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Abstract—1t is usually assumed that optical burst switched
(OBS) networks employ shortest path routing along with next-
hop burst forwarding. Shortest path routing minimizes delay
and optimizes the utilization of resources, however, it often
causes certain links to become congested while others remain
underutilized. In a buffer-less OBS network in which burst
drop probability is the primary metric of interest, the existence
of a few highly congested links may lead to unacceptable
performance for the entire network. In this paper, we take
a traffic engineering approach to path selection in OBS
networks with the objective of balancing the traffic across
the network links in order to reduce congestion and improve
overall performance. We present an approximate integer linear
optimization problem, as well as a simple integer relaxation
heuristic to solve the problem efficiently for large networks.
Numerical results demonstrate that our approach is effective
in reducing the network-wide burst drop probability, in many
cases significantly, over shortest path routing.

I. INTRODUCTION

Optical burst switching (OBS) is a promising switching
paradigm which aspires to provide a flexible infrastructure
for carrying future Internet traffic in an effective yet practical
manner. OBS separates the control (signaling) and data
plane functions in the network in a way that exploits the dis-
tinct advantages of optical and electronic technologies. Sig-
naling messages are processed electronically at every node
in the network, while bursts are transmitted transparently
end-to-end, without OEO conversion at intermediate nodes.
Moreover, OBS transport is positioned between wavelength
routing (i.e., circuit switching) and optical packet switching.
All-optical circuits tend to be inefficient for traffic that
has not been groomed or statistically multiplexed, whereas
optical packet switching requires practical, cost-effective,
and scalable implementations of optical buffering and opti-
cal header processing, which are several years away. OBS
does not require buffering or packet-level parsing in the
data path, and it is more efficient than circuit switching
when the sustained traffic volume does not consume a full
wavelength. The transmission of each burst is preceded by
the transmission of a setup message (also referred to as
burst-header control message), whose purpose is to reserve
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switching resources along the path for the upcoming data
burst. An OBS source node does not wait for confirmation
that an end-to-end connection has been set-up; instead it
starts transmitting a data burst after a delay (referred to as
“offset”), following the transmission of the setup message.

Over the last few years, research in OBS networks has
rapidly progressed from purely theoretical investigations
to prototypes and proof-of-concept demonstrations. For a
recent overview of the breadth and depth of current OBS
research, the reader is referred to [6]. Yet despite the
multitude of directions that OBS research has taken, there
is one important area, namely, the selection of routing
paths, that has received relatively little attention in the
literature despite the profound impact that routing can
have on the overall performance of an OBS network. In
particular, most studies investigating the performance of
OBS networks assume (either implicitly or explicitly) that
bursts are routed over the shortest path to their destination.
Shortest path routing is widely used in both circuit-switched
and packet-switched networks since it minimizes the delay
and optimizes the utilization of resources. However, shortest
path routing does not take into consideration the traffic load
offered to the network, and it often causes certain links to
become congested while other links (which happen to lie
along longer paths) remain underutilized. Such a scenario
is highly undesirable in OBS networks in which burst drop
probability is the primary performance metric of interest:
since it is generally assumed that intermediate switches do
not buffer bursts, having a few highly congested links may
lead to unacceptably high burst loss for the entire network.

One possible routing mechanism that can be used to
reduce the burst loss due to sub-optimal path selection (e.g.,
shortest paths) is deflection routing [4]. In this approach,
each switch maintains several paths to a destination, with
one path designated as primary (default). When the primary
path of an incoming burst is not available, the switch
deflects the burst to one of the secondary paths. A deflection
routing protocol for OBS networks was proposed in [13],
while [9], [16] analyzed the performance of deflection
routing. However, deflection routing in OBS networks has



several disadvantages. A practical implementation would
require intermediate switches which deflect a burst to some-
how increase its offset, an operation that is impossible
without the use of buffers (alternatively, each burst must
have an offset large enough to account for all possible
deflections in its path, severely degrading the performance
of the network). When deflection decisions are made at each
switch without coordination with the rest of the network (a
typical approach given the limited amount of time between
the setup message and the data burst), there is great potential
for routing loops which can have disastrous effects in an
optical network [10]. Finally, deflection routing is by nature
suboptimal since it only considers the congestion of the
current switch, not the state of the links further along the
path; and it may cause undesirable vibration effects, as
explained in [16].

