
On Scheduling Problems with Applications

to Packet-Switched Optical WDM Networks�

Evripidis Bampis George N. Rouskas

LaMI, CNRS EP738 Department of Computer Science

Universit�e d'Evry Val d'Essonne Box 7534

Boulevard F. Mitterrand North Carolina State University

91025 Evry Cedex Raleigh, NC 27695-7534

France USA

ABSTRACT

We consider a scheduling problem, which we call the Scheduling and Wavelength Assignment (SWA) problem, arising
in optical networks that are based on the Wavelength Division Multiplexing (WDM) technology. We prove that the
SWA problem is NP-hard for both the preemptive and the non-preemptive cases. Furthermore, we propose two
eÆcient approximation algorithms. The �rst is for the preemptive case and it is based on a natural decomposition
of the problem to the classical multiprocessor scheduling and open-shop problems. For the non-preemptive case, we
prove that a naive implementation of list scheduling produces a schedule that can be m times far from the optimum,
where m is the number of processors (equivalently, WDM channels). Finally, we give a more re�ned version of list
scheduling and we prove it to be a 2-approximation algorithm for both the o�-line and the on-line contexts.

1. INTRODUCTION

The spectacular growth in data traÆc and the surging demand for diverse services has led to a dramatic increase in
demand for data transmission capacity. Recent advances in wavelength division multiplexing (WDM) technology4,8

are expected to provide solutions to this challenge. WDM supports multiple simultaneous channels, each on a
di�erent wavelength, on a single �ber. WDM systems operating at aggregate rates exceeding one Terabit per second
have been demonstrated, while systems supporting rates of tens of Gigabits per second are becoming commercially
available.

As future networks based on WDM technology are developed to support data traÆc and the Internet, they
must be designed and optimized for that purpose. In particular, a number of new and challenging problems arise
in the area of scheduling data packets over multiple wavelengths, both in a local area environment1,18 and in a
backbone network consisting of IP routers.16 In this paper we consider a scheduling problem with applications to
packet-switched optical WDM networks, and we prove that it is NP-hard for both the preemptive and the non-
preemptive cases. We then present two eÆcient approximation algorithms for this problem. For the preemptive case,
the approximation algorithm is based on a natural decomposition of the problem into the classical multiprocessor
scheduling and open-shop problems. For the non-preemptive case, we develop two list scheduling algorithms, the
second of which is a 2-approximation algorithm for both the on-line and o�-line contexts.

The paper is organized as follows. In the next section we de�ne the scheduling problem under study, and we
motivate it by describing its relationship to packet scheduling in WDM optical networks. In Section 3 we present
an o�-line approximation algorithm for preemptive scheduling, and in Section 4 we present both o�-line and on-line
algorithms for the non-preemptive case. We conclude the paper in Section 5.

�This work was performed while G. N. Rouskas was visiting the Universit�e d'Evry Val d'Essone. The work of G. N. Rouskas was
supported by the Universit�e d'Evry Val d'Essonne, by the National Science Foundation under grant NCR-9701113 (CAREER), and by
the Defense Advanced Research Projects Agency under grant F-30602-00-C-0034.



2. PROBLEM DEFINITION AND APPLICATIONS

2.1. The Scheduling and Wavelength Assignment (SWA) Problem

We consider a set M of m processors and a set J of n; n > m jobs. Each job Jd 2 J is de�ned as a set of n
operations, Jd = fO1d; O2d; � � � ; Ondg, and psd denotes the processing time of operation Osd. The objective is to
schedule the n jobs on the m processors so as to minimize the makespan, or maximum �nish time of the schedule,
subject to the following constraints:

C1. All operations of job Jd are executed on the same processor.

C2. The operations Osd and Osd0 cannot be simultaneously executed, for all s; d 6= d0.

C3. A processor may execute at most one operation at any time instant.

C1 and C2 de�ne a set of compatibility constraints among the di�erent operations. Speci�cally, two operations
Osd and Os0d0 are said to be incompatible if either s = s0 or d = d0; otherwise the operations are compatible.
Incompatible operations cannot be executed simultaneously. Constraint C1 also implies that once an operation of
job Jd has been executed on a processor x, then all operations Osd; s = 1; � � � ; n; must be executed on the same
processor x. However, the processor on which the operations of a job Jd are executed is not known in advance,
rather, it is determined as part of the solution to the scheduling problem. Furthermore, the operations of a job Jd
can be executed on processor x in any order.

