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As network traffic is expected to continue to grow at high rates for the foreseeable future, it becomes imperative
to introduce space division multiplexing elastic optical networks (SDM-EONs) into the optical transport network.
However, spectrum fragmentation and crosstalk present significant challenges that may negatively impact the
performance of SDM-EONS. In this paper, we leverage machine learning techniques to enhance the transmission
performance of SDM-EONs, and make two contributions. Specifically, we use an Elman neural network to

C 1k
fossR forecast traffic demands, and use a two-dimensional rectangular packing model to allocate spectrum so as to
decrease unnecessary spectrum fragmentation (and, in turn, increase resource utilization). We also present a
novel spectrum partition scheme to reduce crosstalk. Our evaluation study confirms that the proposed strategy is
effective in improving spectrum utilization while reducing blocking probability and crosstalk.
1. Introduction of strategies have been studied recently that may generally be classified

With the proliferation of bandwidth-intensive services, including
high-definition video and cloud computing, and the swift emergence of
5G high-speed mobile media services and Internet of Things applica-
tions, traffic on backbone networks has increased drastically and is
expected to continue on a steep upwards trajectory. As a result, traffic
demands may soon bump into the capacity limits of elastic optical
networks (EONs) [1]. Space division multiplexing (SDM) technologies,
including multi-fiber, -core, and -mode, are currently under extensive
investigation [2] in an effort to accommodate more network traffic and
prevent such an undesirable outcome.

EONs allocate spectrum at a fine granularity that matches the
spectrum requirements of each request [1]. Nevertheless, as network
traffic varies over time, spectrum tends to become fragmented due to
the setup and release of lightpaths [3], leading to a decrease in resource
utilization and a decline in performance. SDM technology based on
multi-core fiber (MCF) expands the amount of available spectrum re-
sources so as to accommodate additional requests, which in turn leads
to a larger amount of wasted resources in SDM-EONSs for a given degree
of fragmentation.

In order to mitigate the impact of spectrum fragmentation, a variety

as either reactive (i.e., those employing defragmentation) or proactive
(i.e., those that attempt to prevent fragmentation). Reactive strategies
are triggered either periodically or whenever fragmentation exceeds a
certain threshold, so as to reroute some or all of the in-service con-
nections onto new lightpaths. In [4], the authors proposed methods for
intelligent timing selection and adaptive defragmentation ratio selec-
tion to tackle the tradeoff between bandwidth blocking probability
performance and operational complexity. In this study, connection re-
configurations were carried out sequentially, an approach that in-
troduces significant latency. Parallel defragmentation, proposed in [5],
was shown to be effective in reducing latency by conducting all con-
nection reconfigurations simultaneously. However, extensive traffic
disruption may occur at defragmentation instants. To address this issue,
the authors of [6] proposed a preemptive reconfiguration strategy that
only reroutes a portion of existing connections at a time so as to
minimize traffic disruption.

Clearly, reconfiguration always incurs traffic disruption to some
degree, hence it increases delay and deteriorates the performance of the
network, Therefore, the research community has also investigated
proactive strategies that attempt to avoid or minimize spectrum frag-
mentation by employing appropriate routing and spectrum allocation
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algorithms at the time connection requests arrive. The strategy pro-
posed in [7] splits a request into multiple sub-requests and routes each
along a different path so as to utilize fragmented spectrum resources
across the network. Nevertheless, it is well known that such reverse
multiplexing of connections increases operating costs as it requires
complex control and management. The work in [8] defined a new
fragmentation ratio to characterize various routing and spectrum as-
signment solutions, and presents fragmentation-aware algorithms that
allocate paths and spectrum to connection requests so as to keep the
fragmentation ratio low. However, the above representative studies as
well as many others, assumed a resource model that does not take the
time dimension into account. The work in [9] proposed a two-dimen-
sional resource model for each link that accounts not only for the
spectrum demands but also the holding time of each connection. This
model represents the spectrum resources on each link over time and
may be used to make more effective routing and spectrum allocation
decisions for each request. The authors of [10] introduced the concept
of spare spectrum availability to accommodate connection requests.
Based on it, two different crosstalk-aware routing, spectrum, and core
assignment algorithms are presented at different network states, which
improves the spectrum resource utilization and reduces blocking, with a
cost of additional algorithm complexity and set-up delay. A node-arc-
based integer linear programming formulation was designed in [11] to
assign the lightpath, the cores, and the corresponding spectrum si-
multaneously for each transmission request, two XT-aware-based ap-
proaches that consider XT strictly also be proposed, fulfilling all the
requisite constraints, such as inter-core crosstalk and spectrum over-
lapping. However, it is suitable for static RSCA problem.