In this work, we take a traffic engineering approach
to path selection in OBS networks. Our objective is to
determine a set of routing paths so as to minimize the overall
burst drop probability in the network. The main idea is to
balance the burst traffic across the network links in order
to reduce congestion and improve overall performance. To
this end, we develop a traffic flow model and present a
linear optimization problem by establishing the relationship
between the (approximate) overall burst drop probability and
the traffic flow vector. Although the problem formulation is
based on certain simplifying assumptions (which we discuss
and justify), the paths obtained through the solution to this
problem tend to balance the burst traffic evenly, reducing
congestion and improving the performance significantly
compared to shortest path routing.

The rest of the paper is organized as follows. In Section II
we discuss our assumptions regarding the OBS network we
consider in our study. In Section III we formulate a linear
optimization problem with the objective of minimizing the
overall burst drop probability, and we show how to solve it
to obtain a set of optimal paths. In Section IV, we present
simulation results to demonstrate the effectiveness of our
approach, and we conclude the paper in Section V.

II. THE OBS NETWORK UNDER STUDY

An OBS network is composed of users, optical switches
(nodes) and fibers. Users are devices, e.g, high-speed elec-
tronic routers or multiplexers, which generate optical bursts.
An optical switch consists of two components: an optical
cross-connect (OXC) which can optically forward a burst
from an input to an output port without OEO conversion;
and a signaling engine which processes signaling messages
and controls the OXC switching fabric. Optical fiber links
interconnect the network of switches, and also connect each
user to one or more edge switches. A burst generated by a
user travels past a series of fibers and switches in the OBS
network, and terminates at another user.

We will use G = (V,E) to denote an OBS network.
V ={51,52,...,Sn} is the set of switches, N = |V|, and
E = {1,0s,...,0p} is the set of unidirectional fiber links,
M = |E|.If a link ¢, connects an output port of switch S; to
an input port of switch S;, we will refer to S; and S; as the
tail and head, respectively, of £;. We also define tail(i) =
{€x|S; is the tail of £}, as the set of links with S; as their
tail; similarly head(i) = {€x|S; is the head of £} is the
set of links with S; as their head. Each link in the network
can carry burst traffic on any wavelength from a fixed set
of W wavelengths, {1, A2, -+, Aw }.

We assume that the OBS network employs source routing,
in that the ingress switch (source) determines the path of a
burst entering the network. The path over which the burst
must travel is carried by the setup message that precedes
the transmission of the data burst. The network uses either
fixed-path or multi-path routing. In fixed-path routing, all
bursts between a source-destination pair follow the same
path through the network. In multi-path routing, a burst may
take one of a (small) number of paths to its destination. We
assume that the source node maintains the list of paths for
each possible destination, and is responsible for selecting
the path over which a given burst will travel. Once the
source has made a routing decision for a burst, the path
is recorded in the setup message and it cannot be modified
by downstream nodes.

We also assume that each OBS switch in the network
has full wavelength conversion capabilities which are used
in the case of wavelength contention. The network does not
use any other contention resolution mechanism. Specifically,
OBS switches do not employ any buffering, either electronic
or optical, in the data path, and they do not utilize deflection
routing. Therefore, if a burst requires an output port at a time
when all wavelengths of that port are busy transmitting other
bursts, then the burst is dropped.

III. PATH OPTIMIZATION FOR OBS NETWORKS

We take a traffic engineering approach to computing a set
of paths in an OBS network so as to minimize the overall
burst drop probability. We assume that the traffic pattern is
described by a N x N matrix I = [ry;;], where ~y;; represents
the (long-term) arrival rate of bursts originating at switch S;
and destined for switch .S;. The values of the traffic elements
;i can be obtained empirically, or they can be based on
predictions regarding the long-term demands placed upon
the network; while these values may be updated from time to
time, we assume that any such changes in the traffic matrix
take place over long time scales, and that routing paths
remain fixed during the time between successive updates
in the traffic matrix. Let 1/u;; denote the mean length of
bursts traveling from switch S; to switch S;; we will use
pij = 7ij/pi; to denote the offered load of bursts from S;
to Sj.



