
Jumpstart just-in-time signaling protocol: a
formal description using extended finite state
machines

Abdul Halim Zaim
Ilia Baldine
Mark Cassada
MCNC
3021 Cornwallis Road
P.O. Box 12889
Research Triangle Park, North

Carolina 27709
E-mail: ibaldin@anr.mcnc.org

George N. Rouskas
Harry G. Perros
North Carolina State University
Department of Computer Science
Raleigh, North Carolina 27695

Daniel Stevenson
MCNC
3021 Cornwallis Road
P.O. Box 12889
Research Triangle Park, North

Carolina 27709

Abstract. We present a formal protocol description for a just-in-time
(JIT) signaling scheme running over a core dense wavelength division
multiplexing (DWDM) network that utilizes optical burst switches (OBSs).
We apply an eight-tuple extended finite state machine (EFSM) model to
formally specify the protocol. Using the EFSM model, we define the com-
munication between a source client node and a destination client node
through an ingress and one or multiple intermediate switches. We work
on on-the-fly and persistent unicast connections. The communication be-
tween the EFSMs is handled through messages. © 2003 Society of Photo-
Optical Instrumentation Engineers. [DOI: 10.1117/1.1533795]

Subject terms: extended finite state machines; optical burst switches; just-in-time
signaling protocol; formal protocol description.

Paper 020195 received May 15, 2002; revised manuscript received Jul. 16, 2002;
accepted for publication Aug. 6, 2002.

1 Introduction

Recently, a great change in the protocol design has been
observed in telecommunication industry. Instead of the tra-
ditional design cycle, which includes a three-step process
consisting of a high-level design, a low-level design and
coding and testing, a more formal design approach has been
developed. The formal design approach uses methods that
help the designer verify the correctness of the design deci-
sions as they are made. For more information on formal
design approaches, refer to Refs. 1–5.

In Ref. 6, Gunawan et al. classified formal description
techniques into three main categories: state transition mod-
els ~STMs!, programming language models~PLMs!, and
hybrid models~HMs!. After giving the advantages of dif-
ferent description techniques on each category, the authors
mentioned that HMs are the most powerful techniques be-
cause they combine the ease and understandable structure
of STMs with the elasticity and power of PLMs. Extended
finite state machines~EFSMs! are also HMs.

Ordinary finite state machine~FSM! representation is
not powerful enough to model in a succinct way the Jump-
start just-in-time~JIT! signaling protocol, because the pro-
tocol specifications include variables, timers, and opera-
tions based on these values~for more information about the
Jumpstart protocol refer to Ref. 7!. Therefore, we define an
EFSM model with the addition of some variables. For fur-
ther information on EFSMs, the interested readers can see
Refs. 2, 4, 5 and 8. An EFSM approach is fully expressive
and particularly useful as a means of describing a commu-
nication protocols. EFSM-based techniques can be applied
in telecommunications more easily than most other ap-

proaches and are better suited to assist in the follow-up
implementations. Therefore, in this paper we use an EFSM-
based description model.

The Jumpstart* signaling protocol was first introduced
in Ref. 7. The signaling architecture is based on wavelength
routing and burst switching. Signaling is JIT, indicating that
signaling messages travel slightly ahead of the data they
describe. Signaling is out of band, with signaling packets
undergoing electro-optical conversion at every hop. Data
are opaque to network entities and travel through the net-
work in bursts of varying durations, each burst preceded by
its own signaling message.

Optical burst switching~OBS! is a promising direction
of research and development in wavelength-routed core
wavelength-division multiplexing ~WDM! networks.
Coupled with out-of-band signaling it promises to deliver a
transparent all-optical architecture, capable of transporting
digital and analog data regardless of format. JIT signaling
approaches to OBS have been previously studied in the
literature.9–13 These approaches are characterized by the
fact that the signaling messages are sent just ahead of the
data to inform the intermediate switches. The common
thread is the elimination of the round-trip waiting time be-
fore the information is transmitted~the so-called tell-
and-go approach!: the switching elements inside the
switches are configured for the incoming burst as soon as
the first signaling message announcing the burst is re-

*The Jumpstart project is in its third phase, which consists of implemen-
tation. At the time of this paper, the testbed was almost finished.

