
978-3-903176-33-1 © 2021 IFIP

Scalable Recursive First Fit: An Optimal Solution
to the Spectrum Allocation Problem

George N. Rouskas?†, Chaitanya Bandikatla?
?North Carolina State University, †King Abdulaziz University

(Invited Paper)

Abstract—We revisit the classical spectrum allocation (SA)

problem, a fundamental subproblem in optical network design,

and make three contributions. First, we show how some SA

problem instances may be decomposed into smaller instances

that may be solved independently without loss of optimality.

Second, we prove an optimality property of the well-known

first-fit (FF) heuristic. Finally, we leverage this property to

develop a recursive algorithm that applies the FF heuristic to

find an optimal solution efficiently. This recursive first-fit (Rec-

FF) algorithm complements our recent algorithm that recursively

searches the routing space, and may be combined with it to solve

large routing and spectrum allocation (RSA) problem instances

to optimality.

I. INTRODUCTION

Spectrum/wavelength allocation (SA/WA) is a problem un-
derlying a range of optical network design problems [1],
including routing and wavelength allocation (RWA) [2]–[5],
routing and spectrum allocation (RSA) [6], [7], traffic groom-
ing [8], [9], and network survivability [10]. The SA and WA
problems are NP-hard in networks of general topology [11].
Consequently, since the early days of optical network research
a wide range of heuristic algorithms have been developed,
including first-fit, best-fit, most-used, and least-loaded [12],
to select which wavelength or spectrum slots to assign to
each traffic demand. These heuristics represent a variety of
design choices in terms of algorithmic complexity and the
amount of network state information considered. First-fit,
one of the earliest and simplest heuristics that requires no
global knowledge, has been shown to perform well across
various network topologies and sets of traffic demands [2],
[13], and is one of the most commonly used algorithms for
spectrum/wavelength assignment.

Motivated by the observation that many network design
problems encompass two tasks, routing and resource allo-
cation, recently we have shown [14] that it is possible to
optimally decouple these two aspects and tackle each sep-
arately. Accordingly, we developed a recursive algorithm to
search the routing space exhaustively yet effciently. This
work complements our earlier results in [14] by developing
an optimal recursive algorithm for the spectrum allocation
problem.

The remainder of the paper is organized as follows. In
Section II, we define the SA problem we consider in this work
and show how large problem instances may be decomposed

This work was supported by the National Science Foundation under Grant
CNS-1907142.

optimally into smaller ones. In Section III we prove an
optimality property of the FF heuristic, and in Section IV
we leverage this property to develop an optimal recursive
algorithm for the SA problem. We evaluate the algorithm in
Section V, and we conclude the paper in Section VI.

II. THE SPECTRUM ALLOCATION (SA) PROBLEM

We consider an optical network with a topology described
by graph G = (V,A), where V is the set of vertices (nodes)
and A is the set of arcs (directed fiber links) in the network. Let
N = |V | be the number of nodes and L = |A| be the number
of directed links; without loss of generality, we assume that if
there is a fiber link from some node A to some other node B in
the network, then there is a fiber link in the opposite direction,
from node B to node A. We are given a set T = {Ti} of traffic
requests, and each request is a tuple Ti = (si, di, pi, ti), where:

• si and di are the source and destination nodes, respec-
tively, of the request,

• pi is the (fixed and pre-determined) physical path between
nodes si and di in the network over which the request
must be routed, and

• ti is the amount of spectrum (e.g., in units of spectrum
slots) required to carry the traffic from si to di.

We consider the following basic definition of the spectrum
allocation (SA) problem:

Definition 2.1 (SA): Given a graph G = (V,A) and a set
T = {Ti = (si, di, pi, ti)} of traffic requests, assign ti

spectrum slots along the physical path pi for each request
Ti so as to minimize the total amount of spectrum used
on any link in the network, under three constraints: 1) each
request Ti is assigned a block of ti contiguous spectrum slots
(contiguity constraint), 2) each request is assigned the same
block of spectrum slots along all links of its path pi (spectrum
continuity constraint), and 3) requests whose paths share a link
are assigned nonoverlapping spectrum slots (nonoverlapping
spectrum constraint).

