
The Spectrum Assigment (SA) Problem in Optical
Networks: A Multiprocesor Scheduling Perspective

Sahar Talebi†, Evripidis Bampis‡, Giorgio Lucarelli‡, Iyad Katib!, George N. Rouskas†!
†Operations Research and Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206 USA

‡Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
!King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—The routing and spectrum assignment (RSA) prob-
lem has emerged as the key design and control problem in elastic
optical networks. In this work, we provide new insight into the
spectrum assignment (SA) problem in mesh networks by showing
that it transforms to the problem of scheduling multiprocessor
tasks on dedicated processors. Based on this new perspective,
we show that the SA problem in paths is NP-hard for four or
more links, but is solvable in polynomial time for three links.
We also develop new constant-ratio approximation algorithms
for the SA problem in paths when the number of links is fixed.
Finally, we introduce a suite of list scheduling algorithms that are
computationally efficient and simple to implement, yet produce
solutions that, on average, are within 1-5% of the lower bound.

I. INTRODUCTION

The ongoing transition from a fixed wavelength grid to
an elastic network paradigm [5] opens up many exciting
and promising directions for optical network research and
development. This transition is facilitated by key enabling
technologies including optical OFDM, adaptive modulation,
bandwidth-variable transponders and flexible spectrum selec-
tive switches [16]. Elastic optical networks have the potential
to overcome the fixed, coarse granularity of existing WDM
technology and are expected to support flexible data rates,
adapt dynamically to variable bandwidth demands by applica-
tions, and utilize the available spectrum more efficiently [8].

In the quest for a truly agile, resource-efficient optical
network, the routing and spectrum assignment (RSA) problem
has emerged as the key network design and control prob-
lem [9], [14]. In offline RSA, the input typically consists
of a set of forecast traffic demands, and the objective is
to assign a physical path and contiguous spectrum to each
demand so as to minimize the total amount of allocated
spectrum (either over the whole network or on any link).
Several variants of the RSA problem have been studied in
the literature that take into account various design aspects in-
cluding the reach versus modulation level (spectral efficiency)
tradeoff [3], traffic grooming [17], and restoration [15]. These
problem variants are NP-hard, as RSA is a generalization of
the well-known routing and wavelength assignment (RWA)
problem [11]. Therefore, while most studies provide integer
linear program (ILP) formulations for the RSA variant they
address, they propose heuristic algorithms for solving medium

This work was supported by the National Science Foundation under Grant
CNS-1113191, and in part by the Deanship of Scientific Research (DSR),
King Abdulaziz University, under Grant No. 2-611-1434-HiCi.

to large problem instances. Such ad hoc solution approaches
have two drawbacks. First, they do not provide insight into the
structure of the optimal solution and hence cannot be easily
adapted to other problem variants. Second, it is quite difficult
to characterize the performance of heuristic algorithms, and
our recent work has demonstrated that heuristics for the
related RWA problem produce solutions that are far away from
optimal even for problem instances of moderate size [10]. For
a survey of spectrum management techniques in elastic optical
networks, including a review of solution approaches to RSA
problem variants, we refer the reader to [13].

A recent study [12] considered the complexity of the RSA
problem in chain (path) networks. In path networks, the
routing aspect of the problem is completely determined, and it
reduces to a spectrum allocation (SA) problem. Using results
from graph coloring theory, it was shown in [12] that the SA
problem in paths is NP-hard, and that a (2+ ε) approximation
algorithm for computing the interval chromatic number of an
interval graph may be used for solving the SA problem with
the same performance bound. The study also extends this
algorithm to solve the SA problem in ring networks with a
performance bound of (4 + 2ε).

The main contribution of our work is to provide new insight
into the spectrum assignment problem in mesh networks by
showing in Section II that it transforms to the problem of
scheduling multiprocessor tasks on dedicated processors [1],
[6]. Based on this new perspective, we show in Section III that
the SA problem in paths is NP-hard for four or more links, but
is solvable in polynomial time for three links. In Section IV,
we develop new constant-ratio approximation algorithms for
the SA problem in paths when the number of links is fixed, we
introduce a suite of list scheduling algorithms in Section V,
and in Section VI we present numerical results to demonstrate
the effectiveness of the algorithms. We conclude the paper in
Section VII.