568 Opt. Eng. 42(2) 568–585 (February 2003) 0091-3286/2003/$15.00 © 2003 Society of Photo-Optical Instrumentation Engineers

ceived. The variations on the signaling schemes mainly dif-
fer in how soon before the burst arrival and how soon after
its departure the switching elements are made available to
route other bursts through use of the combination of signal-
ing messages and timers.

The organization of the paper is as follows. Section 2
briefly explains the Jumpstart signaling protocol. The
EFSM model is given in great detail in Sec. 3. Section 4
shows the channel architecture for message communication
among different EFSMs. Section 5 provides the formal
specification of the Jumpstart protocol, showing all state
diagrams and explaining the state machines. Section 6 con-
cludes our paper.

2 Jumpstart JIT Signaling Protocol

Jumpstart signaling uses a link-unique identifier~or label!
for each message, which upon emergence on the other end
of the link can be cached and mapped to a new identifier or
label on the exit link. The first message in a signaling flow
~SESSION DECLARATION or SETUP! serves the purpose
of setting up a label-switched path, which all further mes-
sages in forward and reverse direction follow. That is, this
on-the-fly setup of a label switched path is the main differ-
ence between multiprotocal label switching~MPLS! or
asynchronous transfer mode~ATM ! and our approach. An-
other difference worth noting is that in MPLS, labels are
distributed upstream, in the reverse direction of the path
prior to path being used. In our case we need to setup the
label-switched path in the forward direction. In addition,
we must setup the reverse path at the same time.

The basic signaling protocol for a JIT OBS network de-
scribed in this section addresses only the connection setup
procedures.

Depending on the type of the connection being set up,
the signaling protocol may need to perform several func-
tions, all described in Table 1. These phases can be accom-
plished by the signaling protocol in a different fashion, de-
pending on the assumptions made about the network: the
reliability of individual links, scheduling capabilities of the
switches, and other factors.

In the Jumpstart network we propose to use two types of
connection setups:

1. Explicit setup and explicit teardown.Each burst is
preceded by its own Setup message and followed by
its own Release message~which enables the interme-
diate switches to close the optical cross-connects or
use them for other connections!.

2. Explicit setup and estimated teardown signaling
schemes.This is similar to explicit teardown, with the
exception that the source notifies the network of the
duration of its burst and the network uses this esti-
mate to close the crossconnects. This way no Release
message is needed.

An explanation of different signaling schemes can be found
in Ref. 7. We define a unified signaling scheme that will
enable both approaches to be used at the discretion of the
caller.

2.1 Connection Phases

Each connection in our OBS network goes through a num-
ber of well-defined phases, as described in Ref. 7. This
paper concentrates on a unicast case. Unicast connections
have all of these phases; however, some of them are col-
lapsed into a single step. For example, for short bursts the
Setup message serves to

1. announce the session to the network~Session Decla-
ration!

2. set up the path of the session~Path Setup!

3. announce the arrival of the burst~Data Transmission!

This way the Setup message combines the three phases,
which are followed by either an explicit or implicit session
Release. Path teardown phase may be explicit~if explicit
teardown with a Release message is used! or implicit ~if
estimated teardown with a Timeout message is used!. These
simple connections lack State Maintenance phase due to
their short-lived nature. This phase is intended for long-
lived bursts that require the ‘‘keep-alive’’ message and
persistent-path connections.

2.2 Persistent Path Connection

In the previous section we alluded to the fact that the Setup
message combines the announcement, path setup, and data
transmission phases. Although this approach works well for
short-lived bursty connections, we can envision the need to
transport a number of bursts over the same path to reduce
jitter. For that purpose, we must separate the path setup
phase from the data transmission phase. This is where so-
called persistent path connections become necessary. In this
type of connection, a path is established for a session,
which may consist of any number of short bursts following
the same path.