The scheduling problem de�ned above can be logically decomposed into two sub-problems. Because of constraint
C1, the �rst sub-problem is to assign each job Jd to a processor x, meaning that all operations of Jd will be executed
on x. Given this assignment of jobs to processors, the second sub-problem is to schedule the operations on their
assigned processors so as to minimize the makespan, while also satisfying the compatibility constraints C2 and the
processor constraint C3. This decomposition leads to a natural way of solving the scheduling problem by applying
existing algorithms to each sub-problem in isolation, as discussed later. However, we will also show that it is possible
to design algorithms to simultaneously solve both sub-problems, and these algorithms are more eÆcient than the
two-step approach described above.

We will refer to this type of scheduling problem as the Scheduling and Wavelength Assignment (SWA) problem,
since it arises naturally in packet-switched optical WDM networks, as we explain in Section 2.3. We have also
chosen to use s and d as subscripts for the operations to re
ect the fact that, in the network settings described in
Section 2.3, operation Osd corresponds to the amount of traÆc to be transmitted from a source s to a destination d

in the network.

We now introduce notation that will be useful in later sections. Let Tseq denote the sum of the computation
times of all operations, let Dmax be the maximum amount of computation time required by any job, and let Smax

denote the maximum amount of computation time associated with any source s:

Tseq =

nX
s=1

nX
d=1

psd (1)

Dmax = max
d=1;���;n

(
nX

s=1

psd

)
(2)

Smax = max
s=1;���;n

(
nX

d=1

psd

)
(3)

Let Copt
max denote the optimal makespan. We obviously have that:

Copt
max �

Tseq

m
(4)

Copt
max � Smax (5)

Copt
max � Dmax (6)



2.2. Related Classical Scheduling Problems

There are two classical scheduling problems that are closely related to the SWA problem we consider in this work.
The �rst one is the multiprocessor scheduling problem,7,12 in which we have a set of n tasks that must be scheduled on
m machines in such a way that the makespan is minimized. As in the SWA problem, the tasks can be executed on any
machine and their processing times are not machine-dependent. It is well-known that the multiprocessor scheduling
problem is NP-hard,7 and that any list-scheduling algorithm is a 2-approximation algorithm.11 Note that this
result is very important, since it remains valid in an on-line context. Of course, for the o�-line case, there exist
algorithms which provide signi�cantly better performance guarantees. These include the LPT (Largest Processing
Time) algorithm, which is a 4/3-approximation algorithm,11 and the MULTI-FIT algorithm, which guarantees a
relative performance of 1.2.6 In addition, there exists a polynomial time approximation scheme (PTAS) for the
multiprocessor scheduling problem that is due to Hochbaum and Schmoys.13 The main di�erence between the
multiprocessor scheduling problem and the SWA problem is that in the former, the n tasks are assumed to be
pair-wise independent, and thus, any two tasks may be scheduled simultaneously on di�erent processors. In the
SWA problem, on the other hand, there is a set of compatibility constraints among the operations, as de�ned by
constraints C1 and C2, which prevent the simultaneous execution of certain operations.

The second related problem is the open-shop problem where we have a set of n jobs withm operations each,12,10,15,9

such that the l-th operation, l = 1; � � � ;m, of a job must be processed on machine l. Similar to the SWA problem,
under open-shop scheduling, the operations of any given job may be processed in any order. The preemptive version
of the open-shop problem is solvable in polynomial time.10 A polynomial-time algorithm also exists for the non-
preemptive open-shop problem with m = 2 processors.10 However, the general non-preemptive open-shop problem
is known to be NP-hard, and it has been shown that any list-scheduling algorithm is a 2-approximation algorithm.14

Here also, it is interesting to point out that this result holds in the on-line context.

2.3. Applications

We now describe several network environments where the SWA problem arises.