II. THE SPECTRUM ASSIGNMENT (SA) PROBLEM

We consider the following basic definition of the routing
and spectrum assignment (RSA) problem.
Definition 2.1 (RSA): Given a graph G = (V,A) where V

is the set of nodes and A the set of arcs (directed links), and
a spectrum demand matrix T = [tsd], where tsd is the amount
of spectrum required to carry the traffic from source node s
to destination node d, assign a physical path and contiguous

1



spectrum to each demand so as to minimize the total amount
of spectrum used on any link in the network, under three
constraints: (1) each demand is assigned contiguous spectrum
(spectrum contiguity constraint), (2) each demand is assigned
the same spectrum along all links of its path (spectrum
continuity constraint), and (3) demands that share a link are
assigned non-overlapping parts of the available spectrum (non-
overlapping spectrum constraint).

If a single route for each source-destination pair is provided
as part of the input, and each traffic demand is constrained
to follow the given route, the RSA problem reduces to the
spectrum assignment (SA) problem.
Definition 2.2 (SA): The RSA problem under the additional

constraint that all traffic from source s to destination d must
follow the given physical path rsd.

We now show that the SA problem can be viewed as a
problem of scheduling tasks on multiprocessor systems in
which tasks may require more than one processor simulta-
neously. Consider the following scheduling problem that has
been studied extensively in the literature [1], [6]:
Definition 2.3 (P |fixj |Cmax): Given a set of n tasks and a

set of identical processors, a procesing time pj and a prespec-
ified set fixj of processors for task j, j = 1, . . . , n, schedule
the tasks so as to minimize the makespan Cmax = maxj Cj ,
where Cj denotes the completion time of task j, under the
following constraints: (1) preemptions are not allowed, (2)
each task must be processed simultaneously by all processors
in fixj , and (3) each processor can work on at most one task
at a time.

It has been shown [6] that the three-processor problem
P3|fixj |Cmax is strongly NP-hard for general processing
times, but that if the number of processors m is fixed and
all tasks have unit times, i.e., Pm|fixj , pj = 1|Cmax, then
the problem is solvable in polynomial time. Approximation
algorithms and/or polynomial time approximation schemes
(PTAS) have been developed for several problem variants [2].

We have the following result.
Lemma 2.1: SA transforms to P |fixj |Cmax.
Proof. Consider an instance of SA on graph G = (V,A),

matrix T = [tsd], and path set {rsd}. Construct an instance
of P |fixj |Cmax such that for each arc ak ∈ A, there is a
processor k, and for each spectrum demand tsd, there is a
task j with pj = tsd and fixj = {k : ak ∈ rsd}. Hence, the
amount of spectrum of a demand transforms to the processing
time of the corresponding task, and the links of its path
to the processors that the task requires. Due to the non-
overlapping spectrum constraint, each processor may work
on at most one task at a time, due to the spectrum continuity
constraint, each task must be processed simultaneously by
all its processors, whereas due to the spectrum contiguity
constraint, preemptions are not allowed. By construction, the
amount of spectrum assigned to any arc of G in a solution
of the SA instance is equal to the completion time of the
last task scheduled on the corresponding processor, hence
minimizing the spectrum on any link in the SA problem is
equivalent to minimizing the makespan of the schedule in the

corresponding problem P |fixj |Cmax.

Since any instance of the SA problem can be transformed
into an instance of the P |fixj |Cmax problem, an algorithm
for the latter problem may be used for solving the former one.
However, the reverse of lemma 2.1 is not true. In other words,
there exist instances of P |fixj |Cmax for which there is no
corresponding instance of the SA problem, as we now show.
Lemma 2.2: There exist instances of P |fixj |Cmax for

which there is no corresponding instance of the SA problem.
Proof. Consider an instance of P4|fixj |Cmax with five

tasks (the processing times of the tasks can be arbitrary).

task fixj

τ1 {1, 2}
τ2 {2, 3}
τ3 {3, 4}
τ4 {4, 1}
τ5 {2, 4}

Because of the first four tasks, the graph of the corresponding
SA instance would have to be the four-link unidirectional
ring network such that link 1 is adjacent to 2, 2 is adjacent
to 3, 3 to 4, and 4 to 1. But then, there is no path rsd for
the spectrum demand corresponding to the last task, hence an
instance of SA does not exist.

The following lemma shows that the SA problem in rings
with as few as three links is NP-hard.
Lemma 2.3: The SA problem in rings is NP-hard.
Proof. The P3|fixj |Cmax problem can be transformed to

the SA problem on a unidirectional three-link ring, where each
processor corresponds to a link, and each task j corresponds
to the traffic demand on the segment of the ring defined by
the links in fixj . Since P3|fixj |Cmax is NP-complete [6],
the same is true for the SA problem on the three-link ring.

