source and destination nodes. The number of nodes,
links, connections, and meta-connections for the two topologies that we
used in our simulations are listed in

Table 1; note that in our study we used the maximum possible
number of connections for each network, i.e., one connection between
every node pair for a total of K = N(N —1)/2 connections, where N is
the number of nodes.

We create SA problem instances by generating connections between
all pairs of nodes in the network. We consider data rates of 10, 40,
100, 400, and 1000 Gbps. For a given problem instance, we generate a
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(b)

Fig. 4. Network topologies used in our study: (a) NSFNET, (b) GEANT2.

random value for the demand between a pair of nodes based on one of
three distributions: (1) Uniform: each of the five rates is selected with
equal probability; (2) Skewed low: the rates above are selected with
probability 0.30,0.25,0.20,0.15, and 0.10, respectively; or (3) Skewed
high: the five rates are selected with probability 0.10,0.15,0.20,0.25,
and 0.30, respectively. Once the traffic rates between each node pair
have been generated, we calculate the corresponding spectrum slots by
assuming that the slot width is 12.5 GHz, and adopting the parameters
of [25] to determine the number of spectrum slots that each connection
requires based on its data rate and path length. Specifically, we
consider two modulation formats: for paths with up to (respectively,
more than) ten links we assume 16-QAM (respectively, QPSK), such
that demands of size 10, 40, 100, 400, and 1000 Gbps are assigned
1, 1, 2, 8, and 20 (respectively, 1, 2, 4, 16, and 40) slots, consistent
with the values used in [25, Table 1]. For each traffic distribution, we
generate 100 random problem instances.

We consider the highest index of allocated spectrum slots on any
network link as the performance measure to compare the various
algorithms. For a meaningful comparison between different problem in-
stances, we normalize the solutions returned by the various algorithms
by dividing with the lower bound for the corresponding instance. A
lower bound LB on the optimal objective value may be obtained by
ignoring the spectrum contiguity and continuity constraints and simply
counting the spectrum slots required by all connections routed along
the most congested link:

LB = il
max 2 t; (€8]
T,eT :lep;

In the experiments, we varied the value of parameter M of the
PFF(M) heuristic as M = 1,2,3,...,8. We start with a permutation P in
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Table 1

Values of network topology parameters. N: number of nodes, L: number of (bidirec-
tional) links, K = N(N —1)/2: number of connections, M: number of meta-connections
(defined in Section 3.2).

N L K M
NSFNET 14 21 91 1,2,....8
GEANT2 32 54 496 1,2,...,8

Fig. 5. PFF(M) solution quality as % from LB, NSFNET.

which the K traffic requests are listed in decreasing order of spectrum
demand #;, and requests with the same demand are listed in decreasing
order of path length. For each value of M > 2, we partition permutation
P into M subsets as we described in the previous section. Recall that
when M = 1, PFF(1) considers only one permutation, P, and hence it is
equivalent to the FF heuristic. In all experiments we deployed R = 32
parallel threads, the maximum number available to us on the Henry2
cluster.

4.2. Solution quality

Figs. 5 and 6 summarize the results we have obtained regarding
the relative performance of the PFF(M) heuristic, M = 1,2, ...,8, with
respect to the lower bound. Specifically, for each value of M, the figures
show how far the solutions obtained by PFF(M) are from the lower
bound for problem instances generated with the skewed low, uniform,
and skewed high traffic distributions. The values shown are averages
over the 100 problem instances from the specified distribution.

As we can see for the NSFNET topology in Fig. 5, the FF algorithm
(i.e., PFF(1)) performs well and, on average, produces solutions that are
within 9%-10% of the lower bound across the 300 problem instances
we used in our experiments. These results are consistent with earlier
research indicating that the FF algorithm finds solutions of good qual-
ity. Turning our attention to the PFF(M) results for M = 2,...,8, we
observe that initially, as M increases to 2 and 3, the quality of the
solutions improves only slightly relative to FF. This is not surprising, as
the number of permutations that PFF considers only increases to 2 (for
PFF(2)) and 6 (for PFF(3)). As M increases further, the solution quality
shows more pronounced improvement; for M = 8, the solutions found
by PFF are within 3.5-6.5% of the lower bound on average, depending
on the traffic distribution, a substantial reduction relative to the FF
solutions.

Similar observations apply to the GEANT2 results shown in Fig. 6.
We note that FF produces solutions of high quality, within 2%-5% of
the lower bound, on average, across the GEANT2 problem instances.
Nevertheless, PFF(M) was able to improve on the FF results across
all values of M = 2,...,8. For M = 8, specifically, PFF constructs
solutions that are within 2% of the lower bound for the skewed low
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Fig. 6. PFF(M) solution quality as % from LB, GEANT2.

distribution and within 0.5% of the lower bound for the other two
traffic distributions.