Most proactive strategies in the literature, including the ones dis-
cussed above, were designed for optical networks with single-core fiber.
The SDM-EONs with multi-core fiber (MCF) that we consider in this
work are susceptible to signal impairments due to inter-core crosstalk
[12]. Hence, crosstalk should be taken into consideration in the process
of resource allocation. The work in [13] introduced an on-demand
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consideration in assigning spectrum resources. Specifically, crosstalk is
reduced by avoiding the allocation of the same frequency slots in ad-
jacent cores, whereas fragmentation is avoided by having each core
serve connections with the same demands, to the extent possible. The
results show that the strategy is effective in reducing both network
blocking probability and crosstalk.

The premise of our work is that by anticipating future traffic re-
quests, it is possible to apply appropriate algorithms to reduce spectrum
fragmentation and crosstalk, hence improve network performance in
terms of spectrum utilization and blocking probability. To this end, we
make three contributions. First, we use machine learning techniques,
and specifically the Elman neural network (ENN), to obtain an accurate
forecast of future traffic based on historical data. Second, we present a
resource model for spectrum allocation that represents the time di-
mension and captures crosstalk constraints among adjacent cores of a
fiber. Finally, we develop a parameterized machine learning-assisted
fragmentation avoidance (MLFA) algorithm that leverages information
on predicted traffic from the ENN and the resource model to address the
dual challenges of spectrum fragmentation and crosstalk.

The rest of this paper is organized as follows. Following this in-
troduction, in Section 1 we present the network model we consider in
this work. In Section 2 we introduce a traffic prediction model based on
the ENN, and in Section 3 we develop a resource model for spectrum
allocation in multi-core fiber. We present our routing, spectrum and
core assignment algorithm for fragmentation avoidance in Section 4
and evaluate it in Section 5. We conclude the paper in Section 6.

2. Network model

We consider an online version of the routing, core, and spectrum
assignment (RCSA) problem in SDM-EONs of arbitrary topology in
which each link consists of a single multi-core fiber (MCF), whereby the
cores provide the space dimension for switching. We assume that each
node is equipped with a spatially and spectrally resolved optical

strategy that takes both crosstalk and spectrum fragmentation into  gwitching fabric as shown in Fig. 1 [14]. The fabric comprises a SDM
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Fig. 1. Spatially and spectrally resolved optical switching fabric for SDM-EONs.
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Demultiplexer (DeMUX), an architecture on demand (AoD) module,
and a SDM Multiplexer (MUX). The SDM DeMUX and SDM MUX are
used to interconnect the MCFs terminating at the node.” The AoD
module includes bandwidth-variable wavelength selective switches
(WSS) and erbium-doped fiber amplifiers (EDFA), allowing the adding,
dropping, and switching of flexible channels at the granularity down to
one spectrum slot. Each node also includes a transceiver (TR) pool from
which appropriate sub-transceivers are allocated to each connection
depending on its traffic demand.

Fig. 2(a) shows a seven-core MCF, the most common structure that
we adopt in this work as illustrated in Fig. 1. An MCF has multiple cores
and achieves a far larger transmission capacity than a traditional single-
core fiber. However, crosstalk arises as a major challenge in MCF.
Specifically, as shown in Fig. 2, crosstalk occurs when optical signals
using the same spectrum propagate within adjacent cores in the MCF. In
other words, when the same spectrum slots are occupied by live traffic
on adjacent cores, inter-core crosstalk is generated [15]. Inter-core
crosstalk leads to serious physical layer impairment and degrades the
quality of service, thus the crosstalk should be avoided during alloca-
tion which results with higher spectrum fragmentation. It is possible to
allocate lower number of requests, which results with higher blocking
probability [16]. In addition, the introduction of multiple cores adds a
new dimension of complexity with respect to spectrum assignment,
potentially leading to more severe fragmentation of the spectrum re-
sources.