In earlier work [11] we have shown that the SA problem
is NP-hard even for chain (i.e., single-path) networks with
four or more links. When all the spectrum demands are equal,
i.e., ti = t 8i, the SA problem reduces to the wavelength
allocation (WA) problem that can be solved in polynomial time
for chain networks but remains NP-hard for rings or networks
of a general topology [15]. In the next subsection, we show
that under certain conditions, a large SA problem instance
may be decomposed into smaller instances that can be solved
independently.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 10,2021 at 17:42:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Request Partition Algorithm
Input:

G = (V,A): network topology
T = {Ti = (si, di, pi, ti}: set of traffic requests

Output:

A partition of T into subsets that pairwise use disjoint
sets of links

1: {Make a singleton set for each link}
2: for each link lj 2 A do

3: `j = {lj};
4: end for

5: for each Ti 2 T do

6: {include all links of the path into the same up-tree, i.e.,
link subset}

7: Fi ;
8: for each lj 2 pi do

9: Fi Union(Fi, F ind(lj))
10: end for

11: end for

12: for each distinct non-empty subset Fi do

13: return the set of requests with paths using links in Fi

14: end for

A. Exact Decomposition

Consider a request set T that can be partitioned into, say,
two sets T1 and T2, such that the paths of requests in T1
use only links in set A1 ⇢ A, the paths of requests in T2
use only links in set A2 ⇢ A, and the corresponding link
sets are disjoint, i.e., A1 \ A2 = ;. In this case, it can
be seen that allocation of spectrum to requests in T1 does
not affect the allocation of spectrum to requests in T2, and
vice versa. Therefore, the original SA problem on set T is
decomposed exactly into two smaller SA instances on request
sets T1 and T2, respectively, that may be solved independently;
the solution to the original problem is simply the maximum
of the solutions to the two smaller instances.

Algorithm 1 uses up-tree structures and Union-Find opera-
tions [16] to partition the set T of requests into subsets whose
paths use pairwise disjoint sets of links. The algorithm starts
by creating singleton sets `j , each consisting of one network
link lj 2 A. The algorithm then considers the requests in T
one by one, in arbitrary order. For each request Ti, it performs
a Find operation on each link lj of the path pi of Ti to locate
the up-tree to which link lj belongs; initially, the up-tree is the
singleton set `j . Then, the algorithm forms the Union of the
up-trees to which the links of Ti belong. As a result, at the end
of Line 11, the non-empty up-trees represent a partition of the
link set A such that each link subset (i.e., up-tree) corresponds
to a subset of the request set T whose paths only use links in
that up-tree.

Each Union operation takes O(1) time while each Find
operation takes time that is logarithmic in the number of
singleton sets [16], which in this case is equal to the num-
ber L of links. Therefore, the computational complexity of
Algorithm 1 is determined by the for loop in Lines 5-11, and

is O(KL log(L)), where K is the number of requests in T
and L is the number of links in the network.

Without loss of generality, in the remainder of this paper we
assume that the request set T cannot be further decomposed
into smaller independent request sets using Algorithm 1.

III. THE OPTIMALITY PROPERTY OF THE FF HEURISTIC

Consider the SA problem on graph G and request set
T = {Ti, i = 1, · · · ,K}. Let P be a permutation (i.e.,
an ordering) of the traffic requests Ti. We say that P is a
partial (respectively, complete) permutation if only a subset of
(respectively, all K) requests in T appear in P . Let SOL(P)
denote the solution to the SA problem obtained by the FF
heuristic by considering each traffic request in the order
implied by the permutation P . If P is a complete permutation,
then SOL(P) is a feasible solution to the SA problem, but
if P is a partial permutation, then SOL(P) is only a partial
solution to the SA problem.

Let OPT denote the objective value of an optimal solution
to the SA problem. A lower bound LB on the optimal
objective value may be obtained by ignoring any spectrum
fragmentation that may result from enforcing the spectrum
contiguity and continuity constraints, and simply accounting
for the fact that each link l 2 A must use at least as many
spectrum slots as to carry all the traffic demands whose path
includes this link:

LB = max
l2A

8
<

:
X

Ti2T :l2pi

ti

9
=

; (1)

Clearly, for any complete permutation P of the traffic requests
we have that:

LB OPT SOL(P). (2)

We now prove the following optimality property of the FF
heuristic with respect to the SA problem.

Lemma 3.1 (FF Optimality Property): There exists a per-
mutation P

?
FF of the traffic requests such that applying the FF

heuristic to the requests in the order implied by P
?
FF yields an

optimal solution to the SA problem, i.e., SOL(P ?
FF) = OPT .