A. The SA Problem in Paths
In path (linear) networks, the route rsd of each traffic

demand is uniquely determined by its source and destination
nodes. Let us define the following special case of problem
P |fixj |Cmax:
Definition 2.4 (P |linej |Cmax): The P |fixj |Cmax prob-

lem under the additional constraint that the processors are
labeled 1, 2, 3, . . . , and the prespecified set linej of processors
for each task j consists of processors with consecutive labels.

The following result states that the SA problem on a directed
path with m links is equivalent to Pm|linej |Cmax, hence an
algorithm for solving Pm|linej |Cmax may be used to solve
SA, and vice versa.
Lemma 2.4: The SA problem on a graph G that is a directed

path with m links is equivalent to Pm|linej |Cmax.
Proof. First consider an instance of the SA problem on a

directed path G with m+1 nodes labeled 1, 2, . . . ,m+1, and
m arcs a1 =<1, 2>, a2 =<2, 3>,. . . , am <m,m + 1>, and

2



spectrum demand matrix T = [tsd] such that tsd = 0 if s ≥ d.
Given this SA instance, the steps of the proof of Lemma 2.1
will construct a valid instance of Pm|linej |Cmax since the
sets fixj consist of processors with consecutive labels.

Given an instance of Pm|linej |Cmax, we construct an
instance of the SA problem on a path graph G as follows.
The graph has m + 1 nodes labeled 1, 2, . . . ,m + 1, and
m arcs, such that for each processor k, k = 1, . . . ,m,
there is an arc ak =<k, k + 1>. For each task j with
linej = {s, . . . , d − 1}, there is a traffic demand with
tsd = pj and route rsd = {<s, s + 1 >, . . . , < d − 1, d>}.
It is not difficult to verify that the three constraints of
Pm|linej |Cmax ensure that the three constraints of SA are
satisfied, and that minimizing the makespan Cmax minimizes
the maximum amount of spectrum on any arc of G.

III. COMPLEXITY RESULTS FOR Pm|linej |Cmax

We first show that there is a polynomial time algorithm
for P3|linej |Cmax. Recall that problem P3|fixj |Cmax is
strongly NP-hard [6], hence the additional constraint that the
set of processors in linej have consecutive labels makes the
problem tractable for three processors. Furthermore, note that
whereas it was stated in [12] that the SA problem in paths
is NP-hard, this result implies that the problem is in fact
polynomial on three-link paths.
Lemma 3.1: P3|linej |Cmax is solved in polynomial time.
Proof. The proof is by construction of the optimal schedule.

Tasks that require all three processors cannot be executed
in parallel with any other task, and hence they may be
simply added at the beginning or end of the schedule without
affecting optimality. Therefore, we focus our attention on
tasks requiring either one or two processors, i.e., tasks with
linej = {1}, {2}, {3}, {1, 2}, or {2, 3}. Without loss of
generality, let processor 1 be the dominant processor, i.e., the
one that requires the most processing time; the case where
either processor 2 or processor 3 are dominant can be handled
in a very similar manner. Construct the following schedule.
Tasks with linej = {1, 2} are executed back-to-back without
any idle time, followed by tasks with linej = {1}. Let t
be the time when the last task with linej = {1} completes.
Schedule tasks with linej = {2, 3}, without any idle time
between them, at the end of the schedule and in parallel with
tasks with {linej = 1}, so that the last one finishes at time
t. Then, schedule tasks with linej = {2} and linej = {3}
before tasks with linej = {2, 3}. Clearly, these tasks can fit
in the schedule since processors 2 and 3 are not dominant.
The schedule is optimal since the dominant procesor is never
idle, and hence the makespan Cmax = t, the time required to
execute the tasks on the dominant processor.

The following theorem shows that the problem
Pm|linej |Cmax is NP-complete for four or more processors.
The proof is based on a reduction from the PARTITION
problem [4] which is defined as:
Definition 3.1 (PARTITION): Given a set of k integers

A = {a1, a2, . . . , ak} such that B =
∑k

j=1
aj , does there

3

1

2

3

4

T

A
a

Tb

1
Tc

2A Te
Td

0 B/2 B 3B/2 2B 5B/2 3B 7B/2 4B

T1
T2

T

Fig. 1. Feasible schedule with Cmax = 4B

exist a partition of A into two sets, A1 and A2, such that∑
aj∈A1

aj =
∑

j∈A2
aj = B

2
?

