Formal Description of the Jumpstart Just-In-Time Signaling
Protocol Using EFSM-

A Halim Zaim?, Ilia Baldine®, Mark Cassada®, George N. Rouskas?,
Harry G. Perros®, and Dan Stevenson®

*MCNC, 3021 Cornwallis Rd. P.O.Box 12889, Research Triangle Park, NC 27709 USA
’NCSU, Department of Computer Science, Raleigh, NC, USA

ABSTRACT

We present a formal protocol description for a Just-In-Time (JIT) signaling scheme running over a core dWDM
network which utilizes Optical Burst Switches (OBS). We apply an eight-tuple extended finite state machine (EFSM)
model to formally specify the protocol. Using the EFSM model, we define the communication between a source
client node and a destination client node through an ingress and one or multiple intermediate switches. We worked
on single burst connections that means setting up the connection just before sending a single burst and then closing
the connection as soon as the burst is sent. The communication between the EFSMs is handled through message
transfer between protocol entities.

1. INTRODUCTION

In recent years, a great change in the protocol design is observed in telecommunication industry. Instead of
the traditional design cycle, which includes a three step process consisting of a high level design, low level
design and coding and testing, a more formal design approach has been developed. The formal design approach
uses methods that help the designer verify the correctness of the design decisions as they are made. For more
information on formal design approaches, refer to.!?

Extended Finite State Machine (EFSM) approach is fully expressive and particularly useful as a means of
describing a communication protocol. EFSM-based techniques can be applied in telecommunications easier than
most other approaches, and are better suited to assist in the followup implementations. EFSMs allow generation
of test suites easier than traditional techniques and scale better than traditional FSM models. Therefore, in
this study we used an EFSM based description model.

Jumpstart signaling protocol was first introduced in.> The signaling architecture is based on wavelength

routing and burst switching. Signaling is Just-in-time(JIT), indicating that signaling messages travel slightly
ahead of the data they describe. Signaling is out of band, with signaling packets undergoing electro-optical
conversion at every hop. Data is opaque to network entities and travels through the network in bursts of
varying durations, each burst preceded by its own signaling message.

Optical burst-switching (OBS) is a promising direction of research and development in wavelength-routed
core WDM networks. Coupled with out-of-band signaling it promises to deliver a transparent all-optical archi-
tecture, capable of transporting digital and analog data, regardless of format. JIT signaling approaches to optical
burst switching (OBS) have been previously studied in the literature.”-!! These approaches are characterized
by the fact that the signaling messages are sent just ahead of the data to inform the intermediate switches.
The common thread is the elimination of the round-trip waiting time before the information is transmitted (the
so-called tell-and-go approach): the switching elements inside the switches are configured for the incoming burst
as soon as the first signaling message announcing the burst received. The variations on the signaling schemes

This research effort is being supported through a contract with ARDA (Advanced Research and Development Activity,
http://www.ic-arda.org).
(Send correspondence to Ilia Baldine)

Ilia Baldine: E-mail: ibaldin@anr.mcnc.org
AH.Z.,, M.C. and D.S.: E-mail: {ahzaim mcc, stevenso}@anr.mcnc.org
G.N.R and H.G.P: E-mail: {rouskas, hp}Qcsc.ncsu.edu

mainly differ in how soon before the burst arrival and how soon after its departure the switching elements are
made available to route other bursts through use of the combination of signaling messages and timers.

The organization of the paper is as follows. In Section 2, Jumpstart signaling protocol is explained briefly.
The EFSM model is given in great detail in Section 3. Section 4 shows the channel architecture for message
communication among different EFSMs. In Section 5, we give the formal specification of Jumpstart protocol
showing all state diagrams and explaining the state machines. Section 6 concludes our paper.

2. JUMPSTART JUST-IN-TIME SIGNALING PROTOCOL

Jumpstart signaling uses a link-unique identifier (or label) for each message, which upon emergence on the
other end of the link can be cached and mapped to a new identifier or label on the exit link. The first message
in a signaling flow (SESSION DECLARATION or SETUP) serves the purpose of setting up a label-switched
path, which all further messages in forward and reverse direction follow. That is, this on-the-fly setup of a
label switched path is the main difference between MPLS or ATM and our approach. Another difference worth
noting is that in MPLS; labels are distributed upstream, in the reverse direction of the path prior to path being
used. In our case we need to setup the label-switched path in the forward direction. In addition, we must setup
the reverse path at the same time.

The basic signaling protocol for a Just-In-Time OBS network described in this section only addresses the
connection setup procedures.

Session Declaration | Announce the connection to the network

Path Setup Configure resources needed to set up an all-optical
path from source to destination

Data Transmission | Inform intermediate switches burst arrival time and length

State Maintenance | Keep up the necessary state information to maintain the connection

Path Teardown Release resources taken up to maintain the lightpath for
the connection

Table 1. Signaling Protocol Functions

Depending on the type of the connection being set up, the signaling protocol may need to perform several
functions, all described in Table 1. These phases can be accomplished by the signaling protocol in a different
fashion, depending on the assumptions made about the network: the reliability of individual links, scheduling
capabilities of the switches and other factors.