Proof. By construction.
Consider an optimal solution to the SA problem with

objective value equal to OPT . Label the slots on each link
as 1, 2, . . . , OPT . By definition, the optimal solution is a
feasible solution that satisfies all three constraints of the SA
problem in that each request Ti is allocated the same block
of ti contiguous spectrum slots on each link along its path
pi, and no other request whose path shares a link with pi is
allocated slots from the same block. Let also fi denote the slot
with the lowest index within the block of ti slots allocated to
request Ti.

Let P ? be the complete permutation in which the requests Ti

are listed in increasing order of fi in the optimal solution, with
ties broken arbitrarily. Consider the block of tj contiguous
spectrum slots allocated to some request Tj by the optimal
solution starting at slot fj . Let us remove this block of tj slots
from the optimal solution. In the remaining partial solution,

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 10,2021 at 17:42:31 UTC from IEEE Xplore. Restrictions apply.

it is possible that there exists a block of tj slots that start
at a lower indexed slot f

0
j < fj that are available on all

links of path pj . If so, we can allocate the lower-indexed tj

slots starting with slot f 0
j to request Tj without affecting the

optimality of the solution.
Based on this observation, we modify the optimal solution

by considering the requests one by one, in increasing order
of fi as listed in permutation P

?. For each request Ti, we
remove its block of spectrum slots that starts at slot fj from the
solution, and we allocate to it an equal block of slots starting at
the lowest possible slot index f

0
j in the partial solution, keeping

in mind that f
0
j may be equal to fj . This modified solution

must not use more than OPT slots on any link, since any
modifications involve the allocation of lower-indexed spectrum
slots to requests. At the same time, since the starting solution is
an optimal one, the modified solution may not use fewer than
OPT slots on any link. Hence, the modified solution is an
optimal one with objective value equal to OPT . Importantly,
by construction the modified solution is such that no request
may be allocated to a spectrum block that starts at a lower-
indexed slot.

Let P ?
FF be the complete permutation in which the requests

are relabeled so that they are listed in increasing order of f
0
i

in the modified solution, and let us apply the FF heuristic to
this permutation. The FF heuristic allocates to each request Ti

a block of ti contiguous slots starting at the lowest-indexed
slot for which such a block is available on all links of path pi.
Therefore, the FF heuristic will construct an optimal solution
that is identical to the modified solution above.

This FF optimality property helps explain how so many
studies of the SA and WA problems have found the FF
heuristic to perform quite well in diverse problem instances.
However, Lemma 3.1 constructs a permutation P

?
FF on which

the FF is optimal, but does so by modifying an unknown
optimal solution and hence P

?
FF is itself unknown. Never-

theless, the FF optimality property suggests a procedure for
finding P

?
FF : enumerate all permutations of requests, run the

FF heuristic on each permutation, and select the one with the
smallest objective value. Assuming there is traffic between all
node pairs, the size K of the request set is O(N2), where N is
the number of nodes. Therefore, any algorithm that considers
all possible permutations of requests to determine the optimal
spectrum allocation must take time that is exponential in the
size of the network, O(N2!).

In the following section we present a recursive procedure
for searching efficiently the space of request permutations to
determine this optimal solution.

IV. SCALABLE RECURSIVE FIRST FIT

We have developed a scalable branch-and-bound recursive
first-fit (Rec-FF) procedure, shown as Algorithm 2, to search
the entire space of request permutations. We start with a
complete permutation Pinit in which the K traffic requests
Ti, i = 1, · · · ,K, are listed in decreasing order of spectrum
demand ti, and requests with the same demand are listed
in decreasing order of path length. We calculate the lower

bound LB on the optimal solution OPT using expression (1),
and also run the FF heuristic on Pinit to obtain an initial
feasible solution SOL(Pinit) which represents an upper bound
on OPT . The algorithm maintains variable BestSOL that
indicates the best solution it has found so far; this variable is
initialized as BestSOL = SOL(Pinit). Although the recur-
sive procedure will work with any initial complete permutation
of requests, our earlier work and other related studies [2], [13]
indicate that applying the FF heuristic to the requests in the
order determined by Pinit yields better (i.e., lower) solutions
that leave a relatively small gap between LB and SOL(Pinit).
The Rec-FF procedure then searches the permutation space
to find the permutation that yields an optimal solution, as
Lemma 3.1 suggests.