We assume that connection requests arrive and depart dynamically,
and each request is characterized by three parameters: (1) the size ¢ of
the request in units of Gbps; (2) the arrival time t,; and (3) the holding
time t,. We assume that the bandwidth of each spectrum slot is
12.5 GHz. Once the network receives a new request, it runs an RCSA
algorithm to assign a path, contiguous spectrum, and core to the re-
quest. In the remainder of this paper we describe our approach to de-
signing such an algorithm for SDM-EONS.

3. Traffic prediction based on machine learning

Machine learning techniques are widely used for prediction and
decision-making, hence it is no surprise that recently such techniques
have been introduced in the operation and design of optical networks;
for a comprehensive survey we refer the reader to [17]. In particular,
three recent studies are closely related to our work. The authors of [18]
proposed deep learning-based techniques to improve traffic prediction
accuracy in optical data center networks for resource allocation. Ma-
chine learning technology has also been used to predict the crosstalk in
SDM-EONSs [19], while back propagation neural networks were used to
forecast the size of future traffic requests in [20].

The Internet traffic exhibits a similar pattern, the similar or periodic
traffic pattern over a long period has been referred to as time-varying
traffic. Therefore, traffic prediction is feasible. In this section our goal is
to predict not only the size @ of future demands as was done in our
work [20], but also their arrival time ¢, and holding time t;, which are
time-varying. In Elman neural network (ENN), there is no need to use
state variable as the input or training signal and its dynamic char-
acteristic is provided by its internal connection, which makes this
network more suitable for time-varying system modeling. This is also an
important factor which makes ENN superior to the back propagation
neural network in [20]. To this end, we apply the ENN model [21]. Our
goal is to leverage accurate traffic prediction to inform resource allo-
cation in SDM-EONSs so as to avoid spectrum fragmentation and cross-
talk.

TFig. 3 [21] shows the ENN model for traffic forecasting. It consists of

1 Although Fig. 1 fig:switch shows a degree-2 node, nodes in the SDM-EON
may be of higher degree, in which case they are equipped with appropriately
extended switch fabrics.
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four layers: input layer, hidden layer, context layer and output layer *
each described in detail next. The hidden layer neurons are fed by the
outputs of the context neurons and the input neurons. Context neurons
are known as memory units as they store the previous output of hidden
neurons. This network structure makes the network more sensitive to
the historical data, which increases its ability to deal with the dynamic
information.

Input layer. In the input layer, the node output x; (k) is the same as
the node input net; (i.e., there is no transformation of the input):

xi(k) =net;, i=1,2, m

where k represents the k-th iteration.
Hidden layer. In the hidden layer, the transfer function is a sigmoid
function S (x). The node input and node output are represented as:

net; = Z wyx; (k) + Z wyx,(k), r=1,2,..,9,
i r (2)

1

e el

xj(k) = S(netj) = 1 = s J=1,2,.,9.

3)
In the above expressions, x,(k) is the output of the context layer, and
net;, x;(k) represent the input and output of the hidden layer, respec-
tively. Furthermore, wy (respectively, wy) refer to the weights of the
links that connect the input layer to the hidden layer (respectively, the
context layer to the hidden layer).

Context layer. In the context layer, the node input and the node
output are expressed as:

x,(k) = x;(k — 1). 4)

In other words, the output of the context layer at iteration k is the
output of the hidden layer at the previous iteration k — 1.

Output layer. In the output layer, the node input and the node
output are calculated by the following two formulas

net, = Z wi,X; (k)
i (5)

3, (k) = fi (nety (k) = net, (k) (6)

Note that wy, are the weights of links between the hidden and output
layers, and y, (k) represents the output of the ENN.