In the JumpStart network we propose to use two types of connection setup:

Explicit setup and explicit teardown - each burst is preceded by its own Setup message and followed by
its own Release message (which allows the intermediate switches to close the optical crossconnects or use
them for other connections)

Explicit setup and estimated teardown signaling schemes - similar to explicit teardown, with the ex-
ception that the source notifies the network of the duration of its burst and the network uses this estimate
to close the crossconnects. This way no Release message is needed.

Explanation of different signaling schemes can be found in.® We will define a unified signaling scheme that will

enable both approaches to be used at the discretion of the caller.

2.1. Connection phases

Each connection in our OBS network goes through a number of well-defined phases as described in.® This
paper concentrates on a unicast case. Unicast connections have all of these phases; however, some of them are
collapsed into a single step. For example for short bursts the Setup message serves to:

1. Announce the session to the network (Session Declaration).
2. Set up the path of the session (Path Setup).
3. Announce the arrival of the burst (Data Transmission)

This way, the Setup message combines the three phases, which are followed by either an explicit or implicit
session Release. Path teardown phase may be explicit (if explicit teardown with a Release message is used)
or implicit (if estimated teardown with a Timeout message is used). These simple connections lack State
Maintenance phase due to their short-lived nature. This phase is intended for long-lived bursts that require the
”keep-alive” message and persistent-path connections that is out of scope of this paper.

2.2. On-the-fly unicast signaling flows

We begin by describing the signaling flows for on-the-fly routed unicast connections. These connections combine
the Session Declaration, Path Setup, and Data Transmission phases into a single Setup message.

The message flows for short bursts and lightpaths are presented in Figures 1 and 2. The presence of the
Release message at the end of each connection is dictated by the type of the connection (explicit vs. timed
teardown).

CALLING HOST CALLING SWITCH CALLED SWITCH CALLED HOST
| serue
CALLING HOST CALLING SWITCH CALLED SWITCH CALLED HOST
‘/SAEEE% [see_ |
SETUP
OPTICAL M
—
CROSSCONNECT ke~ BURST SETUP.
CONFIGURED
SETUR \ KEEPALIVE _4
‘ - SEWP—— | T CONNECT
\ \ 4 — -
KEEPALIVE |
N ~_ CONNECT
4
=7 KEEPALIVE
SETUP CONNECT
«— 7
peoios -7 KEEPALIVE
~ BURST ~
S~ 9 CONNECT
- =
RELEASE\ - “r k<~
KEEPALIVE
A
CROSSCONNECT M~ _-" 7
CONFIGURED ~_-
FOR EXPLICIT ONNECT M~ KEEPALIVE
RELEASE >\1 RELEASE
T~
~ =~
-~ ~ - - |
CONNECT RELEASE RELEASE :
e — - RN T~all
"RELEASE
~<,l

Figure 1. Single Burst
Figure 2. Lightpath

Regardless of the type of the connection, it is initiated with a Setup message sent by the originator of
the burst to its ingress switch. The ingress switch consults with delay estimation mechanism based on the
destination address and returns the updated delay information to the originator by using a Setup Ack message,
at the same time acknowledging the receipt of the Setup message by the network. The Setup Ack message also
informs the originating node which channel/wavelength to use when sending the data burst.

The originator waits the required balance of time left based on its knowledge of the round-trip time to the
ingress switch, and then sends the burst on the indicated wavelength. The Setup message at the same time is

traveling across the network, informing the switches on the path of the burst arrival. If no blocking occurs on
the path, the Setup message eventually reaches the destination node, which then receives the incoming burst
shortly thereafter.

Upon the receipt of the Setup message, the destination node may choose to send a Connect message ac-
knowledging the successful connection (indeed, the receipt of the Setup by the destination only guarantees that
the connection has been established; it does not guarantee its successful completion, since a connection may be
preempted somewhere along the path by a higher-priority connection).

For long-lived bursts, the Keepalive message maintains the state of the connection, preventing it from timing
out. Especially for explicit teardown, where a connection is not closed until a Release message is received,
Keepalive message is used to notify the aliveness of the source. Otherwise, in case that the source is dead, if
there is no Keepalive mechanism, the connection will wait for a Release forever wasting the limited crossconnect
resources. However, with Keepalive mechanism, if the source does not send a Keepalive message during a
specified time, a timeout occurs and the connection is closed.

One message type not mentioned above is sent if any type of failure is detected during setup or maintenance
phase of the connection. This message is called Failure. It is sent to the originator of the connection and it
carries with it the cause of failure, including blocking, preemption by a higher-priority connection, lack of route
to host, refusal by destination, etc.

3. EXTENDED FINITE STATE MODEL

Ordinary finite state machine (FSM) representation is not powerful enough to model in a succinct way the
Jumpstart Just-In Time (JIT) Signaling Protocol, because the protocol specifications include variables, timers
and operations based on these values (for more information about the Jumpstart Protocol refer to®). Therefore,
we define an Extended Finite State Machine (EFSM) model with the addition of some variables. For further
information on EFSMs, the interested readers may read (*%512). In this model, each EFSM can be formally
represented as a eight-tuple (3°,S,s,V,E,T, A,§) where:

>t Set of messages that can be sent or received,

S: Set of states,

s: Initial state,

V': Set of variables,

E: Set of predicates that operate on variables,

T: Set of timers,

A: Set of actions that operate on variables,

d: Set of state transition functions, where each state transition function is formally represented as follows:
Sz> xEV)eT — > xzA(V)xS

There are two types of transitions: spontaneous and 'when’ transitions. A spontaneous transition doesn’t
have an input event on its condition part. A ’when’ transition, on the other hand includes an input event
T
satisfying the condition. A transition is shown S; — Ss. This means there is a transition 7 at state St and
it goes to state S2. T is an outgoing transition, Sz is the head state and S2 is the tail state.