Each recursive call takes two arguments: a tentative per-
mutation P and a Start index. The recursion builds permu-
tations by maintaining a Start index that takes the values
1, 2, · · · ,K, and divides an input permutation in two parts: a
finalized leading sub-permutation (prefix) for which the order
of requests will not be modified in subsequent recursive calls,
and a tentative trailing sub-permutation (suffix) for which the
order of requests is subject to change and will be finalized
by later recursive calls. The Start index indicates the start
of this trailing sub-permutation. Initially, the ordering of all
requests is tentative, and hence the leading sub-permutation is
null and all K requests belong to the trailing sub-permutation.
Accordingly, the first call to Rec-FF is with Start = 1.

The main recursion is the for loop in Lines 10-22 of Algo-
rithm 2. Essentially, the for loop swaps the first request of the
trailing sub-permutation (i.e., the request at index Start) with
all requests in this trailing sub-permutation, including itself
(i.e., requests at index k = Start, · · · ,K). After making the
swap for one value of k, the procedure updates the permutation
(Line 16), and increments the Start index (Line 17) to indicate
that the leading sub-permutation of requests whose order has
been finalized has increased in size by one. It then makes a
recursive call (Line 18) to continue swapping requests of the
trailing sub-permutation (which has decreased by one). These
recursive calls, if allowed to continue without any restriction,
will enumerate all possible K! permutations of the K requests.

However, not all permutations will lead to a solution that is
better than the currently best known one, BestSOL. There-
fore, after making a swap and before making a recursive call,
in Line 14 the algorithm runs the FF heuristic on the leading
sub-permutation as it has been expanded after the swap, and
compares the result to BestSOL. If the result is equal to or
higher than BestSOL, then it is clear that including more
requests to this sub-permutation will produce solutions that
are no better than the best one found so far. In other words,
continuing further down this subtree of the permutation space
is not productive in terms of finding an optimal solution,
and this part of the search space can be safely eliminated.
Consequently, as shown in Lines 15-19, a recursive call is
made only if the FF solution on this leading sub-permutation
is strictly lower than BestSOL.

The base case for the recursion is when the order of all
K requests in an input permutation P has been finalized. A
complete finalized permutation is indicated whenever the input

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 10,2021 at 17:42:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Recursive First Fit (Rec-FF)
Input:

G = (V,A): network topology
T = {Ti = (si, di, pi, ti}: set of traffic requests
K = |T |: number of traffic requests
Pinit: initial permutation as discussed in Section IV
LB: the lower bound from expression (1)
BestSOL: best solution so far, initialized to SOL(Pinit)
BestP : best permutation so far, initialized to Pinit

Output:

Best permutation and corresponding SA solution

Rec-FF(P, Start)
P : permutation (initial call with P = Pinit)
Start : start index of trailing sub-permutation of P that has
not been finalized (initial call with Start = 1)

{Base Case: All K requests finalized in P}
if Start > K then

2: S SOL(P); {solution obtained by FF on P}
if S < BestSOL then {Update best known solution}

4: BestSOL = S; BestP = P ;
end if

6: return;
end if

8: {Main Recursion}
{Swap P [Start] with all requests that follow it in P}

10: for k = Start; k K; k++ do

Swap P [Start] with P [k];
12: Plead leading permutation P [1] · · ·P [Start];

{All requests in Plead have been finalized}
14: leadSOL SOL(Plead);

if leadSOL < BestSOL then

16: newP permutation after the swap at Line 11;
newStart Start+ 1;

18: Rec-FF(newP, newStart);
end if

20: {Restore P and proceed to swap the next request}
Swap P [Start] with P [k];

22: end for

index Start > K, and this case is handled in Lines 1-7 of the
algorithm. Specifically, the algorithm runs the FF heuristic on
P , and if the solution is strictly better than the best known
solution, the best solution is appropriately updated in Line 4,
before the call returns.