Given a demand matrix, a typical approach to determining
a set of paths that optimize a certain performance metric
of interest (e.g., congestion, average delay, etc.) is to for-
mulate and solve an optimization problem (refer to [7] and
references thereof for similar problems in wavelength routed
networks). We take a similar approach in that we formulate
a linear optimization problem in order to determine the op-
timal routing paths; in our case, the objective is to minimize
the burst drop probability over the entire network, and the
demand matrix is determined by the offered load values
{pij,i,j = 1,---,N}. However, we note that the problem
at hand is different than typical network flow problems [1]
in several aspects:

« it is impossible to express the objective function (over-
all burst drop probability) as a function of the link burst
drop probabilities in an exact and closed-form manner;

« even if one were to use an approximate expression for
the objective function, the resulting formulation would
not be linear;

« the link burst drop probabilities (and, hence, the ob-
jective function) depend not on the known quantities
pi; (the offered load), but rather on the actual loads,
which are unknown and can be determined only once
the optimal paths have been obtained (the actual load
on a link due to a certain traffic component equals
the offered load of that component minus an amount
corresponding to the burst traffic dropped at previous
links of the component’s path); and

« the relationship between the link burst drop probabili-
ties and the corresponding link loads depends strongly
on the nature of the burst traffic (e.g., Poisson, self-
similar, etc.); for non-Poisson burst arrival models, this
relationship may be difficult (or even impossible) to
express analytically.

Next, we present a formulation which overcomes the
above difficulties and allows us to obtain routing paths
which improve the burst drop probability significantly over
shortest-path routing by distributing burst traffic over the
network paths so as to reduce link contention. We emphasize
that our main goal has been to obtain a practical formulation
that can be solved efficiently for large networks. To this end,
we have made certain approximations in order to obtain
a linear model and avoid complex and computationally
expensive formulations. The following discussion explains
our assumptions and notations.

A. Traffic Flow Model Formulation

Our first step is to formulate a traffic flow model for
optimization by establishing the relationship between the
(approximate) overall burst drop probability and the traffic
flow vector. Let 8() denote the probability that a burst
is dropped along link #; of the network. We make the
reasonable assumption that 5(*¥) < 1, V k, and also that the

drop probability along link #; is independent of the source
or destination of a burst, or the path it has followed before
entering link £. Then, the burst drop probability b(w) along
a path 7 is given by:

1- JJa-8%) ~ > 5% « 1)
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b(r) =

Therefore, we will assume that the actual traffic load p;;
seen by the network due to traffic originating at switch
S; and terminating at switch S; is equal to the offered
load of this traffic component, p;; (i.e., there is no traffic
loss). Obviously, this is an approximation, which is more
accurate when the burst drop probability is low, but one
which significantly simplifies the formulation.

Let mz(f)
S; to switch S; that travels over link £z, 0 < xz(f) <
1; quantities ng) constitute the traffic flow vector. Then,
the burst drop probability By over all burst traffic in the

network is given by:
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denote the fraction of burst traffic from switch

where p(®) is the total load seen by link £, under the
assumption that there is no traffic loss.

Given the traffic demands {p;;}, our objective is to
minimize the network-wide burst drop probability By in
expression (2). As we mentioned previously, however, the
expression for By depends on the burst arrival model. In
general, it may not be possible to express By as a linear
function of mg-c), and in fact, it may be impossible to obtain
even a closed-form expression for By. To overcome this
problem, we make the assumption that the burst arrival
process to each link in the network is Poisson. This is clearly
an approximation since, even if arrivals to the network are
Poisson, burst arrivals to a given link are reduced due to loss
in previous links and are not Poisson. However, whenever
burst loss is small, we can assume that the thinned process
remains Poisson. Furthermore, the Poisson assumption al-
lows us to develop a linear problem formulation from which
a set of routing paths can be obtained. Even if the arrival
process is not Poisson, the routing paths obtained using
our approach will help reduce the burst drop probability
(compared to schemes such as shortest-path routing) since
they tend to more evenly balance the load among the
network links. Finally, our approach can be adapted to non-
Poisson traffic if the link drop probabilities in such a case
can be approximated by a convex function (as we discuss
shortly).