A transition consists of two parts: a condition part and an action part. The condition part have an input
event and a predicate (Boolean expression). An action may be an output event or a statement operating on
variables. A transition executed when an input event is available, and a predicate is true. Once a transition is
triggered, the action part is executed. An example of EFSM is shown in Figure 3.

In Figure 3, ?Chan .m shows an input message from given channel carrying the message m, and /Chan .m
shows an output message to the indicated channel carrying the message m. Settimer(T,C) is an action defined to
operate on timers. It sets the timer T to a value specified by C. Timers create a Timeout messages using timer

X X

T2
?ChanA1l.Continue
Tl T3:
varl:=FALSE Settimer(T1,Constant)
Settimer(T1,Constant) IChanD1.Stop

?ChanT1.Timeout(T1)

T2:
IChanD1.Stop

Figure 3. An Example EFSM Model

channels. As seen in Figure 3, three transitions are defined in the EFSM. The definitions for each transition are
given below the figure. The first transition, T is a spontaneous transition, and is executed without an input
event. T2 and T3, on the other hand are when transitions because they are triggered once the input messages
are received.

Protocols among different processes can often be modeled as a collection of communicating finite state
machines where interactions between the processes are modeled by the exchange of messages.!? EFSMs
communicate with each other by message passing through a number of first-in-first-out (FIFO) unidirectional
queues (channels), which associate with some buffers at the endpoints of the corresponding EFSMs respectively.

4. SYSTEM ARCHITECTURE

The relationship between different protocol entities are explained using the system architecture illustrated in
Figure 4. As seen in the figure, an upper layer source client starts the transactions by sending an Open message
through the ChanUpper. JIT Layer Source Client generates a Setup message as soon as it receives the Open
message from the Upper Layer using the ChanNSDown. The Upper Layer peer to peer connections indicate
that the traffic flow from source node to the destination is called DownStream and the traffic flow from the
destination to the source is called UpStream. All the messages from the ingress switch to the source client
use the channel named ChanNSUp. ChanSSDown represents the channel between the ingress switch and the
intermediate switch and ChanSSUp is the inverse. From the point of an intermediate switch, the channel
between the intermediate switch and the entity on its downstream path is ChanXSDown, and the inverse of
it is ChanXSUp whether it is another intermediate switch or the destination node. From the point of the
destination node, the channel from the previous intermediate node to itself is called ChanNSDown and the
inverse is ChanNSUp.

TRANSPORT LAYER
Client Entity DownStream Client Entity
(Source) = (Destination)
UpStream
o GhanUpper ChanUppef
Switch Entity Switch Entity Switch Entity
(S((JIS'?'::ISASI;E) (Intermediate) (Intermediate)
Client Entity (SOFTWARE) (SOFTWARE) Client Entity
| (Source) & /P /P (Destination)
1| (SOFTWARE; ChanUpper ChanUpper ChanUppe! SOFTWARE) |!
1| ¢) | channspow] ! pper| Chansspown ¥ PP | ChanxsDown | pPef o\ NsDowr] ¢)
Y > -+ > (HARDWARE) > > (HARDWARE) |
ChanNSUp| (HARDWARE) ChanssUp ChanXSUp ChanNSUp
= [e = [e = =

JIT LAYER

Figure 4. Protocol Stack Architecture

Client nodes are implemented by software, therefore there is not a hardware part attached to client nodes.
However, switch entities have both a software and a hardware parts and the connection between these two parts
are represented by ChanUpper because the state diagrams related with switch entities show the behavior of
hardware.

5. EFSM-BASED FORMAL SPECIFICATIONS OF JUMPSTART JIT PROTOCOL

Jumpstart JIT protocol can be defined as a set of extended finite state machines communicating with each
other via message transfer. The protocol consists of unicast and multicast connections. In this section, we
define the state diagrams of source client, destination client, ingress switch and intermediate switch for unicast
connection. Note that for the sake of clarity, each arc in the state diagrams represents a set of transitions, and
the transitions are shown in separate figures.

5.1. Single Burst Unicast Connection
5.1.1. Source Client Sending Unicast Messages

The first state machine is defined for the source client sending unicast messages. The set of messages are:

Z = {Open, Setup, Failure, Timeout, Setup_Ack, (1)
Connection_Failure, Close, Release, Clear To_Send,
Connect, Transmission_Complete, K eepalive}

Open is generated by the Transport Layer to notify JIT Layer incoming of a burst. Setup message is created
by the Source Client’s JIT Layer to set up the resources. Failure can be generated by any node to notify an
error. Timeout is used for each timer specified within Timeout message. Setup_Ack is used to acknowledge the
Source Client that the Ingress switch could make the crossconnect successfully and the burst could be send.
Connection_Failure is used to notify upper layers that there has been an error during the connection phase.
Close is used to end the connection. Release message is used for explicit teardown. Clear_To_Send message
is used by the Source Client’s JIT layer to notify the Transport Layer that the setup process is complete and
the burst can be send. Connect is generated by the Destination Client as soon as the Setup is received if a
Connect is requested. Transmission_Complete notifies the upper layer that the transmission has been completed
successfully. Keepalive is used for long bursts to maintain the connection until the burst ends.