Broadcast WDM optical networks.1 Consider a WDM optical network with n nodes interconnected via
a broadcast star that supports m < n distinct wavelengths.17 Nodes communicate by exchanging �xed-length
packets, and the time it takes to transmit a packet is taken as the unit of time. Since there are fewer wavelengths
than nodes, packet transmissions by several nodes may share a single wavelength, and the problem of scheduling
these packet transmissions arises. At the same time, an important objective in such a network is load balancing
across the di�erent wavelengths, since it has been shown that network performance deteriorates signi�cantly if the
traÆc load concentrates on a few wavelengths.20,19,2,3

Let us assume that the long-term traÆc requirements of the nodes are known, let Osd denote the operation of
transmitting packets from node s to node d, and let psd be the number of packets that need to be transmitted between
these two nodes in the network. Let us also assume that the nodes are equipped with fast-tunable transmitters, so
that no cost is incurred when a transmitter switches from one wavelength to another, but that receivers are �xed-
tuned to a certain wavelength (these are tunability characteristics of nodes in the Helios DARPA NGI project1).
Let us also consider the operations of transmitting packets to a single receiver d as a job Jd. Then, scheduling the
packet transmissions over the m wavelengths is equivalent to the preemptive SWA problem, since the transmission
of the psd packets of operation Osd can be preempted (at the end of any packet) and continued at a later time.
Note that, minimizing the makespan for this problem implies balancing the traÆc across the various wavelengths by
properly assigning the �xed-tuned receivers to wavelengths.

WDM IP routers employing multi-protocol label switching (MPLS). Consider a backbone network of n
high-speed IP routers interconnected by �ber lines each supporting m distinct wavelengths. The routers employ
MPLS,5 whereby each IP packet carries a special label used by the routers to forward the packet to its destination
backbone router, avoiding computationally expensive IP table lookups. To avoid packet reordering at the destination
router, packets for a given destination d (i.e., those carrying the same label) must be sent over the same wavelength
in a �rst-come, �rst-served order. Since IP packets are of variable length, a non-preemptive SWA problem arises in
this case.

Grooming packet traÆc over WDM SONET/SDH rings. In this scenario, a node on a SONET/SDH ring
must transmit ATM �xed-size cells or IP variable-size packets over the m wavelengths in the ring. Assuming that



there are n destination nodes and that traÆc to each destination must be carried on the same wavelength (groomed),
the traÆc scheduling problem is equivalent to the SWA problem.

While all the applications described in this section are in packet scheduling in WDM networks, for the rest of
the paper we will use terminology from the multiprocessor scheduling literature. The reader should keep in mind,
however, that the terms \processor," \computation time," and \job" correspond to \wavelength," \transmission
time," and \destination," respectively, in the network environment.

3. PREEMPTIVE SCHEDULING

Let us �rst assume that the operations Osd of any job Jd are preemptable, i.e., there is no cost in preempting an
operation and resuming it later on the same processor (refer to constraint C1). We have the following result.

Lemma 3.1. The preemptive SWA problem is NP-complete.

Proof. Consider an instance of the SWA problem with m = 2 processors and n jobs. Each job Jd, d = 1; � � � ; n,
of the instance consists of a single operation Odd with non-zero processing time pdd (i.e., all other operations
Osd; s 6= d; s = 1; � � � ; n, of job Jd are such that psd = 0). Since an operation may not change processor after a
preemption, this special case of the preemptive SWA is equivalent to the PARTITION problem,7 which is NP-
complete.

An approximation algorithm for the preemptive SWA problem may now be obtained by considering the problem
decomposition described previously. The approximation algorithm consists of two steps. The �rst step assigns jobs
to processors in a way that attempts to balance the amount of work (i.e., the total processing time) assigned to each
processor. The second step is to apply existing approximation algorithms to the resulting open-shop problem.

Algorithm DA (Decomposition algorithm)

S1. Let Pd be the total processing time required by job Jd, Pd =
Pn

s=1 psd. Considering each job Jd as an indepen-
dent task with processing time equal to Pd, run an approximation algorithm for the resulting multiprocessor
problem to assign each job Jd to a processor.

S2. Let Jx denote the set of jobs assigned to processor x at the end of Step S1. For each processor x, create new
operations O0

sx with processing time p
0
sx =

P
djJd2Jx

psd. Now, the original SWA problem has been transformed

to a preemptive open-shop scheduling problem with m processors and operations O0
sx. Run the Gonzalez and

Sahni algorithm10 to obtain an optimal schedule for the new open-shop problem.

Lemma 3.2. Algorithm DA is an approximation algorithm for the preemptive SWA problem.