Finally, we note that the Rec-FF algorithm builds a finalized
permutation one request at a time. Therefore, when it invokes
the FF heuristic in Line 14 on the leading sub-permutation
Plead, it is not necessary to run the heuristic on the entire
sub-permutation. With appropriate bookkeeping (omitted from
Algorithm 2 for the sake of clarity and brevity), it is only
necessary to use FF to allocate spectrum for just the most
recent request added to the leading sub-permutation in Line 11
by building upon the solution created by the calling function.
Similarly, Line 2 of the algorithm does not actually need to run
the FF heuristic at all, it can simply reuse the solution of the

Fig. 1. Operation of the Rec-FF procedure on the set of four requests.
The root of the tree represents the initial call with P = {A,B,C,D} and
Start = 1.

calling function which finalized the complete input permuta-
tion P . This optimization eliminates unnecessary computations
and significantly speeds up the running time of the recursion.

To illustrate the operation of the Rec-FF procedure, consider
a set of four requests, {A,B,C,D}. Figure 1 shows part of
the tree of recursive calls made, with the root of the entire tree
representing the initial call with arguments P = {A,B,C,D}
and Start = 1. The figure is generated by assuming that the
if condition in Line 15 of the algorithm is not checked, and
hence all recursive calls are made to generate all 4! = 24
possible permutations of requests. Also, we use red color to
indicate the requests in the tentative trailing sub-permutation,
and green color to indicate the requests in the finalized leading
sub-permutation whose order has been set. In the initial call,
all four requests are tentative (and are colored red), and the
for loop in Lines 10-22 runs four times, each time swapping
the first request A of P with each of the four requests in the
set, A,B,C, and D, as indicated in the figure. The first of
these recursive calls is the root of the leftmost subtree and
swaps A with itself; at that point, the order of A becomes
fixed (indicated in the figure by a change of color from red to
green) and does not change for the remaining recursive calls
in this leftmost subtree. The for loop of the call representing
the root of the leftmost subtree (Start = 2) runs three times,
each time swapping the second request B of the permutation
passed to it with each of the three requests B,C, and D in
the trailing tentative sub-sequence. This continues recursively
until the six leaves of this leftmost sub-tree are reached, each
representing one of the six possible permutations with request
A in the first position of the permutation. The subtrees of the
other three children of the root are omitted from the figure,
but are similar in that they generate all 18 permutations with
B,C or D in the leftmost position. For instance, the second
of the recursive calls from the root of the whole tree swaps
the first request A of P with request B. Subsequent calls in
this subtree swap the second request with one of A,C, and
D, as before, and so on, until all six permutations with B in
the leftmost position are generated.

We emphasize that, in the worst case, the Rec-FF procedure
may be forced to generate all, or close to all, possible
permutations of requests and hence take exponential time to
complete.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 10,2021 at 17:42:31 UTC from IEEE Xplore. Restrictions apply.

V. SIMULATION STUDY

We now present the results of simulation experiments to
evaluate the performance of the Rec-FF algorithm on two
network topologies, the 14-node, 21-link NSFNET and the 32-
node, 54-link GEANT2 network, with shortest-path routing.
For each topology, we create SA problem instances by gen-
erating traffic requests between all node pairs in the network
as follows. We consider data rates of 10, 40, 100, 400, and
1000 Gbps. For a given problem instance, we generate a
random value for the demand between a pair of nodes based on
one of three distributions: 1) Uniform: each of the five rates is
selected with equal probability; 2) Skewed low: the rates above
are selected with probability 0.30, 0.25, 0.20, 0.15, and 0.10,
respectively; or 3) Skewed high: the five rates are selected with
probability 0.10, 0.15, 0.20, 0.25, and 0.30, respectively. Once
the traffic rates between each node pair have been generated,
we calculate the corresponding spectrum slots by assuming
that the slot width is 12.5 GHz, and adopting the parameters
of [17] to determine the number of spectrum slots that each
demand requires based on its data rate and path length.

The performance measure we consider is the maximum
number of spectrum slots on any network link as obtained
by either the FF or Rec-FF algorithms. We let the Rec-FF
algorithm run until it either reaches the lower bound (in which
case we know for certain it has found an optimal solution) or
it reaches a 5-hour limit on running time; while in the latter
case we are not certain that the algorithm has found an optimal
solution, as we discuss shortly, we believe that the solution is
very close to optimal. For meaningful comparisons between
problem instances, we normalize the solutions returned by
FF or Rec-FF by dividing with the lower bound LB for the
corresponding instance from expression (1). Clearly, the closer
the normalized value is to 1.0, the better the solution.