Table 1 Signaling protocol functions.

Session declaration Announce the connection to the network

Path setup Configure resources needed to set up an all-optical
path from source to destination

Data transmission Inform intermediate switches burst arrival time and
length

State maintenance Keep up the necessary state information to maintain
the connection

Path teardown Release resources taken up to maintain the lightpath
for the connection

Zaim et al.: Jumpstart just-in-time signalin

g . . .

569Optical Engineering, Vol. 42 No. 2, February 2003

2.3 Unicast Message Flows

The next two subsections present the flow of signaling mes-
sages for unicast connections for both on-the-fly short
bursts and persistent path connections.

2.3.1 On-the-fly unicast signaling flows

We begin by describing the signaling flows for on-the-fly
routed unicast connections. These connections combine the
Session Declaration, Path Setup, and Data Transmission
phases into a single Setup message.

The message flows for short bursts and lightpaths are
presented in Fig. 1. The presence of the Release message at
the end of each connection is dictated by the type of the
connection~explicit versus timed teardown!.

Regardless of the type of the connection, it is initiated
with a Setup message sent by the originator of the burst to
its ingress switch. The ingress switch consults with delay
estimation mechanism based on the destination address and
returns the updated delay information to the originator by
using a Setup Ack message, at the same time acknowledg-
ing the receipt of the Setup message by the network. The
Setup Ack message also informs the originating node which
channel/wavelength to use when sending the data burst.

The originator waits the required balance of time left
based on its knowledge of the round-trip time to the ingress
switch, and then sends the burst on the indicated wave-
length. The Setup message at the same time is traveling
across the network, informing the switches on the path of
the burst arrival. If no blocking occurs on the path, the
Setup message eventually reaches the destination node,
which then receives the incoming burst shortly thereafter.

Upon the receipt of the Setup message, the destination
node may choose to send a Connect message acknowledg-
ing the successful connection~indeed, the receipt of the
Setup by the destination only guarantees that the connec-
tion has been established; it does not guarantee its success-

ful completion, since a connection may be preempted
somewhere along the path by a higher priority connection!.

For long-lived bursts, the Keepalive message maintains
the state of the connection, preventing it from timing out.
Especially for explicit teardown, where a connection is not
closed until a Release message is received, Keepalive mes-
sage is used to notify the aliveness of the source. Other-
wise, in case that the source is dead, if there is no Kee-
palive mechanism, the connection will wait for a Release
forever wasting the limited crossconnect resources. How-
ever, with Keepalive mechanism, if the source does not
send a Keepalive message during a specified time, a time-
out occurs and the connection is closed.

One message type not already mentioned is sent if any
type of failure is detected during setup or maintenance
phase of the connection. This message is called Failure. It
is sent to the originator of the connection and it carries with
it the cause of failure, including blocking, preemption by a
higher-priority connection, lack of route to host, refusal by
destination, etc.

2.3.2 Persistent path unicast signaling flow

The only difference, from the signaling point of view, be-
tween the persistent path versus on-the-fly route unicast
connections is that the Session Declaration and Path Setup
phases are separated from the Data Transmission phase.
While the contents of the Setup, Setup–Ack, Connect, and
Release messages is slightly different for persistent path
connections~they only need to carry information related to
the Data Transmission phase, as opposed to the on-the-fly
routed connections, for which these messages need to carry
information related to the Session Declaration and Path
Setup phases!, their flows remain the same in both types of
connections. However in persistent path connections the
data transmission flows (Setup→Setup–Ack→Connect

→Release) are enveloped by the Session Declaration and

Fig. 1 Supported connection types: (a) short burst and (b) lightpath.

Zaim et al.: Jumpstart just-in-time signalin

g . . .

570 Optical Engineering, Vol. 42 No. 2, February 2003

Session Release flows, which are comprised of Session
Declaration, Declaration Ack, and Session Release. Figure
2 demonstrates these last two flows. For the flows describ-
ing the data transmission phase refer to the previous sec-
tion.