Proof. Correctness. Step S1 assigns each job to a certain processor, thus, all operations of a job will be executed on
the same processor, satisfying constraint C1. In Step S2, a preemptive open-shop problem is constructed, such that
the processing time of an operation Osx for a source s on processor x is the sum of the processing times of operations
Osd for which job Jd has been assigned to processor x. Consider two jobs Jd and Jd0 , d 6= d0. If the jobs have been
assigned to two di�erent processors, the Gonzalez and Sahni algorithm ensures that constraint C2 is satis�ed. If the
jobs have been assigned to the same processor, constraint C2 is also satis�ed since, whenever operation Osx is being
processed, at most one of operations Osd or Osd0 (which are part of Osx) is processed, but not both. Finally, the
operation of the Gonzalez and Sahni algorithm does not violate constraint C3.

Approximation claim. Consider the preemptive open-shop problem in Step S2, and let D0
max (respectively,

S0
max) denote the maximum computation time associated with any processor (resp., source). By construction of the

open-shop problem we have that:
S0
max = Smax (7)

where the quantity Smax for the original SWA problem is de�ned in (3). Note, now, that an �-approximation
algorithm is used in Step S1 for the multiprocessor scheduling problem. This approximation algorithm respects
constraint C1 only, therefore the optimal for the multiprocessor scheduling problem is at most equal to the optimal
for the SWA problem. Thus,

D0
max = � Copt

max (8)



where Copt
max refers to the SWA problem. Since the Gonzalez and Sahni algorithm for the preemptive open-shop

scheduling problem is optimal,10 the schedule produced by the decomposition algorithm has length

CDA
max = maxfD0

max; S
0
maxg � � Copt

max (9)

where the last inequality follows from (6).

The above lemma implies that, if we use LPT (respectively, MULTI-FIT) in Step S1, then the decomposition
algorithm is a 4/3-approximation (resp., 1.2-approximation) algorithm. On the other hand, the decomposition
algorithm becomes a PTAS if the PTAS developed by Hochbaum and Schmoys for the multiprocessor scheduling
problem is used in Step S1 to obtain the assignment of jobs to processors.

4. NON-PREEMPTIVE SCHEDULING

Let us now consider the non-preemptive SWA problem, whereby, once an operation Osd has started processing on a
certain processor x, it must be completed before the processor can start executing another operation. The following
lemma proves that the non-preemptive version of the problem is also NP-complete.

Lemma 4.1. The non-preemptive SWA problem is NP-complete.

Proof. Consider an instance of the non-preemptive SWA problem with m processors and n jobs. Each job Jd,
d = 1; � � � ; n, of the instance consists of a single operation Odd with non-zero processing time pdd (i.e., all other oper-
ations Osd; s 6= d; s = 1; � � � ; n, of job Jd are such that psd = 0). This instance consists of n independent tasks (the n
operations Odd) and m < n processors. Thus, the well-known NP-complete multiprocessor scheduling problem7,12

is a special case of the non-preemptive SWA problem.

4.1. Algorithm Based on Problem Decomposition

An algorithm based on a problem decomposition, similar to the one developed for the preemptive case in Section 3,
can also be applied to this problem. However, non-preemptive open-shop scheduling is an NP-complete problem,10

but it is known that any list scheduling algorithm is a 2-approximation algorithm for this problem.14 Therefore,
instead of the Gonzalez and Sahni optimal algorithm for preemptive open-shop scheduling, a 2-approximation list
scheduling algorithm for the non-preemptive open-shop scheduling problem is applied in Step S2 of the decomposition
algorithm DA in Section 3. We now have the following lemma.

Lemma 4.2. If an �-approximation algorithm is applied to the corresponding multiprocessor scheduling problem
in Step S1 of the decomposition, then the decomposition algorithm DA is a 2�-approximation algorithm for the
non-preemptive SWA problem.

Proof. Correctness. The proof of correctness is similar to the one given for the preemptive SWA problem in
Lemma 3.2.

Approximation Claim. If an �-approximation algorithm is used in Step S1 for the multiprocessor scheduling
problem, by construction of the open-shop problem we have that (refer also to the proof of Lemma 3.2):

D0
max = � Copt

max (10)

S0
max = Smax (11)

where the quantity Smax for the original SWA problem is de�ned in (3). Since list scheduling is a 2-approximation
algorithm for the non-preemptive open-shop scheduling problem,10 the schedule produced by the decomposition
algorithm has length

CDA
max � 2 maxfD0

max; S
0
maxg � 2� Copt

max (12)

where the last inequality follows from (5).