The set of states S are:

S = {IDLE,W AIT_FOR_SETUP_ACK, 2)
SETUP_PROCEEDING, DATATRANSMISSION,
WAIT_FOR.CONNECT}

The state machine waits at IDLE state until receiving a triggering event (Open for this state machine).
Until it gets an acknowledgment from the ingress, it waits at WAIT_-FOR_SETUP_ACK. As soon as the Ack
comes, the machine goes to SETUP_PROCEEDING state and stays there for the duration given in Burst_Time.
Setup_Timer times out indicating start of the data burst and the machine moves to DATA_TRANSMISSION.
If the connection will be closed but the Connect has not been received, then the machine goes to
WAIT_-FOR_CONNECT state and waits until Connect comes or Conn_Timer times out.

Initial state s is the state IDLE. The set of variables are:

V = {SA_Constant, AT, Conn_Constant, Conn_Rcvd, (3)
Rel,Conn, Burst_Time, Burst_Delay, K A Time}

SA_Constant is used to set timer SA_Timer to an expected value equal to the duration of round trip time
from source to ingress switch. If the source does not receive the Ack during that time, it indicates and error and
state machine goes back to IDLE. AT is the expected delay variation on Burst_Delay calculated by the ingress
switch according to the time values in Connect message. It is used to adjust the timing information at the source.
Conn_Constant is used to set the Conn_Timer which is explained in the previous paragraph. Conn_Rcvd, Rel,
Conn, are flag variables indicating request or arrival of Connect and Release messages. Burst_Delay indicates
the required delay to be waited at the source before sending the burst. Burst_Time shows the implicit teardown
time calculated to end the burst. KA_Timer is the Keepalive Timer set up to send Keepalive messages.

The set of timers are:

T = {SA.Timer, SETUP Timer, Conn_Timer, (4)
Burst_Timer, KA Timer}

The set of actions that operate on variables are:

A = {Settimer, Update} (5)

WAIT_FOR_CONNECT

SETUP_PROCEEDING

Figure 5. State Diagram for Source Client (Unicast)

The state diagram waits in the IDLE state until an Open message is sent by the upper layer. Once the
Open message is received, the client creates a Setup message with four variables: Rel, Conn, Burst_Time, and
Burst_Delay. Rel is the flag indicating whether a Release is required or not. If Rel is TRUFE, then a Release
is required for closing the connection. Conn variable is used to indicate whether a Connect message should
be waited for or not. If Conn is set to TRUE, the protocol goes to the WAIT_FOR_CONNECT state before
closing the connection. The variable Burst_Time is used to tell the burst length. If it is not specified explicitly,
the protocol should wait for an explicit Close message. The variable Burst_Time together with the variable
Burst_Delay is used to set the Burst_Timer. Burst_Delay is updated by the function called Update at each hop
subtracting the processing time from the Burst_Delay. The state diagram and the state transitions are given in
Figures 5 and 6 respectively.

Once a Setup message is received, we change our state to WAIT_FOR_SETUP_ACK and during that tran-
sition we also set the timer setup acknowledgment timer (SA_Timer) to a predetermined value. If we don’t
receive an acknowledgment during this time, a timeout is generated and the state machine goes back to IDLE
state generating a Release message to be sent to the Ingress switch indicating that we are closing the connection.
Other possible transactions while we are at state WAIT_FOR_SETUP_ACK are receiving a Failure message
from the Ingress switch or a a Close message from the Upper Layer. In either case we return to IDLE state by
generating a Connection_Failure message to Upper Layer or a Release message to Ingress switch respectively.

On the other hand, if we receive the acknowledgment on time, we go to SETUP_PROCEEDING state setting
the timers connection timer (Conn_Timer) and setup timer (Setup_Timer).

From the SETUP_.PROCEEDING state, we can go to IDLE state by receiving a Close message from the
Upper Layer or a Failure message from the Ingress switch. Otherwise, we wait until the Setup_Timer times
out and go to DATA_TRANSMISSION state. If we receive a Connect message meanwhile, we stay at the same
state changing the variable connection received (Conn_Revd), which indicates that the Connect message has
been received from the Ingress switch, to TRUE.

DATA_TRANSMISSION is the most complicated state. If we receive a Connect message or keepalive timer
(KA_Timer) times out, we stay in the same state triggering the necessary actions. If we receive a Close, we
check the status of the variables Conn and Conn_Rcvd to decide whether we will trigger transition T8 or T9. If
Conn is TRUE and Connect has not been received then we go to the WAIT_FOR_CONNECT state. Otherwise
we go to IDLE sending a Release message if it is required. Burst timer timeout also can trigger both T8 and T9.
The decision is again based on the status of the variables Conn and Conn_Rcvd. If Conn is TRUE and Connect
is not received, then we have to wait for a Connect message. Therefore, we go to WAIT_FOR_CONNECT state.
Otherwise, we trigger transition T8. The action set for transition T8 with Burst_Timer timeout consists of an
if-else statement checking the status of variables Rel, Conn and Conn_Rcvd to decide on the action to be taken.