Under the Poisson arrival assumption, the burst drop



probability at each link Z, is given by the Erlang-B formula:
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where W is the number of wavelengths at link £;. Let us
now define the cost function ¢(p, W) as:

c(p,W) = Erl(p,W)xp (4)

such that ¢(p®), W) represents the term in the numerator
of the expression in (2) corresponding to link £j. Since
the denominator in (2) is a constant, we can formulate our
optimization problem in terms of a network flow model as
follows.

minimize BNE pij =

i#j

> e W) (5

{eFE

subject to:

SRR SR
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0, otherwise
(7)
S eV <1 Vige, i#j (8)
Lk Etail(v)
o eV <1 Vigvi#s 9)
L Ehead(v)
pB =" x ol vigki#i (10
ij
0<zl <1 Vijk i#j (11)

The first three sets of constraints (7)-(9) represent the
conservation of traffic flow at switch S,. The fourth set of
constraints (10) ensures that a traffic component contributes
to the load of a link £, if and only if some non-zero fraction
ng) of this component travels over link £j.

In the above formulation, we have let the variables :cgf)
be real numbers. Therefore, a solution to the problem might
dictate that traffic between a given source-destination pair
follow two or more different paths across the network. Of
course, it is possible to restrict mgc) to take only two possible
values, 0 or 1; in this case, the solution will yield a single
path for each traffic component. We note that restricting a:i;-c
to (binary) integer values may result in a worse solution (i.e.,
higher overall burst drop probability), and will also affect
the computational complexity of the problem. We will revisit
this issue in the next subsection.

* Original cost function

Linear interpolation function
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Fig. 1. Cost function ¢(p, W) for W = 32

Clearly, the objective (5) is not a linear function of the
variables azsf) Therefore, as our last step towards a linear
formulation, we will approximate the objective function by
a piecewise linear function. Let us refer to Figure 1 which
plots the cost function ¢(p, W) against the value of p, when
the number of wavelengths is fixed to W = 32. It is straight-
forward to show that, as seen in the figure, the cost function
is convex. The problem of fitting a convex curve using a
piecewise linear function has been studied in [5], [8], [11],
where the objective was to achieve the best least squares fit.
However, such an approach has two disadvantages if applied
to the cost function ¢(p, W): it is computationally expensive,
and it may result in a large number of line segments, which
in turn increases the complexity of solving the optimization
problem.

Therefore, we have decided to use simple interpolation
to find a piecewise linear function to approximate the cost
function ¢(p, W). For instance, let us assume that we use
K line segments whose p coordinates fall in the range
[0 = po,p1), [p1;p2),- -, [P -1, pK], Tespectively, where
pK is an upper bound on the load offered to any link in the
network. Then the approximate linear cost function é(p, W)
is given by:

(c(pm, W) = e(pm—1,W))

Pm — Pm—1
Pm—1 S P < Pm,

é(pa W) = (P - pmfl)

m=1,2,---,K (12)

It should be clear that, if we use the above approximate cost
function é(p, W) in the place of ¢(p, W) in the objective (5),
the formulation (5)-(10) is a linear programming problem.
The number of line segments used in the approximate cost
function é(p, W) represents a tradeoff between the quality
of approximation and the complexity of computation. Recall
that our objective is simply to reduce the load of links in the
high-load and moderate-load regions, by increasing the load



of links in the low-load region; due to the convex property,
doing so will help reduce the overall cost (burst drop proba-
bility). Therefore, the approximate piecewise linear function
should adequately capture the behavior of the cost function
in the low, moderate, and high load regions. From Figure 1,
we observe that, at low and high loads, the cost function
¢(p, W) resembles a straight line; similar observations can
be made for other values of W (recall that in Figure 1
we have used W = 32). Based on these observations,
we have used K = 4 segments in our approximation. In
the case where W = 32, we select the p coordinates for
these four line sections as follows. The first line segment
captures the behavior of the cost function at low loads, and
its p coordinates are in the range [0, p; = 20). The fourth
line segment captures the cost behavior at high loads. To
determine the p coordinates for this segment we let py = 40
as a reasonable upper bound for the load on any network
link, and we choose p3 = 30 so that the slope of the cost

function at p = p4 is within 20% of the slope at p = ps,
Je(p, W) < 1.9 9, W)