We now note that, while the decomposition algorithm DA will correctly schedule the operations of the non-
preemptive SWA problem (i.e., the resulting schedule will satisfy constraints C1, C2, and C3), it may actually do
more than is needed to satisfy the non-preemption requirement. Consider jobs Jd and Jd0 , d 6= d0, if they exist, that



have been assigned to the same processor x. In Step S2 of the algorithm, a new operation Osx; s = 1; � � � ; n; is created
for the new open-shop problem, with a processing time equal to the sum of the processing times of operations Osd

and Osd0 (and, possibly, the operations of other jobs assigned to the same processor) of the original SWA problem.
The list scheduling algorithm in Step S2 applied to the open-shop scheduling problem will ensure that the operation
Osx will not be preempted, while the requirement for the original SWA problem is simply that operations Osd and
Osd0 not be preempted.

4.2. Algorithms Based on List Scheduling

We now present list scheduling algorithms for the non-preemptive SWA problem. We �rst show that a naive im-
plementation of list scheduling can produce schedules that are a factor of m from the optimal schedule. We then
describe a more re�ned version of list schedule that yields a 2-approximation algorithm for the non-preemptive SWA
problem.

We will need the following de�nitions in our discussion. A job Jd is said to be assigned to processor x at time t
if:

1. no operation Osd; s = 1; � � � ; n, has been executed (fully or partially) on any processor before time t, and

2. processor x is idle at time t and starts processing some operation Osd; s = 1; � � � ; n, at that time.

Because of the problem constraints, once a job Jd is assigned to processor x, all operations Osd; s = 1; � � � ; n must
be executed on x. An operation Osd is called schedulable on processor x at time t if:

1. job Jd has not been assigned to a di�erent processor y at some time t0 < t, and

2. an incompatible operation Os0d0(i.e., such that s = s0 or d = d0) is not being executed by another processor y
at time t.

When a processor x becomes idle at some time t, it can only start processing an operation that is schedulable at
time t.

4.2.1. List Scheduling, version 1

Algorithm LS1 (List scheduling, version 1)
All the tasks Osd, s; d = 1; � � � ; n, are initially arranged in an arbitrary list L. Consider a processor x which becomes
idle at time t. If list L is empty, the algorithm terminates. Otherwise, processor x starts processing the �rst
schedulable operation Osd in L, and the operation is removed from the list. If no schedulable operation is found
in L, processor x remains idle until time t0 > t at which another processor y that was busy at time t completes its
operation. At time t0, processors x and y each scan list L to select a new schedulable operation to process. (Ties are
broken arbitrarily).

Lemma 4.3. Algorithm LS1 is an m-approximation algorithm for the non-preemptive SWA problem.

Proof. Correctness. By construction, the algorithm ensures that a processor may execute at most one operation
at any time instant, thus satisfying constraint C3. The de�nition of a \schedulable" operation above, and the
requirement that a processor, upon becoming idle, selects a schedulable operation for execution, also ensure that the
algorithm will never violate constraints C1 or C2.

Approximation Claim. Let CLS1
max denote the makespan of a schedule produced by algorithm LS1, and let Tidle

denote the total idle time (over all m processors) in this schedule. We �rst observe that at no point in time can all
m processors be idle in a schedule produced by using algorithm LS1, thus, Tidle � (m� 1)CLS1

max. Because of (4), we
obtain:

CLS1
max �

Tidle + Tseq

m
�

m� 1

m
CLS1
max + Copt

max

) CLS1
max � mCopt

max: (13)



J1 J2 J3 � � � Jm Jm+1 Jm+2 � � � J2m

1
2
3
...
m

m+ 1
m+ 2

...
2m

2
666666666666664

M � m+1
m

0 0 � � � 0 0 0 � � � 0
1
m

M � m+1
m

0 � � � 0 0 0 � � � 0
0 1

m
M � m+1

m
� � � 0 0 0 � � � 0

...
...

...
...

...
...

...
...