Theorem 3.1: P4|linej |Cmax is NP-complete.
Proof. Given an instance of PARTITION, we create an

instance of P4|linej |Cmax as follows. For each aj ∈ A we
create a task τj with processing time pj = aj and linej = {3}.
Moreover, we create the following gadget tasks:

task pj linej

Ta B/2 {1, 2, 3}
Tb B/2 {1, 2}
Tc B/2 {2, 3}
Td 3B/2 {3, 4}
Te B/2 {2, 3, 4}
T1 3B {1}
T2 2B {2}
T3 2B {4}

If there is a partition of A into A1 and A2 such that∑
aj∈A1

=
∑

aj∈A2
= B/2, then we can schedule the jobs

as shown in the following figure and a get a feasible schedule
with Cmax = 4B.

Let us now assume that there exists a feasible schedule S
with Cmax ≤ 4B. Without loss of generality, assume that
Ta is executed before Te in S; otherwise we can use similar
arguments and reach the same conclusion. Then, T3 must
be executed before both Td and Te. Moreover, Td must be
executed before Te, otherwise it would not be possible to
schedule task T2 for the schedule to have length at most 4B.
Hence, tasks Ta, T3, Td, and Te must be scheduled in the
order shown in Figure 1. Moreover, tasks Ta and Tb must
be scheduled before T1, while Tc must be before T2 for the
schedule length to be at most 4B. If Ta is scheduled before
Tb, then on processor 3, only the intervals [B/2, B] and
[3B/2, 2B] are available for the execution of the PARTITION
jobs. If Tb is scheduled before Ta, then on processor 3, only
the intervals [0, B/2] and [3B/2, 2B] are available for the
PARTITION jobs. In both cases, a partition exists.

IV. APPROXIMATION ALGORITHMS FOR Pm|linej |Cmax

We first show that there exist 1.5-approximation algorithms
for four and five processors.
Lemma 4.1: There exists a 1.5-approximation algorithm for

P4|linej |Cmax.
Proof. The 1.5-approximation algorithm for the

P4|fixj |Cmax problem [7] can be used to solve

3



P4|linej |Cmax with the same performance bound.

Lemma 4.2: There exists a 1.5-approximation algorithm for
P5|linej |Cmax.

The proof is by construction. Due to its length, the proof is
omitted but is available in the first author’s dissertation.

A. Two-Stage Approximation Algorithms
We now intoduce a two-stage algorithm for

Pm|linej |Cmax, and show that it yields a constant
approximation ratio for any fixed number of processors
m ≥ 6. The algorithm considers three sets of processors
based on their labels: a set consisting of the k < m processors
with low index labels 1, . . . , k, a set of l processors, l+k < m,
with labels k +1, . . . , k + l, and a set of m− k− l processors
with the high index labels k + l + 1, . . . ,m. We partition the
set of tasks into three sets:

• set Tmid consists of tasks that require at least one of the l
middle processors (and may also require processors from
one or both of the other sets);

• set Tlo contains tasks requiring only processors in the set
of k low index processors (and no other processor); and

• set Thi is composed of tasks that require only processors
in the set of m − k − l high index processors (and no
other processor).

The key idea is based on the observation that the set of tasks
Tlo may be scheduled in parallel with the set of tasks Thi.
Therefore, we use an optimal or approximation algorithm
to schedule the tasks in each set separately, creating three
schedules, Smid, Slo, and Shi, respectively. The final schedule
for the original problem consists of two stages: in the first
stage, schedule Smid is executed individually, while in the
second stage, schedules Slo and Shi are executed in parallel.
Lemma 4.3: Let αmid, αlo, and αhi be the approximation

ratio of the algorithms used to schedule tasks in sets Tmid,
Tlo, and Thi, respectively (the approximation ratio is 1 if an
optimal algorithm is used). Then the two-stage algorithm is an
approximation algorithm for the original problem with ratio
α = αmid + max{αlo,αhi}.
Proof: The proof follows from the fact that the makespan

of an optimal schedule for each of the three sets of tasks is
no longer than the makespan of an optimal schedule for the
original set of tasks.