The last state is WAIT_-FOR_CONNECT where we only wait for a Connect message to arrive before we
close the connection.

The state transitions use four different channels shown in Figure 4: ChanUpper, ChanNSUp, ChanNSDown,
and ChanT1. ChanUpper is the channel between the client node signaling protocol layer and the upper layer.
ChanNSUp is the upstream channel between the client node and the ingress switch. That is, the flow is from
the ingress switch to the client node. ChanNSDown is the downstream channel between the client node and
the ingress switch, and the direction of the flow is from the client to the switch. ChanT1 is the timer channel
used to receive timeout messages from the indicated timers.

IDLE DATA_TRANSMISSION
T1: T7
?ChanUpper.Open ?ChanNSUp.Connect(Burst_Delay)
IChanNSDown.Setup(Rel,Conn,Burst_Time,Burst_Delay) Conn Rovd=TRUE

Settimer(SA_Timer,SA_Constant)
Settimer(Setup_Timer, Burst_Delay)
?ChanT1.Timeout(KA_Timer)

Setiimer(KA_Timer,KA Ti
WAlT_FOR_SETTL;_P_ACK ChamSDown Keepaive.”

2ChanNSUp.Failure =~ [~—--~ """ ----- - - - -

: - T8:
IChanUpper.Connection_Failure 2ChanUpper.Close
?ChanT1.Timeou{(SA_Timer) if Rel=TRUE AND Conn=FALSE IChanNSDown Release
IChanUpper.Connection_Failure else if Rel=TRUE AND Conn=TRUE AND Conn_Rcvd=FALSH
if Rel=TRUE IChanNSDown.Release {!ChanNSDown.Release }
?ChanUpper.Close
if Rel=TRUE !ChanNSDown.Release ?ChanT1.Timeout(Burst_Timer)
T3: if I(Conn=TRUE AND Conn_Rcvd=FALSE)

{ !ChanUpper.Transmission_Complete }
?ChanNSUp.Setup_Ackg T)

if Conn=TRUE Settimer(Conn_Timer,Conn_Time)

?ChanNSUp.Failure

Increment_Timerp 1) [!gbqnypee[.(}oﬁnpeﬁc}iqnﬁ_lfaﬁilgrg 777777777
TO:
SETUP—PROCEEDI NG ?ChanT1.Timeout(Burst_Timer)

AND Conn=TRUE AND Conn_Rcvd=FALSE

T4:
?ChanUpper.Close
if Rel=TRUE !ChanNSDown.Release

?ChanUpper.Close
2ChanNSUp.Failure AND Conn=TRUE AND Conn_Rcvd=FALSE

IChanUpper.Connection_Failure 'ChanNSDown.Release

”””””””””””””””””” WAIT_FOR_CONNECT

T5: .
?ChanT1.Timeout(Setup_Timer) T10:
if Burst_Time=Specified ?ChanNSUp.Connect(Burst_Delay)
{ Settimer(Burst_Timer,Burst_Time) } IChanUpper.Transmission_Complete
Settimer(KA_Timer,KA_Time)
IChanUpper.Clear_To_Send 2ChanNSUp.Failure
******************************** IChanUpper.Connection_Failure
T6:
?ChanNSUp.Connect(Burst_Delay) ?ChanT1.Timeout(Conn_Timer)
Conn_Rcvd=TRUE IChanUpper.Connection_Failure

Figure 6. State Transitions for Source Client (Unicast)

5.1.2. Destination Client Receiving Unicast Messages

The second state machine belongs to the destination side. The role of the destination client is to complete
the Setup process and start receiving data until seeing a Release message from the peer client, or closing the
connection with a timeout. The destination client does not use the variable Rel passed by the Setup message,
but for the sake of consistency, we use the same Setup message format at each state machine.

The set of messages are:

Z _ {Open, Setup, Failure, Timeout, Setup_Complete, Close, (6)
" Release, Connect, Transmission_Complete, K eepalive}

Setup_Ack is not defined in this machine because the destination client does not receive nor generate an
acknowledgment. The set of states S are:

S={IDLE,SETUP_PROCEEDING,DATATRANSMISSION} (7)

The destination state machine is simpler than the source machine because there is not a waiting requirement
for an acknowledgment and a connect from another entity. Therefore, we can eliminate two states. Initial state
s is the state IDLE. The set of variables are:

V = {Rel,Conn, Burst_Time, Burst_Delay, KA Time} (8)

Although variables Rel and Conn are defined in the list of variables, they are not used. They are left on the
list to be consistent with the Setup message structure. The set of timers are:

T = {KA_Timer, Burst_Timer} 9)

The set of actions that operate on variables are:

A = {Settimer,Update} (10)

The state diagram and transitions are shown in Figures 7 and 8.