Le., 19 |P:P4

ensures that this part of the cost Iﬁnction can be accurately
approximated by a straight line. Finally, we select pa = 20
as the midpoint between p; and ps. A similar approach can
be used to determine the line segments for other values of
the number W of wavelengths.

Although we have used a small number of segments (K =
4) in the linear interpolation to approximate the cost function
c(p, W), it is certainly practical to use a larger number of
segments to obtain a better approximation. For instance, if,
after solving the problem with a small number of segments it
is determined that the optimal value of the objective function
in (5) is quite small, then one might use a larger number
of segments to better approximate the low-load region of
the cost function. However, we have found that using four
segments yields satisfactory results.

Finally, we note that the approach we described above
to obtain a piecewise linear approximation of the objective
function (5) can be used in the case of non-Poisson burst
traffic models, as long as both the link and the overall burst
drop probabilities can be expressed as a convex function of
the link loads. Since we are not aware of any studies that
have obtained analytical expressions for the overall burst
drop probability, we will only consider the objective func-
tion (5). We emphasize, however, that the optimized paths
we obtain by solving the formulation (5)-(11) under the
stated assumptions, will benefit any OBS network regardless
of the actual traffic arrivals.

| p=ps ; this constraint

B. Solving the Optimization Problem

The formulation (5)-(11) contains O(NZ2M) variables

ng) and O(N2M) constraints, where N is the number of

switches (nodes) and M is the number of links in the OBS

Input: Flow vector z;; = {xg;),wg-), ... z(;u)}

corresponding to traffic between switch .S; and S,
M = |E|
Output: Path m;; for all traffic between S; and S;
Tij < 0
m <1
while m # j do
for all ¢;, € tail(m) do
if %), =1 then
Append £ to m;;
mé<n

Fig. 2. Algorithm for computing paths from the traffi ¢ fow vector

network. As long as we let variables mgl-c) be real numbers

as in (11), we obtain a linear programming (LP) problem
which can be solved efficiently using SIMPLEX even for
very large networks with hundreds of nodes and links. A
solution to this LP model might dictate that traffic between
some source-destination pairs take multiple paths across the
network. There are two issues that must be addressed with
such a solution. First, consider a switch at which a given
traffic component (i.e., the traffic between a given source-
destination pair) must be split to take two or more different
paths. The fraction of traffic that must be sent over each path
must be equal to the corresponding traffic flow variables
:cz(f) obtained by solving the LP. Accomplishing this goal
while taking into account other important constraints (e.g.,
preserving the order of packets contained in the bursts at the
destination) can be a potentially challenging task. Second,
the paths obtained through a solution to this optimization
problem can be of a quite general form. In particular,
it is possible that the various paths for a given source-
destination pair split at some switch, merge at another
downstream switch, split again later, etc. Such paths may
pose challenges in configuring and maintaining consistency
among the routing tables in the network.

Alternatively, we could modify the constraints (11) to
restrict variables ng) to take only two values, 0 or 1. In
this case, the solution will yield a single path for each
source-destination pair. However, the formulation (5)-(11)
now becomes an integer linear programming (ILP) model,
and given the large number of variables and constraints, it
can be solved optimally using CPLEX only for networks of
moderate size. Once the optimal flow vector {xﬁf)} has been
obtained, we can obtain the path for each source-destination
(4, 7) using the algorithm in Figure 2.