The prediction error E is obtained from the expected output y, (k) of
the network and the actual value y; (k):

n
E= Y [yk - P

= %)
The error may be reduced by continually adjusting the values of
weights wy, wy;, and wj, during the training process until the error does
not exceed a predefined threshold £. Specifically, the weights are up-
dated as follows:

[ 3E &y, |(onet,
k+ 1) = wo(k) + n| -2 || 2
wio(k + 1) = wp (k) + 17 "%, 6nelo_(6w,,,] ®
[ e 3y, |(énet, ox;
k + 1) = wy (k) + 7| — 22 i
Wi ) =wy (k) +7 | 9y, dnel, | ( Owjo wy )
[ GE ay, |(onet, dx
y(k + 1) = wy(k) + 7| - = || 2%
wy ( )=wyk) + 7 2 ety ( o oW, a0

where 7 is the learning rate.

A pseudocode description of the training process of ENN model is
provided as Algorithm 1. The input ¢ to the algorithm represents the
attributes [, t,, ;] (i.e., size, arrival time, and holding time) of a set of
historical traffic requests. As a first step, the training data and initial

2We use subscripts i, j, 7, o0 to denote quantities related to the input, hidden,
context and output layers, respectively, in expressions (1)-(10) below.
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Fig. 3. Architecture of the Elman neural network.

weights wy, wy, wj, are input (Lines 1-2). The ENN training process
follows in Lines 3-13. The input and output of all layers are calculated
in Line 6 according to formulas (1)-(6), and in Line 5 the error E is
calculated as in expression (7). If the error is below the predefined
threshold £, then the prediction results y, (k) are produced in Line 7.
Otherwise, the weights are updated in Line 8 following expressions
(8)-(10) and the process is repeated until the error decreases below the
threshold.

Algorithm1 The training process of ENN model

Input: ENN structure, ¢
1: Input the training dataset: [®, tg, t] of traffic requests

2: Initialize the weights wy, wy, W,

3: Set the learning rate 0.001

4: batch learning on training dataset

5: for each batch do

6: Calculate the input and output of all the layers according to forward propagation
7
8:

Calculate the error function E

if E < £ then
9: Return the prediction results y,(k): [®, tg, t:]
10: else
11: Update the weights wy, wyj, wj, until E < §
12: endif
13: end for

To evaluate the ENN model, we used data from the Center for
Applied Internet Data Analysis website (CAIDA)[22] over a two-week
period. The number of our training set is 100,000 requests. A small
batch gradient descent method is used to train the neural network, each
batch is 100, and an Adam optimizer is used. We used the first-week
traffic as historical data to train the ENN, and applied the ENN model to
predict traffic over the second week. The dotted line in Fig.4 represents
the actual two-week traffic data from [22], whereas the solid line re-
presents the traffic over the second week as predicted by the ENN
model. As indicated in Fig.4, the ENN model accurately captures future
behavior based on the past traffic profile; the error in this prediction is
kept below 5%. In the following, we leverage the traffic prediction
capabilities of ENN to develop a spectrum allocation scheme that avoids
fragmentation.

4. Resource models for multi-core fiber

The dynamic setup and release of connections is bound to fragment
the available spectrum on each core into small non-continuous pieces
that may not be used to accommodate future requests. If not appro-
priately addressed, spectrum fragmentation may severely impact net-
work performance, including in terms of spectrum utilization and
blocking probability. In this section, we propose two complementary
resource models designed to alleviate fragmentation and crosstalk in
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SDM-EONs with MCF. The first model applies to spectrum within a
single core, while the second takes into consideration crosstalk between
signals in adjacent cores. Using these models, in the following section
we develop a spectrum allocation algorithm for fragmentation avoid-
ance. Such allocation is subject to the continuity and contiguity con-
straints.