...
0 0 0 � � � M � m+1

m
0 0 � � � 0

0 0 0 � � � 1
m

1
m

1
m

� � � 1
m

0 0 0 � � � 0 1
m

1
m

� � � 1
m

...
...

...
...

...
...

...
...

...
0 0 0 � � � 0 1

m
1
m

� � � 1
m

3
777777777777775

Figure 1. Problem instance that asymptotically achieves the upper bound of Lemma 4.3

The following problem instance shows that, asymptotically, the bound of the lemma is a tight one. The instance
consists of a number m of processors and a number 2m of jobs whose operations are shown in Figure 1. The �rst m
jobs consist of two operations, one long operation of length M � m+1

m
and one short operation of length 1

m
. The last

m jobs consist of exactly m short operations each, of length 1
m
. Let M = m(m� 1). The optimal schedule, shown in

Figure 2(a), is such that processor x; x = 1; � � � ;m, executes exactly two jobs, say jobs x and x +m. This schedule
has length Copt

max =M = m(m� 1). On the other hand, it is easy to see that under algorithm LS1, it is possible for
one processor, say processor 1, to be assigned jobs 1 through m+1, while processor x; x = 2; � � � ;m, is assigned only
one of the last m� 1 jobs. Such a schedule is illustrated in Figure 2(b), and has length

CLS1
max = 2 + m

�
M �

m+ 1

m

�
= mM � (m� 1) = m2(m� 1)� (m� 1) (14)

Then,
CLS1
max

C
opt
max

=
m2(m� 1)� (m� 1)

m(m� 1)
= m �

1

m
: (15)

4.2.2. List Scheduling, version 2

We now present a di�erent version of list scheduling which yields a 2-approximation algorithm for the non-preemptive
problem.

Algorithm LS2 (List scheduling, version 2)
The n jobs Jd; d = 1; � � � ; n, are initially arranged in a list L. The operations of each job Jd are also arranged in a
list Ld. A list lx is also associated with each processor x, and it is initialized to the empty list. Consider a processor
x that becomes idle at time t, and let Osd be the operation that was just completed by the processor. Processor x
selects an operation to process next by taking the following three steps in the order presented:

1. if there exists an operation Osd0 ; d0 6= d, in the processor's list lx, it is removed from the list and x starts
processing this operation at time t (note that operation Osd0 is schedulable on x at time t, since scheduling it
does not violate constraint C2).

2. if no operation Osd0 is found in Step 1, x starts processing any other schedulable operation in its list lx, and
the operation is removed from the list.

3. If no operation is found in the �rst two steps, list L is scanned. If L is empty, the algorithm terminates.
Otherwise, let Jd0 be the �rst job in L with an operation that is schedulable on processor x at time t, if one
exists. Job Jd0 is removed from L, and its list of operations Ld0 is appended to processor x's list lx. Processor
x starts processing the �rst schedulable operation in its new list lx, and the operation is removed from lx.



M-(m+1)/m . . .1/m 1/m1/m 1/m

M-(m+1)/m . . .1/m 1/m1/m 1/m

M-(m+1)/m . . .1/m 1/m1/m 1/mm

first m jobs last m jobs

1

2

(a) Optimal schedule

1/m

1/m

. . .

first m jobs

1/m

1/m

1/m 1/m

. . .

. . .

. . .1/m 1/m . . . M-(m+1)/mM-(m+1)/m

job m+1 first m jobs

1

2

m

last m-1 jobs

(b) Schedule under algorithm LS1

Figure 2. (a)Optimal schedule and (b) worst case schedule produced by algorithm LS1 for the instance shown in
Figure 1

If no schedulable operation is found at the end of the third step, processor x remains idle until time t0 > t at which
another processor y that was busy at time t completes its operation. At time t0, processors x and y each repeat the
above procedure to select a new schedulable operation to process. (Ties are broken arbitrarily.)

Lemma 4.4. Algorithm LS2 is a 2-approximation algorithm for instances of the non-preemptive SWA problem for
which no operation has zero processing time (i.e., psd > 0 8 s; d).

Proof. Correctness. By construction, the algorithm satis�es constraint C3. The fact that when the �rst operation
of a job Jd is schedulable on a processor x, the job is removed from list L and is appended to processor x's list,
ensures that constraint C1 is not violated. Finally, the requirement that a processor, upon becoming idle, selects a
schedulable operation for execution, guarantees that the resulting schedule will satisfy constraint C2.