For large networks with hundreds of nodes and links, it is
not possible to obtain an optimal solution to the ILP within
a reasonable amount of time. In this case, we propose the
following simple greedy heuristic which we have found to
yield good results.

e Solve the corresponding LP using SIMPLEX to obtain



a traffic flow vector with real values for xgl-c).

o For each source-destination pair (7,j) that has only
one path under the LP solution, assign this path for
routing bursts. Evaluate the objective function (5) by
considering only paths that have been assigned a path
so far.

o Sort the source-destination pairs not yet assigned a path
according to the number of paths each has under the LP
solution; break ties by sorting source-destination pairs
in decreasing order of the length of their shortest path.

o Consider the first source-destination pair (i, ) not yet
assigned a path; the traffic of this pair is split among
n paths in the LP solution. For each of the n paths,
evaluate the objective function (5) as if all traffic
between ¢ and j is sent over this path. Assign to pair
(¢,7) the path that minimizes the objective function;
in other words, set the variables :cgl-c) along this path
to 1, and set all other non-zero variables ib'z(f) in the LP
solution to 0.

« Repeat the previous step until all source-destination
pairs have been assigned a path.

IV. NUMERICAL RESULTS

In this section, we use simulation to demonstrate the
performance improvements that are possible when routing
bursts along paths obtained through our optimization tech-
niques, over using shortest paths. We use the simulator
we developed as part of the Jumpstart project [12]. The
simulator accounts for all the details of the Jumpstart OBS
signaling protocol [3] which employs the Just-In-Time (JIT)
reservation scheme [14], including all messages required
for setting up the path of a burst and feedback messages
from the network; the Jumpstart signaling protocol has
been implemented in a proof-of-concept testbed on the
ATDNet [2]. (We emphasize, however, that the optimized
routing paths we develop and evaluate in this work are
independent of the specifics of the reservation protocol, and
can be deployed alongside either the JET or the Horizon
reservation schemes.) We use the method of batch means
to estimate the burst drop probability, with each simulation
run lasting until 6 x 10 bursts have been transmitted in
the entire network. We have also obtained 95% confidence
intervals for all our results; however, they are so narrow that
we omit them from the figures we present in this section in
order to improve readability.

In our simulations, we consider two different arrival
processes for generating bursts. The first is a Poisson
process, which is consistent with the assumptions we made
in Section III to obtain the linear programming formula-
tion. The second is the three-state Markovian process we
developed and analyzed in [15], whose parameters can be
selected to introduce any degree of burstiness into the arrival
process. In our simulation, we assume that burst lengths are

exponentially distributed; however, we have found that the
actual burst length distribution does not have any significant
effect on the results.

We compare three different fixed path routing schemes:

« SP routing: bursts are routed over the shortest path (in
terms of hops) between source and destination, with
ties broken arbitrarily.

o LP routing: solve the LP of Section III to obtain a set
of paths for each source-destination pair; then use the
heuristic in Section III-B to assign a single path for
routing bursts to each source-destination pair.

¢ ILP routing: bursts are routed over the paths deter-
mined by solving the ILP corresponding to formula-
tion (5)-(11) after we modify the constraints (11) to
restrict variables xz(;c) to take only the values O or 1;
we were able to solve the ILP using CPLEX only for
networks of moderate size.

We also consider two different traffic patterns in our

study:

o Uniform pattern: each switch generates the same
traffic load, and the traffic from a given switch is
uniformly distributed to other switches.

« Distance-dependent pattern: the amount of traffic
between a pair of switches is inversely proportional
to the minimum number of hops between these two
switches.

A. Results for Networks of Moderate Size

We first consider two 16-node networks: the 4 x 4 torus
network shown in Figure 3 is based on a regular topology,
while the network in Figure 4 is based on an irregular topol-
ogy derived from the 14-node NSF network. We emphasize
that, even for these networks of moderate size, solving the
ILP to obtain an optimal set of paths may take a long time
(more than a few hours). Therefore, we terminate the search
once CPLEX has found a solution that is within 5% of
the optimal. All the figures in this section plot the burst
drop probability against the “normalized network load” pw,
which is obtained by dividing the total load offered to the
network by the number W of wavelengths: py = %