Figures 2 and 3 present results for the NSFNET and
GEANT2 topologies, respectively. Each figure includes three
subfigures, one each for demand matrices generated by the
skewed low, skewed high, and uniform distributions, respec-
tively. Each subfigure plots the normalized FF solution, the
normalized Rec-FF solution, and the normalized lower bound
(the last one as a horizontal line at y = 1.0), for each of 100
random problem instances generated for the stated parameters
(i.e., network topology and traffic demand distribution).

We first note that the FF algorithm produces solutions of
good quality that are within 30% (respectively, 12%) of the
lower bound for the 300 NSFNET (respectively, GEANT2)
problem instances. These results are consistent with earlier
research indicating that the FF algorithm performs well. Re-
garding the Rec-FF algorithm, we observe that it finds better
solutions than FF in most instances. Table I summarizes the
average relative performance of the FF and Rec-FF algorithms
in terms of how far (in percentage) terms their solutions are
from the lower bound, the number of instances (out of 100 for
each distribution) that the Rec-FF produces better solutions
than FF, the number of instances that Rec-FF finds a solution
equal to the lower bound (i.e., a guranteed optimal solution),
and the average absolute difference between the FF and Rec-
FF solutions, in spectrum slots. For the NSFNET (respectively,

1

1.05

1.1

1.15

1.2

1.25

1.3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

No
rm

al
ize

d
Va

lu
es

Instance Number

NSFNET Skewed Low
Normalized Lower Bound Normalized FF Solution Normalized Rec-FF Solution

1

1.05

1.1

1.15

1.2

1.25

1.3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

No
rm

al
ize

d
Va

lu
es

Instance Number

NSFNET Skewed High

Normalized Lower Bound Normalized FF Solution Normalized Rec-FF Solution

1

1.05

1.1

1.15

1.2

1.25

1.3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

No
rm

al
ize

d
Va

lu
es

Instance Number

NSFNET Uniform
Normalized Lower Bound Normalized FF Solution Normalized Rec-FF Solution

Fig. 2. Normalized solutions to 300 problem instances, NSFNET

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

No
rm

al
ize

d
Va

lu
es

Instance Number

GEANT2 Uniform
Normalized Lower Bound Normalized FF Solution Normalized Rec-FF Solution

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

No
rm

al
ize

d
Va

lu
es

Instance Number

GEANT2 Skewed Low
Normalized Lower Bound Normalized FF Solution Normalized Rec-FF Solution

1

1.01

1.02

1.03

1.04

1.05

1.06

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

No
rm

al
ize

d
Va

lu
es

Instance Number

GEANT2 Skewed High
Normalized Lower Bound Normalized FF Solution Normalized Rec-FF Solution

Fig. 3. Normalized solutions to 300 problem instances, GEANT2

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 10,2021 at 17:42:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RELATIVE PERFORMANCE OF FF AND REC-FF ALGORITHMS

Traffic FF Rec-FF Avg Diff
% from LB % from LB # instances < FF # instances = LB (slots)

NSFNet Skewed High 9.28% 5.46% 53 20 3.78
Skewed Low 11.73% 6.55% 52 26 2.65

Uniform 10.12% 6.01% 47 23 3.08
GEANT2 Skewed High 2.66% 1.22% 79 14 8.44

Skewed Low 6.58% 3.54% 77 30 7.76
Uniform 2.88% 1.37% 71 33 6.47

GEANT2) network, Rec-FF improves on the FF solution in
47-53 (respectively, 71-79) instances, depending on the traffic
distribution, of which it finds a solution equal to the lower
bound in 20-26 (respectively, 14-33) instances. Also, although
the percentage improvement over the FF solution is lower for
the GEANT2 network, the absolute difference is more than
twice that for the NSFNET network. In other words, even
a small improvement in the larger GEANT2 network results
in significantly larger spectrum savings, especially since it
applies across many more network links.

Finally, Figure 4 shows the improvement in the solutions
found by the Rec-FF algorithm as a function of how long the
algorithm has run, starting from the FF solution it receives
as input at time t = 0 until we terminate the algorithm after
5 hours (note that the time axis is not in linear scale). We
show two instances, one for NSFNET and one for GEANT2,
for which Rec-FF finds a solution that is better than FF but
is higher than the lower bound (hence the algorithm runs for
the full 5 hours). It takes less than 5 sec (respectively, 45 sec)
for Rec-FF to find the best solution in the case of NSFNET
(respectively, GEANT2); in the remaining time the algorithm
explors solutions that are not better than the best one found in
the first few seconds. These trends are very similar to the ones
we observed for all instances of the corresponding networks,
and indicate that 1) it takes only a few seconds for Rec-FF
to find its best solution, and 2) even if this solution is not
optimal, it is likely very close to optimal.