Approximation Claim. Consider a schedule S built using algorithm LS2, and let Jd be the job that is the last to
be assigned to a processor (i.e., all other jobs have been assigned to processors before Jd). Let t be the time when
job Jd is assigned to a processor. We claim that no processor is idle before time t. To see that the claim is true,
assume that a processor y became idle at time t0 < t. Note now that at most m� 1 di�erent operations were being
processed at time t0, one at each of the other processors. By assumption, Jd includes n > m� 1 non-zero operations,
and n�m+ 1 of these operations are schedulable on y at time t0. Thus, under algorithm LS2, job Jd should have
been assigned to y at that point, contradiction.

At time t, all jobs have been assigned to processors. Let P = fJ1; � � � ;Jmg be the partition of the job set J
such that Jx is the subset of jobs that have been assigned by the algorithm to processor x; x = 1; � � � ;m. Let psd(t)
be the amount of processing that operation Osd has received up to time t. Consider a new scheduling problem with
m processors and n jobs J 0

s, where each job is a set of operations, J 0
s = fO0

s1; � � � ; O
0
smg, and the processing time of

operation O0
sx is given by:

p0sx =
X
d2Jx

(psd � psd(t)) : (16)



This new problem is an instance of open-shop scheduling10 with m processors and n jobs J 0
s, where each job

has a single operation O0
sx to be executed on each processor x. We now observe that algorithm LS2 is also a list

scheduling algorithm for this open-shop problem. To see this, consider a processor x that becomes idle at time t0 > t.
Since the last job was assigned to some processor at time t, no new jobs will be assigned to x at or after time t0.
Let Osd be the operation that was just completed by x at time t0. Because of the �rst step in selecting a new job
under algorithm LS2, if there is another job Osd0 in list lx, x will start processing Osd0 at time t0. When x becomes
idle again, the same selection process will be repeated until all operations Osd0 with the same source s in list lx are
completed (note that each of these operations are schedulable on x at the instant the previous one is completed).
Thus, these operations Osd0 will be executed back-to-back, in some order, without interruption, and no operations
with the same source will be added to list lx after time t

0. But all these operations Osd0 are part of the operation O0
sx

of job J 0
s in the open shop problem. Consequently, operation O0

sx will be executed without preemption on processor
x by algorithm LS2. Therefore, algorithm LS2 is a list scheduling algorithm for the open-shop problem.

Let D0
max (respectively, S0

max) denote the maximum computation time associated with any processor (resp.,
source) in the open-shop problem. Since there is no idle time in the schedule constructed by algorithm LS2 until
time t, we have that (note that we give the problem to which the various parameters are related in parentheses, OS
for open-shop, and SWA for the original SWA problem):

Copt
max(SWA) � t + maxfD0

max; S
0
maxg (17)

Since LS2 is a list scheduling algorithm for the open-shop problem, we also have that:

CLS2
max(OS) � 2 maxfD0

max; S
0
maxg � 2 Copt

max(OS) (18)

Finally, we get the desired result as follows:

CLS2
max(SWA) = t + CLS2

max(OS) � t + 2 maxfD0
max; S

0
maxg

� t + Copt
max(SWA) + maxfD0

max; S
0
maxg � 2 Copt

max(SWA) (19)

Now assume that some of the operations in the original non-preemptive SWA problem are zero. Without loss of
generality, assume that each job Jd consists of at least one operation of non-zero length (otherwise, we can remove
this job reducing the problem into an equivalent one with m processors and n�1 jobs). We can obtain a schedule that
is at most twice the optimum one for this problem by taking the following three steps. First, replace all zero-length
operations with ones of length equal to � > 0. Then, run algorithm LS2 on this new instance of the SWA problem
for which no operation has zero processing time. Finally, remove from the schedule obtained by algorithm LS2 all
operations that are of zero processing time in the original problem.