4.1. Crosstalk-aware inter-core resource allocation

The introduction of MCF into SDM-EONs allows for significant ex-
pansion of carrying capacity proportional to the number of cores in
each fiber. Nevertheless, an important side effect of having multiple
cores in the same fiber is the inter-core crosstalk generated when light
signals occupy the same spectrum slots in adjacent cores [12]. Inter-
core crosstalk leads to serious physical layer impairments and degrades
the quality of service; consequently, the result is an increase in the
number of connections rejected, and, hence, in blocking probability
[14]. The statistical mean inter-crosstalk of a homogenous of a MCF per
unit length is expressed in formula (11). Furthermore, by considering
the coupled-power theory, the crosstalk of a MCF can be expressed as in
formula (12) [23].

2k?r

h=2T

gD amn

_ N — N-exp[-(N - 1)-2hl]
"~ 1+ N-exp[-(N — 1)-2hl] 12)

Formula (11) denotes the mean increase in inter-core crosstalk per unit
length, where k, r, 3, D are the relevant fiber parameters, respectively
the coupling coefficient, bend radius, propagation constant, and core-
pitch. XT is the mean crosstalk. N is the number of the adjacent cores,
and [ is the fiber length.

We now present a spectrum partitioning scheme that aims to avoid
inter-core crosstalk. Consider two adjacent cores, C; and Cp, i # j, and
let S denote the total amount of spectrum available in each core. We
partition the spectrum S of the two cores into two contiguous areas,
Sii» Siz and Sjy, Sj2, as shown in Figure 5, so that the first (respectively,
second) area of core C; has no overlap with the second (respectively,
first) area of core C; in terms of spectrum slots. Specifically, the sizes of
the two areas in each core are calculated as:

Sy=S)=«S (13)
Sp=Sp=0—-a)S (14)

where g, is a parameter that is adjusted over time as discussed shortly.
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Fig. 5. Spectrum partitioning: (a) initial state, (b) final state.

With this partitioning scheme, we adopt the following spectrum
allocation policy:

For two adjacent cores C; and C;, when sub-area Sy, (respectively, S,) is
used for carrying traffic, then new connections on core C; (respectively,
Cy) may be allocated spectrum only from sub-area Sj, (respectively, S;).

As the amount of traffic carried by each core changes dynamically over
time, it is important to adjust the sizes of the two spectrum sub-areas
accordingly to ensure that the cores can serve more future requests and
blocking probability is reduced. Therefore, we update the value of «; in
response to changes in the relative traffic load carried (i.e., amount of
spectrum used) by cores C; and ;. Let H;, and H;, be the traffic amounts
carried by cores C; and C; at time ¢, respectively. Then, «, is calculated
as:

s R

AT as)

As a result, the size of the each spectrum sub-area in each core is ad-
justed as connections get established and terminated. For instance, the
release of a connection when the spectrum in the two cores is in the
state depicted in Iig. 5(a) will result in an increase (respectively, de-
crease) of the first sub-areas S;; and S (respectively, second sub-areas
Si2 and Sj;) as shown in Fig. 5(b) due to an adjustment in the value of .

As a final note, the center core (i.e., core C; in the MCF depicted in
Fig. 2(a)) is a special case as it is adjacent to all other six cores. To
reduce overlap of used spectrum between C; and the other cores, we
allocate spectrum on this core randomly.

4.2. Horizon-based intra-core spectrum allocation

We abstract the resources on each core of each link as a two-di-
mensional (2D) time-spectrum pool, as shown in Fig. 6. The x axis in the
figure represents the available spectrum (in units of slots corresponding
to a bandwidth B = 12.5 GHz), whereas the y axis represents available
time(in units of slots corresponding to a time slot r = 10 min). The time
horizon T in Fig. 6 represents how far into the future resources will be
allocated (reserved) to accommodate connection requests that are ex-
pected to arrive later. The time dimension is also divided in non-
overlapping time slots which represent the unit of time for which
spectrum 1is allocated. The four solid color rectangles in Figure 6 re-
present four connections that have already been allocated spectrum
within the specific 2D time-spectrum pool.