VI. CONCLUDING REMARKS

We have developed Rec-FF, an algorithm that applies the
FF heuristic recursively to solve optimally the SA problem.
The algorithm generally takes less than one minute to produce
solutions that are very close to the lower bound and which, we
conjecture, are optimal. We plan to integrate Rec-FF with the
algorithm in [14] so as to solve large RSA problems efficiently.

REFERENCES

[1] J. M. Simmons, Optical Network Design and Planning. Springer, 2008.
[2] J. Simmons and G. N. Rouskas, “Routing and wavelength (spectrum)

allocation,” in B. Mukherjee, I. Tomkos, M. Tornatore, P. Winzer, and Y.
Zhao (Editors), Springer Handbook of Optical Networks, 2020.

[3] G. N. Rouskas, “Routing and wavelength assignment in optical WDM
networks,” in J. Proakis (Editor), Wiley Encyclopedia of Telecommuni-
cations, John Wiley & Sons, 2001.

[4] R. Dutta and G. N. Rouskas, “A survey of virtual topology design
algorithms for wavelength routed optical networks,” Optical Networks,
vol. 1, pp. 73–89, January 2000.

Fig. 4. Improvement of Rec-FF solution vs. time

[5] B. Jaumard, et al.“Comparison of ILP formulations for the RWA
problem,” Optical Switch. & Netw., vol. 3-4, pp. 157–172, 2007.

[6] M. Klinkowski, P. Lechowicz, and K. Walkowiak, “Survey of resource
allocation schemes and algorithms in spectrally-spatially flexible optical
networking,” Optical Switch. & Netw., vol. 27, no. C, pp. 58–78, 2018.

[7] S. Talebi, F. Alam, I. Katib, M. Khamis, R. Khalifah, and G. N. Rouskas,
“Spectrum management techniques for elastic optical networks: A
survey,” Optical Switc. & Netw., vol. 13, pp. 34–48, July 2014.

[8] R. Dutta and G. N. Rouskas, “Traffic grooming in WDM networks: Past
and future,” IEEE Network, vol. 16, pp. 46–56, Nov/Dec 2002.

[9] H. Wang and G. N. Rouskas, “Hierarchical traffic grooming: A tutorial,”
Computer Networks, vol. 69, pp. 147–156, August 2014.

[10] D. Zhou and S. Subramaniam, “Survivability in optical networks,” IEEE
Network, vol. 14, pp. 16–23, November/December 2000.

[11] S. Talebi, E. Bampis, G. Lucarelli, I. Katib, and G. N. Rouskas,
“Spectrum assignment in optical networks: A multiprocessor scheduling
perspective,” J. Optical Comm. & Netw., vol. 6, pp. 754–763, Aug 2014.

[12] H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and
wavelength assignment approaches for wavelength-routed optical WDM
networks,” Optical Networks, vol. 1, pp. 47–60, January 2000.

[13] Y. Zhu, G. N. Rouskas, and H. G. Perros, “A comparison of allocation
policies in wavelength routing networks,” Photonic Network Communi-
cations, vol. 2, pp. 265–293, August 2000.

[14] M. Fayez, I. Katib, G. N. Rouskas, T. F. Gharib, and H. Faheem,
“A scalable solution to network design problems: Decomposition with
exhaustive routing search,” December 2020.

[15] S. Huang, R. Dutta, and G. N. Rouskas, “Traffic grooming in path, star,
and tree networks: Complexity, bounds, and algorithms,” IEEE Journal
on Selected Areas in Communications, vol. 24, pp. 66–82, April 2006.

[16] M. T. Goodrich and R. Tamassia, Data Structures & Algorithms in Java.
New York: John Wiley & Sons, 2010.

[17] M. Jinno, et al., “Distance-adaptive spectrum resource allocation in
spectrum-sliced elastic optical path network,” IEEE Communications
Magazine, vol. 48, no. 8, pp. 138–145, 2010.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 10,2021 at 17:42:31 UTC from IEEE Xplore. Restrictions apply.

		2021-07-24T14:00:32-0400
	Preflight Ticket Signature