To see that this schedule is at most twice the optimum for the original SWA problem (the one with some operation
of zero length), we observe that at most n(n�1) operations are added to the problem instance in the �rst step. Now
note that a schedule for the new problem can be obtained by sequentially processing the n(n� 1) operations on one
processor after the end of the optimal schedule for the original problem, thus:

Copt
max(new) � Copt

max(original) + n(n� 1) � (20)

The optimum schedule for the new problem is at most equal to this schedule. Since at the third step of the algorithm
we remove some operations from the schedule produced by LS2, we have that:

CLS2
max(original) � CLS2

max(new) � 2 Copt
max(new)

� 2 Copt
max(original) + 2 n(n� 1) � (21)

By selecting an appropriate value for �, we see that the schedule obtained in this way for the original problem is at
most twice the optimal schedule plus a constant.

Finally, we note that algorithm LS2 is valid in an on-line context, where the jobs are not known in advance but
appear one after the other.



5. CONCLUDING REMARKS

We considered the Scheduling and Wavelength Assignment (SWA) problem which has applications in packet-switched
optical WDM networks. We proved that the SWA problem is NP-hard for both the preemptive and the non-
preemptive cases. Furthermore, we propose two eÆcient approximation algorithms. For the preemptive case, we
described an eÆcient approximation algorithm based on a natural decomposition of the problem. For the non-
preemptive case, we presented two list scheduling algorithms, the second of which is a 2-approximation algorithm
for both the o�-line and the on-line contexts.

REFERENCES

1. The NGI Helios project. http://www.anr.mcnc.org/projects/Helios/Helios.html.

2. I. Baldine and G. N. Rouskas. Dynamic load balancing in broadcast WDM networks with tuning latencies. In
Proceedings of INFOCOM '98, pages 78{85. IEEE, March 1998.

3. I. Baldine and G. N. Rouskas. TraÆc adaptive wdm networks: A study of recon�guration issues. IEEE/OSA
Journal of Lightwave Technology, 19(4):433{455, April 2001.

4. G.-K. Chung, K.-I. Sato, and D. K. Hunter (Eds.). Special issue on optical networks. Journal of Lightwave
Technology, 18(12), December 2000.

5. G-S. Kuo (Ed.). Special issue on multiprotocol label switching. IEEE Communications Magazine, 37(12),
December 1999.

6. D. K. Friesen. Tighter bounds for the multi�t processor scheduling algorithm. SIAM Journal on Computation,
13(1):170{181, 1984.

7. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Co., New York, 1979.

8. O. Gerstel, B. Li, A. McGuire, G. N. Rouskas, K. Sivalingam, and Z. Zhang (Eds.). Special issue on protocols
and architectures for next generation optical WDM networks. IEEE Journal Selected Areas in Communications,
18(10), October 2000.

9. T. Gonzalez. A note on open-shop preepmptive schedules. IEEE Transactions on Computers, C-28:782{786,
1979.

10. T. Gonzalez and S. Sahni. Open shop scheduling to minimize �nish time. Journal of the Association for
Computing Machinery, 23(4):665{679, Oct 1976.

11. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics, 17(2):416{
429, Mar 1969.

12. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnoy Kan. Optimization and approximation in
deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:287{326, Jan 1979.

13. D. S. Hochbaum and D. B. Schmoys. Using dual approximation algorithms for scheduling problems. Journal of
ACM, 34(1):144{162, Jan 1987.

14. T. Fiala I. B�ar�any. Tobbgepes, utemezesi problemak kozel optimalis megoldasa. Szigma-Mat.-Kozgazdasagi
Folyoirat, 15:177{191, 1982.

15. E. L. Lawler and J. Labetoulle. On preemptive scheduling of unrelated parallel processors by linear programming.
Journal of ACM, 25:612{619, 1978.

16. E. Modiano. WDM-based packet networks networks. IEEE Communications, 37(3):130{135, March 1999.

17. R. Ramaswami and K. N. Sivarajan. Optical Networks. Morgan Kaufmann Publishers, San Francisco, California,
1998.

18. G. N. Rouskas and V. Sivaraman. Packet scheduling in broadcast WDM networks with arbitrary transceiver
tuning latencies. IEEE/ACM Transactions on Networking, 5(3):359{370, June 1997.

19. V. Sivaraman and G. N. Rouskas. HiPeR-`: A High Performance Reservation protocol with `ook-ahead for
broadcast WDM networks. In Proceedings of INFOCOM '97, pages 1272{1279. IEEE, April 1997.

20. V. Sivaraman and G. N. Rouskas. A reservation protocol for broadcast WDM networks and stability analysis.
Computer Networks, 32(2):211{227, February 2000.