Figs. 5 and 6 indicate that both the FF and PFF(M), M > 2, algo-
rithms produce solutions that are closer to the lower bound under the
uniform and skewed high traffic distributions compared to the solutions
under the skewed low distribution, for both the NSFNET and GEANT2
topologies. This can be explained by noting that, on average, the data
rate of a connection is 193 Gbps under the skewed low distribution,
312 Gbps under the uniform distribution, and 461 Gbps under the
skewed high distribution. Since the random problem instances differ
only in terms of the traffic demands (i.e., the number of connections
and their paths are exactly the same), it follows that the spectrum slot
requirements of instances generated under the skewed low distribution
are substantially smaller than those of instances generated with the
other two distributions. As a result, both the lower bound and the
solution values are lower under the skewed low distribution. Therefore,
the ratio of solution values to the lower bound, as plotted in Figs. 5
and 6, tends to be higher for the skewed low distribution: even if the
absolute difference between the solution and the lower bound is the
same for instances generated by different distributions, the ratio will
be higher when the denominator (i.e., the lower bound) is smaller.
As we can see from the two figures, this relative gap in performance
holds true for the FF algorithm; but although PFF(M) starts at a larger
gap for the skewed low distribution, the relative improvement is similar
to the other two distributions as M increases. Moreover, this relative
gap is higher for the GEANT2 topology when there are K = 496
connections contributing to the lower bound (rather than K = 91
connections for NSFNET), further increasing the difference, in absolute
terms, between the lower bound of the skewed low and that of the other
two distributions. Overall, the higher ratios observed in the two figures
are mostly due to the absolute values of demands, not to the inability of
the PFF (and FF) algorithm to find solutions close to the lower bound.

Figs. 7 and 8 present a different perspective regarding the quality
of the solutions obtained for the NSFNET and GEANT2 topologies,
respectively. Specifically, the two figures plot the number of problem
instances for which the PFF(M) solutions are either (1) better than
the corresponding FF solution (denoted as “<FF” in the figures), or (2)
equal to the lower bound LB of the corresponding instance (denoted
as “=LB”). To interpret the results in the two figures we note that:

+ a solution that is equal to LB is an optimal one;

+ a solution with a value higher than LB but lower than the
corresponding FF solution may be optimal, but we cannot say for
certainty as the optimal value is unknown in this case; and

as we explained in the previous section, the PFF(M) heuristic
returns solutions that are monotonically non-increasing as a func-
tion of M, and hence, for any instances that it cannot find a better
solution it returns the FF (i.e., PFF(1)) solution.
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Fig. 7. PFF(M) solutions relative to FF and LB, NSFNET.

Fig. 8. PFF(M) solutions relative to FF and LB, GEANT2.

From the two figures we observe that PFF(M) can find solutions
that are better than those of FF, for at least some problem instances,
even when M = 2. As M increases, the number of instances for
which the PFF solution is either better than the FF solution or equal
to the lower bound, increases further. When M = 8, PFF improves
upon the FF solution in 55%-78% of the problem instances in the
case of the NSFNET, and in 87%-100% of the instances in the case of
GEANT2, depending on the traffic distribution. Furthermore, it finds an
optimal solution in 27%-40% (respectively, 41%-98%) of the instances
for NSFNET (respectively, GEANT2), again depending on the traffic
distribution.

4.3. Running time

Fig. 9 plots the running time of the PFF(M) algorithm as a function
of M for the GEANT2 topology; we omit results for the NSFNET
topology as the running time shows very similar trends but the absolute
values are smaller. The algorithm was run in parallel using R = 32
threads. The running time of PFF does not depend on the traffic
distribution, hence the values shown are representative of all three
distributions we have used in our experiments. We first observe that
the running time does not change as M increases from 1 to 4. This
can be explained by the fact that 4! = 24, and hence all connection
permutations up to M = 4 can be handled by a single batch of
32 threads. Starting with M = 5, multiple batches of 32 threads
must be deployed (sequentially) to apply the FF algorithm to all M!
permutations, and hence the running time starts increasing with M. As
expected, as the value of M is incremented, say, from m to m + 1, the
running time increases by approximately a factor of m + 1.

The most important observation from Fig. 9 is that within just 800 s
(i.e., in less than 15 min), the PFF(8) algorithm can produce solutions
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Fig. 9. Running time of PFF(M) with R = 32 threads as a function of M, GEANT2
topology.

that are significantly better than those of FF and very close to the lower
bound, as shown in Figs. 6 and 8. The PFF(8) algorithm also constructs
solutions of quality comparable to those of the RFF algorithm [20,26].
Overall, these results indicate that, by examining permutations that
are spread across the entire solution space, PFF makes effective use of
computational resources in identifying solutions of high quality.

5. Concluding remarks

We have developed parameterized first-fit (PFF), a new heuristic
for the SA problem that completely sidesteps the spectrum symmetry
challenge and can identify near-optimal solutions to moderate-size
networks in minutes. We plan to extend this work in two directions: we
will explore the potential of PFF in larger-size networks and a wider
range of traffic distributions, and we will develop spectrum symmetry-
free algorithms for optical network design problems that include SA as
a subproblem. To this end, a natural research direction would be to
combine PFF with the routing algorithms we developed in [27,28] to
tackle large RSA problems efficiently.
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