Figure 2 shows a two-stage schedule for m = 9 processors
in which k = l = m − k − l = 3. Due to Lemma 3.1, the
P3|linej |Cmax problem can be solved optimally in polyno-
mial time, hence αmid = αlo = αhi = 1. Therefore, the two-
stage algorithm is a 2-approximation algorithm for m = 9
processors (and also for m = 6, 7, 8).

For problems with m = 10 − 13 processors, we consider
the middle three processors to obtain task set Tmid, and apply
the 1.5-approximation algorithm for four or five processors to
schedule the other two tasks sets, resulting in an approximation
ratio of 2.5. For problems with m = 14, 15 processors,
we obtain an approximation ratio of 3 by considering tasks

lower three processors

Proc 1

Proc 3

Proc 2

Proc 4

Proc 5

Proc 6

Proc 7

Proc 8
Proc 9

Time
Schedule of tasks requiring at least
one of the three middle processors

Schedule of tasks requiring only the
upper three processors

Schedule of tasks requiring only the

Fig. 2. 2-approximation schedule for m = 9 processors

sets on four or five processors. Finally, we note that for
m > 15, we may apply the two-stage algorithm recursively
to schedule each set of tasks. For instance, for m = 19, we
can schedule the tasks that require at least one of the middle
nine processors with a makespan that is no more than twice
the optimal, as in Figure 2. Applying the 1.5-approximation
algorithm to schedule the tasks requiring at least one of the
five lower (respectively, higher) index processors, the overall
approximation ratio of the two-stage algorithm is 3.5.

V. LIST SCHEDULING ALGORITHMS FOR Pm|linej |Cmax

In this section we present a suite of list scheduling algo-
rithms for solving the Pm|linej |Cmax problem. The algo-
rithms attempt to minimize the makespan Cmax by identifying
compatible tasks, i.e., sets of tasks that may be executed
simultaneously on the multi-processor system. More formally,
we have the following definition.
Definition 5.1: A set T of tasks for the Pm|linej |Cmax

problem are said to be compatible if and only if their prespeci-
fied sets of processors are pairwise disjoint, i.e., linej∩linei =
∅,∀ i, j ∈ T .

We present two classes of algorithms that differ in the
granularity at which they make scheduling decisions. The first
class of algorithms assemble compatible tasks into blocks, and
schedule a whole block of tasks at a time. The second class
of algorithms operate at finer granularity and make scheduling
decisions at the level of individual tasks and at finer time
scales.

A. Block-Based Scheduling Algorithms
These algorithms proceed by constructing blocks of com-

patible tasks. Specifically, blocks of compatible tasks are
scheduled such that: (1) all tasks in a block begin execution
at the same time t, and (2) there is no idle time between the
completion of the longest task in a block and the beginning
of the next block. The input to the algorithm is a list of tasks.
The algorithm assembles a block by selecting the first task in
the list, and then scanning the remaining tasks (in the order
listed) to identify tasks compatible with the ones already in
the block. A block is considered complete if no additional
compatible tasks exist; the algorithm removes all the tasks of
the block from the list and continues to build the next block,
until all tasks have been scheduled. The running time of the
algorithm is O(n2).

4



We identify two block-based scheduling algorithms that
differ in the order in which the tasks are sorted in the initial
list of tasks passed to the algorithm.

• Longest First Block-based Algorithm (LFB). Tasks are
sorted in decreasing order of their processing times pj .

• Widest First Block-based Algorithm (WFB). Tasks
are sorted in decreasing order of the number |linej | of
processors they require.

B. Compact Scheduling Algorithms
Block-based schedules are simple to create and implement

in that each task in a block starts execution at exactly the
same time. However, the fact that tasks within a block have
varying processing times may result in long idle times for
some processors. Consequently, the makespan of the final
schedule may be longer than necessary. We now present
a class of scheduling algorithms that attempt to minimize
the makespan by eliminating or reducing such idle times.
Rather than assembling blocks of tasks and making scheduling
decisions at the end of each block, these algorithms select
individual tasks for execution at finer scheduling instants
resulting in more compact schedules. The scheduling instants
consist of (1) the start time of the schedule (i.e., t = 0), and
(2) the instant each task completes execution.

The input to a compact algorithm is a list of tasks. The
algorithm maintains a list of idle processors. At each schedul-
ing instant t, the algorithm scans the list to identify tasks that
are compatible with the currently executing ones, i.e., tasks
with a set linej that is a subset of the free processors. When
such a task is identified, the algorithm removes it from the list,
updates the set of free processors, and continues scanning the
list until no other compatible task is found. It then advances to
the next scheduling instant and repeats the process while the
list is not empty. The running time complexity of the algorithm
is O(n2).