1) Poisson Traffic: Figure 5 plots the burst drop prob-
ability against py for the NSF network under the three
routing schemes; these results were obtained with Poisson
arrivals and the uniform traffic pattern. As we can see,
using the paths obtained through our optimization approach
(LP and ILP routing) outperforms shortest path routing
over the entire range of values for the normalized network
load we considered. In the low load region, the burst drop
probability under optimized routing is up to an order of
magnitude lower than that under shortest path routing, while
at moderate loads, the decrease in drop probability remains
significant (up to 50%); even at high loads, using paths so
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The 4 x 4 torus network

Fig. 4. The 16-node topology based on the 14-node NSFNet

as to balance the load across the network links can have a
small benefit. Another important observation is that solving
the ILP formulation to obtain the optimal paths has only
a small advantage over solving the LP formulation (which
is orders of magnitude faster) and then using the heuristic
in Section III-B to assign a single path to each source-
destination pair. This result can be explained by the fact
that in this case, the solution to the LP formulation yields
one or two paths for each source-destination pair; and for
most pairs with two paths, one of the paths is dominant,
carrying the vast majority of the traffic.

Figure 6 presents simulation results of the NSF network
with the distance-dependent traffic pattern. There are two
important observations we can make from this figure. First,
we note that the solution obtained by using the LP followed
by the simple path assignment heuristic in Section III-B

outperforms the one obtained by the ILP. This result is due
to the fact that, in this case, as we explained earlier, we
were not able to obtain an optimal solution with CPLEX
but rather a suboptimal one. The second observation is that,
under the same normalized network load, the improvement
in burst drop probability over shortest path routing is signif-
icantly higher for the distance-dependent traffic pattern of
Figure 6 compared to the uniform pattern of Figure 5. Since
shortest-path routing uses the same set of paths regardless
of the actual traffic pattern, its performance under the same
network load is similar under either pattern. However, our
optimization approach uses the information about the traffic
pattern to tailor the routing paths in a way that appropriately
balances the load across the network links. As a result, for
the distance-dependent pattern in Figure 6, the burst drop
probability is reduced by up to two orders of magnitude
under low and moderate loads, and almost one order of
magnitude under high loads.

Figures 7 and 8 show the results for the torus network
for uniform and distance-dependent traffic, respectively. We
again find that optimized routing performs significantly bet-
ter than shortest path routing. For the reasons we explained
above, this improvement in performance is higher under the
distance-dependent traffic pattern. We also observe that LP
routing closely tracks ILP routing (or slightly outperforms
it when the ILP is solved sub-optimally), similar to the
behavior we observed with the NSF network. Comparing
the two figures to the corresponding figures for the NSF
network, we note that, under the same normalized network
load, the burst drop probability is lower in the Torus network
compared to the NSF network. This is due to the symmetry
of the torus topology; due to the topology’s inherent load
balancing properties, even shortest path routing performs
well compared to asymmetric topologies such as the NSF
network. However, we also see that, even with such a
symmetric topology, our optimization approach can further
exploit the information regarding the traffic pattern to offer
significant advantages over shortest path routing.

2) Non-Poisson Traffic: In all the simulation results we
have presented so far, burst traffic between each source-
destination pair was generated according to a Poisson pro-
cess with a parameter determined by the specific traffic
pattern used. The Poisson arrival assumption is consistent
with the approximations that led us to the linear problem
formulation in Section III. In this section we present sim-
ulation results in which we have used a different arrival
process to generate bursts. The arrival process we used is the
3-state Markov process introduced in [15]. The process may
be in one of three states: in the “short burst” (respectively,
“long burst”) state, the user is in the process of transmitting
a short (respectively, long) burst, while in the “idle” state
the user is not transmitting any burst. It was shown in [15]
that, by appropriately selecting the parameters of the process
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(i.e., the mean duration of each state and the transition rates
between states), it is possible to introduce any degree of
burstiness into the arrival process. For the results we present
in this section, the arrival process we used is significantly
more bursty than the Poisson process (the coefficient of
variation is 3.5).