SETUP_PROCEEDING

DATA_TRANSMISSION

Figure 7. State Diagram for Destination Client (Unicast)

State diagram of the destination client waits in IDLE state until a Setup message comes. Once the Setup
message arrives, the destination client’s JIT Layer sends an Open message to the Upper Layer. If Upper
Layer responds with a Close, then the destination generates a Failure message toward the source node. Oth-
erwise, it adjusts its burst delay, sets burst timer (Burst-Timer) and keepalive timer (KA_Timer) and goes to
DATA_TRANSMISSION state. If Connect is requested by the source, a Connect message is also created with
the new burst delay added in it as a parameter. This parameter will be used on future estimations. Once the
state machine is in DATA_TRANSMISSION state, it can either receive Keepalive messages from the source node
indicating that data transmission is continuing, in which case KA_Timer is reset, or trigger transition T5 and go

STATEIDLE STATE DATA_TRANSMISSION
T1:

T4:
IChanNSDown.Setup(Rel,Conn,Burst_Time,Burst_Delay) ?ChanNSDown.Keepalive
IChanUpper.Open Settimer(KA_Timer,KA_Time)
T5:
?ChanT1.Timeout(Burst_Timer)
STATE SETUP_PROCEEDING IChanUpper. Transmission_Complete
T2: ?ChanNSDown.Failure
?ChanUpper.Close IChanUpper.Transmission_Failure

IChanNSUp.Failure
******************] ?ChanNSDown.Release

IChanUpper.Transmission_Complete

T3:
?ChanUpper.Setup_Complete

if Burst_Time=Specified ?ChanUpper.Close
{ Settimer(Burst_Timer,Burst_Time+Burst_Delay)|} r

if Conn=TRUE !ChanNSUp.Connect(Burst_Delay) {ChanNSUp.Failure

Settimer(KA_Timer,KA_Time)

?ChanT1.Timeout(KA_Timer)
IChanUpper.Transmission_Failure

Figure 8. State Transitions for Destination Client (Unicast)

to IDLE state back. The actions triggering transaction T5 are a timeout event due to the Burst_Timer or the
KA_Timer, receiving a Release message from the source or a Close request from the Upper Layer. KA_Timer
timeout event is used to close the connection in cases where an explicit burst time is not indicated and a Release
is not required. Otherwise, during normal course of data transmission, as KA_Timer is set to a value greater
than keepalive message intervals, a Keepalive message is expected to reset KA_Timer before a timeout. In
case a Close request comes from the Upper Layer, the protocol generates a Failure message indicating that the
connection is forced to be torn down by the destination.

5.1.3. Ingress Switch Setting Up a Unicast Connection

This subsection gives the state diagram of an ingress switch receiving a Setup request from the source client. The
role of the ingress switch receiving a Setup message is in configuring itself, finding the appropriate wavelength
and port information for the data channel, and calculate estimated time for the source to start sending the
data. These processes are handled in switch hardware and as fast as possible so that the switch can return an
acknowledgment back to the source client with the necessary information for data transmission. As soon as the
switch makes the necessary allocations inside the switch, it passes the Setup message to the next switch. The
set of messages used in ingress switch state diagrams are:

Z = {Setup, Open, Failure, Close, Timeout, Setup_Ack, Release, Connect, K eepalive} (11)

The set of states S are:

S= {IDLE,RUNNING.CHECKS,DATATRANSMISSION, (12)
WAIT_FOR.CONNECT}

Unlike the source node, we don’t need to use two separate states for WAIT_FOR_SETUP_ACK and
SETUP_PROCEEDING because there is not any other entity sending an Ack message. Therefore, we define
only one state similar to SETUP_.PROCEEDING and call it RUNNING_.CHECKS. Initial state s is the state
IDLE. The set of variables are:

V = {Conn_Rcvd, AT, ErrorCode, Rel, Conn, (13)
Burst_Time, Burst_Delay, KA Time}

We don’t use variables SA_Constant and Conn_Constant in this machine because these are the variables used
to set setup acknowledgment timer and connection timer and they are used in ingress switch state machine.
The set of timers are:

T = {Burst_Timer, Conn_Timer, KA Timer} (14)

The set of actions that operate on variables are:

A = {RunChecks, Settimer,Update} (15)

Setup message is sent by the source client. Once the Setup message is received, the ingress switch runs some
checks, e.g. CRC, buffer overflow, cross connect error, etc... A RunChecks function is defined in this state
machine. This function returns an error code specified with the variable ErrorCode. If there is an error, this
variable indicates the type of error found and the state machine returns to IDLE state. If it is NULL, the state
machine goes to the DATA_TRANSMISSION state. The list of possible errors and the resulting error codes
are given in Table 2.

Table 2. Error Types and Codes

| Error Type | Error Code | Explanation
no_error 0 The check returns without any error
crc_error 1 CRC error
ime_buf_overflow 2 An ingress switch message buffer overflow
eme_buf_overflow 3 An intermediate switch message buffer overflow
sigmess_state 4 A state machine error
sigmess_xcnct 5 A cross connect error
label_lut 6 A label look-up table error

Ingress switch does not use Rel variable line destination client. The state diagram and the state transitions
are given in Figure 10.