Each connection request [®, t,, t;] may be represented as a rectangle
of area M = f X ny,, where ny, is the number of time slots required and f
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Fig. 6. 2D time-spectrum pool.

is the number of spectrum slots required. t, is the holding time of the
connection. The modulation format we consider in this work is BPSK, if
modulation level L is determined, then the number of spectrum and
time slots is obtained as follows:

]

T= Bxogl as)

a7

Given a number of connection requests that are forecast to arrive
within the time horizon T (i.e., requests with , < T), the problem of
allocating spectrum on a specific core of a specific link in the network
becomes equivalent to a 2D rectangular packing problem [23,24]. In
addition, a request can be served on only one core and respects the
contiguity and continuity of spectrum. In 2D rectangular packing, the
objective is to place rectangular items on a predefined rectangular area
so that no items overlap and the area covered by the placed items is
maximized. With this insight, the spectrum allocation problem is sim-
plified and we can build upon results from 2D rectangular packing
theory. In particular, while the 2D rectangular packing problem has
been shown to be is NP-hard, several heuristics have been developed
[24].

In this work, we use a two-step algorithm for 2D rectangular
packing that incorporates elements from the algorithms in [23,24]:

e Step 1. Sort all connection requests in decreasing order of the area M

of the corresponding rectangle, and allocate spectrum to each in this
order.
Note that rectangles with a large area M require many contiguous
time and spectrum slots to be placed. On the other hand, there is
more flexibility in placing small rectangles as they may fit into
empty areas even if the time-spectrum pool has been fragmented.
Therefore, placing large rectangles first is expected to achieve
higher resource utilization.

® Step 2. For each request, use the fit degree defined in [22] to select
one of possible multiple potential placements for the corresponding
triangle. The objective is to minimize fragmentation of the time-
spectrum pool.

Since small requests are allocated after large ones, it is possible that
there are several fragments within the time-spectrum pool large enough
to place the corresponding rectangles. The fit degree was introduced in
[24] to rank the various placements of small rectangles, and it was
shown that selecting the placement with largest fit degree leads to better
resource utilization. Due to page constraints, we omit the definition of
the fit degree, and refer the reader to [24] for all the details.
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5. Resource allocation algorithm for SDM-EONs with MCF

The routing, core, and spectrum allocation algorithm for SDM-EONs
is shown as Algorithm 2, and leverages both the ENN model prediction
and the 2D rectangular packing algorithm; we refer to Algorithm 2 as
machine learning-assisted fragmentation avoidance (MLFA) strategy.

Algorithm 2: Machine Learning-Assisted Fragmentation Avoidance (MLFA)

Input: network topology G(V, E), requests r; € R

Out: Routing, core and spectrum assignment (RCSA) solution (or blocked request)

1: for ri(s, d, @, t,, t) do

2: ¢«—ENN model

3:  t,~ENN model

4: 1—ENN model

5: compute k-shortest path between s-d

6: for each path do

7 select an available core C on each link according to First-Fit

8: divide the slots on C according to the partition scheme in Section 4.1

9: end for

10: for (tg € T) then

11: calculate the M

12 sort r; and stored them in set P in descending order of M

13: endif

14: for each ri(in decreasing value of M) do

15: allocate resource according to 2D rectangular packing algorithm in Section
4.2

16: if no resource is available, block the request

17: end for

18: return RCSA solution or block the request

19: end for

As a first step, MLFA applies the ENN model to forecast traffic de-
mands (Lines 1-4), which are determined by their source node, desti-
nation node, size, arrival time and holding time. k shortest paths from
the source s to the destination d of the connection are calculated. For
each candidate shortest path, the core on each link of each path is se-
lected for the request according to the well-known First-Fit policy
(Lines 5-7).The spectrum slots of the core are then divided into two
sub-areas, S; and S, as described in Section 4.2 (Line 8). If a request
cannot be established on a given path, check the second path, and then
the next one, until the request can be allocated. If it is not possible then
rejected the request.

Following this initialization, the algorithm then attempts to allocate
resources for all requests with an arrival time f, < T. Specifically, all
these requests are first sorted and stored in set P in decreasing order
according to the area M of their corresponding rectangle (Lines 10-13).
Then, each request is considered in this order (Lines 14-17), and
spectrum slots are allocated using the rectangular packing algorithm we
described in Section 4.2. Spectrum slots are assigned starting with the
first of the k paths until one is found that may accommodate the con-
nection, If a path with available resources exists, the corresponding
RCSA solution is returned; otherwise, if none of the k paths may ac-
commodate the request, the connection is blocked.