Figures 9 and 10 are similar to Figures 6 and 8, respec-
tively, except that in this case, burst arrivals were generated
using the 3-state Markovian process of [15] rather than a
Poisson process. The traffic pattern we used for obtaining
these results is the distance-dependent one; very similar
results were observed for the uniform pattern as well. The
relative behavior of the three curves in Figures 9 and 10 is
similar to that under Poisson traffic in that LP and ILP rout-
ing perform significantly better than SP routing. As we can
see, selecting the paths using the optimization techniques we
developed under the Poisson process assumption produces
significant benefits in terms of burst drop probability even
when the arrival process is not Poisson.

Table I provides additional insight into the optimization
approach we have proposed and its ability to improve the
burst drop probability over shortest path routing regardless
of the topology, traffic pattern, or traffic arrival assumptions.
The table lists the maximum and minimum link loading of
the NSF and Torus networks under SP, LP, and ILP routing,
and the stated traffic pattern and arrival process; the link load
values for NSF (respectively, Torus) network correspond
to a normalized network load of 6.4 (respectively, 9.6).
Recall that the essence of the path optimization approach of
Section III is to shift the traffic onto paths so as to reduce the
load at the most utilized links while increasing the load of
least utilized ones. Although we used the Erlangian blocking
model to simplify the formulation, the net effect of our
approach is similar regardless of the traffic assumption. This
is evident in the above table, where we see that LP and
ILP routing result in a smaller maximum link load than SP
routing. In general, a lower link loading will lead to lower
burst drop probability, regardless of the burst arrival process,
as we have observed in this section.

B. Results for Large Networks

We now demonstrate the benefits of our path optimiza-
tion approach by considering a large network topology for
which it is not possible to solve the ILP formulation to
obtain the optimal fixed paths. Therefore, in this section
we compare shortest path routing to routing over paths
obtained by solving the LP formulation and then rounding
the traffic flow variables as we explained in Section III-B.
In our simulations, we used the 33-node topology shown in
Figure 11. This topology is based on the 33-node multi-
gigabit pan-European research network as of April 2004
(see http://www.geant.net), but we added the links shown



NSF Network Torus Network

Routing Scheme || Uniform [ Distance-Dependent || Uniform [ Distance-Dependent
SP Min 1.7 2.43 2.56 2.24
Max 17.07 12.96 21.76 16.05
LP Min 3.4 3.77 3.84 4.48
Max 145 11.87 17.92 12.7
ILP Min 0.85 2.96 7.68 7.28
Max 14.5 10.8 14.08 8.96

TABLE I

MINIMUM AND MAXIMUM LINK LOAD UNDER EACH ROUTING SCHEME

in dashed lines in Figure 11 to ensure that the network is
biconnected.

Figures 12 and 13 plot the bust drop probability of SP
and LP routing for the GEANT network and the distance-
dependent traffic pattern; Figure 12 shows the results when
the arrival process is Poisson, whereas the results of Fig-
ure 13 were obtained by generating bursts according to the
3-state Markov process we discussed earlier. As we can see,
LP routing outperforms SP routing by a wide margin except
at very high loads. Furthermore, this observation is true
regardless of the arrival process (Poisson or not). Since the
LP routing optimization procedure is quite fast even for large
networks, we conclude that our techniques can be applied
in a practical and efficient manner to improve the burst drop
probability in networks of any size.

V. CONCLUDING REMARKS

We have addressed the problem of selecting paths in an
OBS network in order to minimize the overall burst drop
probability. We have taken a traffic engineering approach
where the objective has been to balance the burst traffic
as much as possible across the network links. We have
developed an approximate formulation as an integer linear
optimization problem by making some simplified assump-
tions. We have also presented a heuristic that allows us
to solve the problem efficiently, albeit sub-optimally, for
large networks. Our results indicate that our approach is
successful in obtaining paths that balance the load evenly,
leading to a reduction in the burst drop probability for
networks of various sizes and topologies, different traffic
patterns, and burst arrival processes.

We are currently working on further improving the op-
timization method for non-Poisson traffic. The key idea is
to modify the cost function (4), using either simulation or
the analytical model in [15], to better approximate the burst
drop probability at a single link under a given non-Poisson
arrival model. Then the network flow model in Section III-
A can be used to compute a set of optimized routes for the
specific arrival process at hand.
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