WAIT_FOR_RELEASE

DATA_TRANSMISSION

Figure 9. State Diagram for Ingress Switch (Unicast)

Ingress switch state machine waits at the IDLE state and triggered with the arrival of a Setup message
similarly with the two previous state machines. Once, the Setup message comes, the switch hardware sends an
Open message to the software layer of the switch and runs the checks we mentioned above. Although it is not a
normally expected behavior, if the switch hardware receives a Release message from the source immediately after
receiving the Setup request, it passes the Release message to the following switch and sends a Close message to
the Software layer. In case, the hardware passes the error checks successfully, it sends back a Setup_Ack(AT)

IDLE DATA_TRANSMISSION
T1: T4:

?ChanNSDown.Setup(Rel,Conn,Burst_Time,Burst_Delay)
RunChecks(ErrorCode)

2ChanT1 Timeout(Bur: t_Timer)
Release_Mirrors()

IChanUpper.Open ?ChanNSDown.Release AND
RUNNING_CHECKS - IChanSSDown. Release -
T2 IChanUpper.Close
ErrorCoHe Release_Mirrors()
IChanNSUp.Failure 2 i =

IChanUpper.Close IChanNSUp.Failure
IChanUpper.Close
?ChanNSDown.Release Release_Mirrors()
IChanSSDown.Release 2 i _Til
IChanUpper.Close IChanUpper.Close

777777777777777777777777777777777777 Release_Mirrors()

T3:
No ErrorCode ?ChanUpper.Close
!ChanNSUp.Setup_Ackf T) 1IChanNSUp.Failure

Burst_Delay+=A T IChanSSDown.Failure
IChanSSDown.Setup(Rel,Conn,Burst_Time, Release_Mirrors()
Burst_Delay-Proc_Delay) [~~~ -~~~ "~~~ ~"~~"~""3g """ """ """~ "~"---°=-°

T5:
?ChanSSUp.Connect(Burst_Delay)

if Burst_Time=Specified
{ Settimer(Burst_Timer,Burst_Time+Burst_Delay) }

if Conn=TRUE Settimer(Conn_Timer,Conn_Time) Conn_Rcvd=TRUE
Settimer(KA_Timer,KA_Time) IChanNSUp.Connect(Burst_Delay)
OXC_Config()

?ChanNSDown.Keepalive

WAIT_FOR_CONNECT !ChanSSDown.Keepalive
Settimer(KA_Timer,KA_Time)

T8:
?ChanT1.Timeout(Conn_Timer)

T6:
?ChanT1.Timeout(Burst_Timer) AND

?ChanSSUp.Connect(Burst_Delay) IChanUpper.Close
IChanNSUp.Connect(Burst_Delay) Release_Mirrors()
?ChanNSDown.Release AND
“IChanSSDown.Release
WA|T_FOR_REL EASE IChanUpper.Close

Release_Mirrors()

TO:
?ChanNSDown.Release
IChanSSDown.Release

T7:
?ChanSSUp.Failure AND Rel=TRUE
IChanNSUp.Failure
?ChanT1.Timeout(KA_Timer) IChanUpper.Close
Release_Mirrors()

Figure 10. State Transitions for Ingress Switch (Unicast)

message. AT parameter is used by the source node to determine the waiting interval between reception of the
Setup_Ack and start of the data transmission. After sending back the Setup_Ack, it passes the Setup message
to the next switch, updates the burst delay by subtracting its processing time from the Burst_Delay variable it
receives with Setup message. If the Burst_Time is specified explicitly in the Setup message, the switch sets the
Burst_Timer. After setting the connection and keepalive timers, it goes to DATA_TRANSMISSION state.

Once we are at DATA_TRANSMISSION state, we can get a burst timer timeout indicating, we reached to
the estimated teardown time and we close the connection. On the action part of that transition, we have an if
control. That is used for deciding whether we need to send a Connect message or not. If the Conn variable is
set during the Setup message indicating the source requires a Connect message back and the Connect message
is receivedf, the switch sends a Connect message back to the source. On the other hand, if the burst timer
times out, a Connect message is expected, but the Connect has not been received yet, then the switch goes
to WAIT_FOR_CONNECT state closing the connection. In another case where we receive a Release message
from the source, we need to check the status of the variables Conn and Conn_Rcvd. If Conn is TRUE, that is a
Connect message is expected but the Connect has not been received, then we go to the WAIT_FOR_CONNECT
state again closing the connection and creating the Release message. On the other hand, if Conn is FALSE,
that is a Connect message is not expected, or Conn is TRUE and a Connect has already been received, then we
go to IDLE state again by closing the connection and creating the Release. The two other possible transitions
at DATA_TRANSMISSION state are receiving a Failure from the following switch and going to a KA_Timer
timeout. In case of a Failure, we just pass it to the source node. In case of a timeout, we close the connection
informing the Software Layer.

The state transitions use five different channels: ChanSSUp, ChanSSDown, ChanNSUp, ChanNSDown,
and ChanT1. ChanNSUp, ChanNSDown and ChanT1 have already been defined. ChanSSUp is the channel
between the ingress switch and the intermediate switch with the flow from intermediate switch to ingress switch.

fthe variable Conn_Revd is TRUE only if a Connect message is received

ChanSSDown is the same channel with opposite flow direction.

5.1.4. Intermediate Switch Setting Up a Unicast Connection

The state diagram of an intermediate switch is similar to the state diagram of an ingress switch shown in Figure
9. The transition diagrams, on the other hand are also almost identical with different communication channels
and only one transition deleted. The transitions for an intermediate switch is given in Figure 11. We will not
give the set of messages, states, etc...as they are all the same with Ingress switch.