6. Numerical results
6.1. Simulation setup

We developed a C+ + simulation tool to evaluate the proposed
MLFA strategy. For the experiments, we used two topologies: the 14-
node, 21-link NSFNET and the 28-node, 45-link USNET shown in
Fig. 7(a) and 7(b), respectively. The number of candidate routes is
k = 3, the bandwidth of each spectrum slot is assumed to be 12.5 GHz
[25]. Each time slot is 10 min [26]. All links have a single MCF with 7
cores as shown in Fig. 2(a), and each core has 320 spectrum slots.
Connection requests arrive following a Poisson process, and the holding
time of each request is assumed to follow a negative exponential dis-
tribution. The traffic load is given by the utilization of the bottleneck
link, in which the most lightpaths are assigned when all source-
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(a)

(a) NSFNET
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(b) USNET

Fig. 7. Network topologies: (a) NSFNET, (b) USNET.

destination pairs have the same arrival rate [13]. We set the value of
the time horizon to T = 12 hrs, as in [9]. The algorithm runs 500 times
each time, and the results are obtained from 100,000 requests, which
confidence interval is 95%, with less than 5% error for each displayed
point of diagram.

In the experiments, we compare four strategies:

1. First-Fit: a baseline strategy that allocates available spectrum slots
and cores such that the indices of the allocated slots are minimized.

2. On-demand: the strategy in [13], which applies two predefined po-
licies. The first is a core selection priority for reducing crosstalk, and
the second is a core classification for reducing spectrum fragmen-
tation.

3. MLFA-WT: our proposed MLFA strategy but without traffic predic-
tion. Specifically, when a request arrives, resources (path, core,
spectrum slots) are allocated for it immediately based on the current
network resource state information. In other words, the request is
immediately filled into the 2D time-spectrum pool.

4. MLFA: the strategy we described in the previous section.

The data for the ENN model were obtained from [22]. Also, we set
the number of nodes in the hidden layer of the ENN to 9, and the
learning rate to n = 0.001 [27].

We compare the various algorithms with respect to four metrics:

e Average number of one- or two-slot fragments in the entire network.

e Spectrum utilization (SU) of the entire network, defined as the
percentage of slots occupied by existing requests among all the slots
in the fiber links.

® Crosstalk per slot (CpS), defined as the ratio of the arrangement of
spectrum slots that generate crosstalk to the number of used slots.

e Blocking probability (BP) of connections across the entire SDM-
EON.
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6.2. Simulation results

Let us first consider the average number of one- or two-slot frag-
ments in SDM-EONSs. Fig. 8 plots the average number of one- and two-
slot fragments as a function of the traffic load, for the NSFNET to-
pology. In our simulation, we assume that connections request at least
three spectrum slots, hence one- and two-slot fragments cannot be used
to serve any requests and represent wasted resources. As shown in the
figure, the First-Fit strategy results in significantly more spectrum
fragmentation than other strategies. This is attributed to the fact that
First-Fit is a greedy policy that always allocates the first (lowest-index)
available set of slots, without any attempt to utilize other parts of the
spectrum, and doing so may create holes that may not accommodate
future requests. The MLFA-WT scheme performs slightly better than the
On-demand strategy, indicating that the 2D rectangular packing model
indeed is effective in allocating resources. Note also that the MLFA-WT
and MLFA strategies generate roughly the same fragmentation at low
loads. But at higher loads when resources are scarce, MLFA clearly
outperforms MLFA-WT. This result is mainly due to the fact that MLFA
prioritizes connection requests according to the size and holding time
predicted by the ENN model, whereas MLFA-WT serves requests on a
first-come, first-served basis. In other words, in the absence of traffic
prediction, the spectrum allocation scheme is only locally optimal. On
the other hand, horizon-based allocation allows for an overall planning
solution for requests during the horizon T, and hence traffic prediction
leads to a result that is closer to the global optimum. Consequently,
MLFA makes it possible to reduce spectrum fragmentation significantly.