Similar to block-based algorithms, we distinguish two algo-
rithms based on the order in which tasks appear in the list.

• Longest First Compact Algorithm (LFC). Tasks are
sorted in decreasing order of their processing times pj .

• Widest First Compact Algorithm (WFC). Tasks are
sorted in decreasing order of the number |linej | of
processors they require.

Since compact scheduling algorithms make decisions at
finer time scales, we expect that they perform better than
block-based ones.

VI. NUMERICAL RESULTS

We consider instances of the Pm|linej |Cmax problem
with a relatively small number of processors, namely, m =
5, 10, 15, 20; such instances correspond to instances of the
SA problem on paths of length typical of a commercial wide
area network1. For each problem instance, we generated traffic

1We have also carried out experiments with problem instances consisting of
as many as m = 10, 000 processors. Although we cannot include the results
due to page constraints, the performance of the algorithms on these instances
is similar or better than on the instances considered here.

demands between every source and destination node on the
path. The size of the traffic demands (i.e., task times) were
generated using four different distributions:

• Discrete uniform: traffic demands may take any of the five
discrete values in the set {10, 40, 100, 400, 1000} with
equal probability; these values correspond to data rates
(in Gbps) to be supported by EONs.

• Discrete high: traffic demands may take one of
the five discrete values above with probabilities
0.10, 0.15, 0.20, 0.25, and 0.30, respectively; in other
words, higher data rates have higher probability to be
selected.

• Discrete low: traffic demands may take one of
the five discrete values above with probabilities
0.30, 0.25, 0.20, 0.15, and 0.10, respectively, such that
lower data rates have higher probability to be selected.

• Continuous uniform: traffic demands may take any (inte-
ger) value in the interval [10, 1000] with equal probability.

We considered various other probability distributions on the
same set of values, but the results are similar to the ones we
present below and hence are omitted.

Figures 3-6 plot the average ratio achieved by the four list
scheduling algorithms, LFB, LFC, WFB, and WFC, for each
of the four traffic distributions; specifically, each data point in
the figures represents the average over 30 randomly generated
problem instances. The average ratio for a given algorithm
is defined as the ratio of the makespan value Cmax (i.e.,
maximum spectrum used on any link of the corresponding
path) obtained by the algorithm for a given problem instance
over the lower bound (i.e., the total processing time for the
dominant processor) for the same instance. Recall that the
Pm|linej |Cmax problem is NP-hard for the number m ≥ 5
of processors considered in this experiment, and the optimal
value is not known. Since the optimal value is no less than
the lower bound, the average ratio shown in the figures over-
estimates the average gap between the Cmax values obtained
by the algorithms and the optimal one.

From the figures, we can make several observations. First,
the compact algorithms (LFC and WFC) perform better than
the corresponding block-based algorithms (LFB and WFB,
respectively). Second, three of the algorithms (LFC, LFB, and
WFC) obtain solutions that are within 5% (and in many cases,
within 2-3%) of the lower bound. Furthermore, the average
ratio performance of these three algorithms is not sensitive to
the number of processors (path length) or demand distribution.
The block-based WFB algorithm has the worst performance
over all problem instances considered in this study. This result
indicates that processing tasks in the order of decreasing
number of processors they require may pair short tasks with
long tasks, creating large idle times within blocks. On the other
hand, the WFC algorithm that processes tasks in the same
order is successful in reducing these idle time, demonstrating
the importance of taking into consideration the idle times in
the scheduling process. Overall, these results indicate that, for
problem instances representative of spectrum allocation prob-

5



 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 5  10  15  20

Av
er

ag
e 

ra
tio

Number of processors (links)

 LFB
 WFB
 LFC

 WFC

Fig. 3. Average ratio vs. number of processors, discrete uniform distribution

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 5  10  15  20

Av
er

ag
e 

ra
tio

Number of processors (links)

 LFB
 WFB
 LFC

 WFC

Fig. 4. Average ratio vs. number of processors, discrete high distribution

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 5  10  15  20

Av
er

ag
e 

ra
tio

Number of processors (links)

 LFB
 WFB
 LFC

 WFC

Fig. 5. Average ratio vs. number of processors, discrete low distribution

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 5  10  15  20

Av
er

ag
e 

ra
tio

Number of processors (links)

 LFB
 WFB
 LFC

 WFC

Fig. 6. Average ratio vs. number of processors, continuous uniform
distribution

lems arising in paths typical of the diameter of metropolitan
or wide-area networks, the two compact algorithms (LFC and
WFC) may obtain solutions very close to the optimal with low
computational requirements.