DATA_TRANSM I_I%SI ON

IDLE :
T1: 2ChanT1.Timeout(Burst Timer)
. Release_Mirrors()
?ChanSSDown.Setup(Rel,Conn,Burst_Time,Burst_Delay)
Rulnt;ihecks(ErrorCOde) r&?;;;g;%ﬁ;ﬁ:;:
!ChanUpper.Open Release_Mirrors()

ICh: .Cl
RUNNING_CHECKS ChanUpper.Close

IChanSSUp.Failure

T2:
ErrorCode Release_Mirrors()

IChanSSUp.Failure IChanUpper.Close
IChanUpper.Close
2ChanT1 . Timeout(KA Timer)
?ChanSSDown.Release Release_Mirrors()
IChanXSDown.Release {ChanUpper.Close
IChanUpper.Close 2ChanUpper.Close
IChanSSUp.Failure
IChanNSDown.Failure
T3: Release_Mirrors()
No ErrorCode 2ChanSSDown.Failure
IChanXSDown.Failure
IChanXSDown.Setup(Rel,Conn,Burst_Time, Release_Mirrors()
Burst_Delay-Proc_Delay) IChanUpper.Close
if Burst_Time=Specified = [T ----- - oo o oo T5: T T To
{ Settimer(Burst_Timer,Burst_Time+Burst_Delay) } P .
if Conn=TRUE Settimer(Conn_Timer,Conn_Time) Conn Revd=TRUE —
ginclr_ngro('ffgi(;rlmer,KAiTlme) IChanSSUp.Connect(Burst_Delay)

?ChanSSDown.Keepalive

WAIT_FOR_CONNECT Settmerta Tt a ime)

T8: T6:
?ChanXSUp.Connect(Burst_Delay) ?ChanT1.Timeout(Burst_Timer) AND
IChanSSUp.Connect(Burst_Delay) = =

Release_Mirrors()

2ChanT1.Timeout(Conn_Timer) !ChanUpper.Close

?ChanSSDown.Release AND

WAI T—FOR—REL EASE ~ IChanXSDown Release
T9: Release_Mirrors()
?ChanSSDown.Release IChanUpper.Close
IChanXSDown.Release T7:
24 i =
?ChanT1.Timeout(KA_Timer) IChanSSUp.Failure

Release_Mirrors()
IChanUpper.Close

Figure 11. State Transitions for an Intermediate Switch (Unicast)

For intermediate switches some channels are defined as ChanXS because it is not known whether there
is a switch or a node connected to the switch the diagrams belong to. Therefore these channels are defined
anonymously. The channels between the intermediate switch and the switch connected to it is called as in earlier
cases as ChanSS. The channel to the Software Layer is also ChanUpper and the timer channel is again ChanT1.

The only transition different from the Ingress switch is transition T3. An ingress switch, after completing
error controls successfully sends back to the source a Setup_Ack both for acknowledgment purposes and to
inform the source about the calculated start time of data burst. On the other hand, an intermediate switch
does not have such a function because in Jumpstart protocol, there is not an acknowledgment process between
each entities. The rest of the state machine is similar to the Ingress switch’s state machine.

6. CONCLUSION

In this paper, we present a formal description of the Jumpstart Just-in-time signaling protocol for unicast traffic.
We defined unicast traffic flow for a single burst. In the single burst unicast connection, we set a connection
only for sending one burst and then close the connection. The state diagrams and transitions for single burst
unicast traffic flow are given in this paper. The future work includes the definition of persistent and multicast
traffic which is part of the Jumpstart Just-in-time protocol specifications, and protocol testing based on the
formal definitions.

ARl

10.

11.

12.

REFERENCES

P.W. King, Formalization of Protocol Engineering Concepts, IEEE Transactions on Computers, vol.40,
no.4, April, 1991.

H. Hansson, B. Jonsson, F.Orava, and B. Pehrson, Formal Design of Communication Protocols, ISS’90.
K. Nail and B. Sarikaya, Testing Communication Protocols, IEEE Software, 1992.

G.J. Holzmann, Protocol Design: Redefining the State of the Art, IEEE Software, 1992.

K.J. Turner, The Use of Formal Methods in Communications Standards.

I. Baldine, G.N. Rouskas, H.G. Perros, D. Stevenson, Jumpstart: a just-in-time signaling architecture for
WDM burst-switched networks, IEEE Communications Magazine , Volume: 40 Issue: 2 , Feb 2002 Page(s):
82 -89.

J.Y.Wei and R.I.McFarland,” Just-in-time Signaling for WDM Optical Burst Switching Networks”,
J.Lightwave Tech., vol.18,n0.12,Dec.2000, pp.2019-37.

M.Yoo, C.Qiao and S.Dixit,” QoS Performance of Optical Burst Switching in IP-over-WDM Networks”,
JSAC, vo0l.18,1n0.10,0¢t.2000, pp.2062-71.

J.S.Turner,” Terabit Burst Switching”, J.High Speed Networks, vol.8,n0.1,Jan.1999,pp.3-16.

C.Qiao and M.Yoo, “Optical Burst Switching (OBS)-A New Paradigm for an Optical Internet”, J.High
Speed Net.,vol.8,n0.1, Jan.1999,pp.69-84.

M.Yoo and C.Qiao, “Just-enough-time (JET): A High Speed Protocol for Bursty Traffic in Optical Net-
works”, IEEE/LEQS Tech. Global Info. Infra. Aug.1997, pp.26-27.

H. Bowman, G.S. Blair, L. Blair and A.G. Chetwynd, Formal Description of Distributed Multimedia
Systems: An Assessment of Potential Techniques, Computer Communications, December, 1995.