Fig. 9 plots the spectrum utilization (SU) against the traffic load for
the NSFNET and USNET topologies. For the reasons discussed above,
the First-Fit strategy has the lowest SU among the four strategies we
considered in our study. The On-demand strategy utilizes spectrum
more efficiently than First-Fit, mainly due to the predefined core clas-
sification policy [13]. Specifically, connections requiring the same
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Fig. 8. Number of fragments: (a) one-slot, (b) two-slot.
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bandwidth are preferentially allocated to cores dedicated to that
bandwidth, hence resource on each core is used efficiently. Never-
theless, MLFA-WT performs slightly better than On-demand in terms of
spectrum utilization. With traffic prediction resource allocation is more
effective, hence it is no surprise that the MLFA strategy performs sig-
nificantly better than the other three. In particular, our MLFA algorithm
improves spectrum utilization by about 35% (respectively, 30%) over
the On-demand strategy for the NSFNET (respectively, USNET) to-
pology at the highest traffic load in Fig. 9. The relative performance of
the four strategies in Fig. 9 is a direct consequence of the relative
performance of the same strategies in Fig. 8 in terms of fragmentation,
and underscores the importance to network resource allocation of
traffic prediction using machine learning techniques. The SU in
NSFNET topology has similar tendency in USNET, since the resource in
USNET is more than in NSFNET, the SU in USNET is slightly lower
under the same traffic load.

Fig. 10 shows the crosstalk per slot (CpS) metric as a function of
traffic load for the four strategies and the two network topologies. First-
Fit allocates spectrum on each core from lower to higher slot indices,
hence adjacent cores will end up with many slots of the same index
occupied by traffic, leading to serious crosstalk. This is evident in
Fig. 10 as the crosstalk line for First-Fit lies well above the corre-
sponding lines of the other three strategies across all traffic loads
considered in our study. On the other hand, the MLFA-WT and MLFA
strategies have almost the same performance in terms of crosstalk
across all traffic load values and the two topologies. This result can be
explained by observing that the two strategies use the same spectrum
partitioning scheme for the various cores. Finally, the On-demand
strategy employs a predefined core priority scheme [11] that is effective
in reducing crosstalk. Nevertheless, our intra-core resource allocation
strategy is seen to be more effective, especially at high loads where CpS
under MLFA is about 22% (respectively, 18%) lower than the On-

demand strategy for NSFNET (respectively, USNET).

Finally, Fig. 11 plots the blocking probability against the traffic load
for the NSFNET and USNET topologies. The relative performance of the
four strategies is identical to that shown in earlier figures and is a direct
result of the effectiveness of each strategy to reduce/avoid fragmenta-
tion of the spectrum resources. Specifically, the First-Fit strategy ex-
hibits the highest blocking probability, followed by the On-demand and
MFLA-WT strategies that have similar performance. These two schemes
reduce fragmentation and, therefore, may accommodate more con-
nections. Our MFLA strategy performs even better; its blocking prob-
ability across the traffic load values simulated is on average about 40%
(respectively, 28%) lower than that of the On-demand strategy for the
NSFNET (respectively, USNET) topology. This improvement is due to
the combination of two factors: (1) higher spectrum utilization, due to
lower fragmentation, makes it possible to carry more traffic, and (2)
lower crosstalk means that fewer connections are blocked due to phy-
sical layer impairments. The BP in USNET topology is lower, the reason
is that USNET has higher node connectivity, where is easier to find
alternative paths for the arriving requests.

Overall, the results of our study presented in this spectrum de-
monstrate that traffic prediction using machine learning, combined
with carefully designed intra- inter-core resource allocation strategies
for MCF are quite effective improving network performance by alle-
viating the impact of both spectrum fragmentation and inter-core
crosstalk.

7. Conclusion

SDM technology expands the capacity and flexibility of EONs, but it
also introduces new challenges, namely, higher potential for fragmen-
tation and inter-core crosstalk. In this paper, we presented a novel
strategy that leverages machine learning to forecast future traffic
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