VII. CONCLUDING REMARKS

We have studied the spectrum assignment (SA) problem
in elastic optical networks from a new perspective, and we
have shown that it transforms to the problem of scheduling
multiprocessor tasks on dedicated processors. Using this new
insight, we have developed simple two-stage approximation
algorithms for path networks. We have also presented a suite
of list scheduling algorithms that are computationally efficient
and produce solutions that, on average, are very close to the
lower bound for problem instances defined on path networks.

REFERENCES

[1] E. Bampis, M. Caramia, J. Fiala, A. Fishkin, and A. Iovanella. Schedul-
ing of independent dedicated multiprocessor tasks. In Proceedings of the
13th Annual International Symposium on Algorithms and Computation,
volume LNCS 2518, pages 391–402, 2002.

[2] E. Bampis and A. Kononov. On the approximability of scheduling
multiprocessor tasks with time dependent processing and processor
requirements. In Proceedings of IPDPS 2001, San Francisco, 2001.

[3] K. Christodoulopoulos, I. Tomkos, and E.A. Varvarigos. Elastic band-
width allocation in flexible OFDM–based optical networks. Journal of
Lightwave Technology, 29(9):1354–1366, 2011.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H.
Freeman and Co., New York, 1979.

[5] O. Gerstel, M. Jinno, A. Lord, and S. J B Yoo. Elastic optical
networking: a new dawn for the optical layer? IEEE Communications
Magazine, 50(2):s12–s20, 2012.

[6] J. A. Hoogeveen, S. L. Van de Velde, and B. Veltman. Complexity of
scheduling multiprocessor tasks with prespecified processor allocations.
Discree Applied Mathematics, 55:259–272, 1994.

[7] J. Huang, J. Chen, S. Chen, and J. Wang. A simple linear time
approximation algorithm for multi-processor job scheduling on four
processors. Journal of Combinatorial Optimization, 13:33–45, 2007.

[8] M. Jinno, H. Takara, and B. Kozicki. Dynamic optical mesh networks:
Drivers, challenges and solutions for the future. In Proceedings of 35th
European Conference on Optical Communication (ECOC), page 7.7.4,
September 2009.

[9] M. Klinkowski and K. Walkowiak. Routing and spectrum assignment
in spectrum sliced elastic optical path network. IEEE Communications
Letters, 15(8):884–886, 2011.

[10] Z. Liu and G. N. Rouskas. A fast path-based ILP formulation for offline
RWA in mesh optical networks. In Proceedings of IEEE GLOBECOM
2012, December 2012.

[11] G. N. Rouskas. Routing and wavelength assignment in optical WDM
networks. In J. Proakis (Editor), Wiley Encyclopedia of Telecommuni-
cations. John Wiley & Sons, 2001.

[12] S. Shirazipourazad, Ch. Zhou, Z. Derakhshandeh, and A. Sen. On
routing and spectrum allocation in spectrum-sliced optical networks. In
Proceedings of IEEE INFOCOM, pages 385–389, April 2013.

[13] S. Talebi, F. Alam, I. Katib, M. Khamis, R. Khalifah, and G. N. Rouskas.
Spectrum management techniques for elastic optical networks. 2013.
Submitted for Publication.

[14] Y. Wang, X. Cao, and Y. Pan. A study of the routing and spectrum allo-
cation in spectrum-sliced elastic optical path networks. In Proceedings
of IEEE INFOCOM, pages 1503–1511, 2011.

[15] Y. Wei, G. Shen, and Sh. You. Span restoration for CO-OFDM-based
elastic optical networks under spectrum conversion. In Proceedings of
ACP 2012, page AF3E.7, Novomber 2012.

[16] G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee. A survey on
OFDM-based elastic core optical networking. IEEE Communications
Surveys & Tutorials, 15(1):65–87, First Quarter 2013.

[17] Y. Zhang, X. Zheng, Q. Li, N. Hua, Y. Li, and H. Zhang. Traffic
grooming in spectrum-elastic optical path networks. In Proceedings of
OFC/NFOEC 2011, page OTuI1, March 2011.

6