With this type of connection, a Session Declaration mes-
sage travels between the source and the destination first and
sets up a persistent path, which intermediate nodes can re-
fer to by the label contained in the message. What follows
during the data transmission phase is any number of data
transmission flows as described in the previous section.
Once all the Data Transmission phases have been con-
cluded, the originator of the connection will use the Session
Release message to remove the persistent path from the
network. Also, the network may choose to terminate a cer-
tain session. It can achieve this by sending a Session Re-
lease message to the source and the destination.

Note that the optical switching elements of the interme-
diate switches are not permanently configured for the path
between the arrivals of the Session Declaration and the Ses-
sion Release messages. Rather, their state, necessary to
route the data to the destination, is cached when the Session
Declaration message arrives, and is used to reset the con-
figuration of the crossconnect every time a new Setup mes-
sage announces the beginning of the new Data Transmis-
sion phase, guaranteeing that the bursts belonging to this
connection travel on the same optical path.

3 Extended Finite State Model

In this model, each EFSM can be formally represented as a
eight-tuple (S,S,s,V,E,T,A,d), where

S 5 set of messages that can be sent or received

S 5 set of states

s 5 initial state

V 5 set of variables

E 5 set of predicates that operate on variables

T 5 set of timers

A 5 set of actions that operate on variables

d 5 set of state transition functions, where each
state transition function is formally
represented as follows:S* S* E(V)* T
→S* A(V)* S.

There are two types of transitions: spontaneous and
‘‘when’’ transitions. A spontaneous transition does not have
an input event on its condition part. A ‘‘when’’ transition,
on the other hand, includes an input event satisfying theT
condition. A transition is shownS1→S2 . This means there
is a transitionT at stateS1 , and it goes to stateS2 , where
T is an outgoing transition,S1 is the head state, andS2 is
the tail state.

A transition consists of two parts: a condition part and
an action part. The condition part have an input event and a
predicate~Boolean expression!. An action may be an output
event or a statement operating on variables. A transition
executed when an input event is available, and a predicate
is true. Once a transition is triggered, the action part is
executed. An example of an EFSM is shown in Fig. 3. In
the figure, ?Chan.m shows an input message from given
channel carrying the messagem, and !Chan.m shows an
output message to the indicated channel carrying the mes-
sagem. Settimer~T,C! is an action defined to operate on
timers. It sets the timerT to a value specified byC. Timers
create a Timeout messages using timer channels. As seen in
Fig. 3, three transitions are defined in the EFSM. The defi-
nitions for each transition are given below the figure. The
first transition,T1 is a spontaneous transition, and is ex-
ecuted without an input event. On the other hand,T2 and
T3 are when transitions because they are triggered once the
input messages are received.

Protocols among different processes can often be mod-
eled as a collection of communicating finite state machines
where interactions between the processes are modeled by
the exchange of messages.8 EFSMs communicate with each
other by message passing through a number of first-in-first-
out ~FIFO! unidirectional queues~channels!, which associ-
ate with some buffers at the endpoints of the corresponding
EFSMs respectively.

Fig. 2 Persistent path setup.

Fig. 3 Example EFSM model.

Zaim et al.: Jumpstart just-in-time signalin

g . . .

571Optical Engineering, Vol. 42 No. 2, February 2003

4 System Architecture

The relationship between different protocol entities are ex-
plained using the system architecture illustrated in Fig. 4.
As seen in the figure, an upper layer source client starts the
transactions by sending an Open message through the
ChanUpper. JIT Layer Source Client generates a Setup
message as soon as it receives the Open message from the
Upper Layer using the ChanNSDown. The Upper Layer
peer-to-peer connections indicate that the traffic flow from
source node to the destination is called DownStream and
the traffic flow from the destination to the source is called
UpStream. All the messages from the ingress switch to the
source client use the channel named ChanNSUp. ChanSS-
Down represents the channel between the ingress switch
and the intermediate switch and ChanSSUp is the inverse.
From the point of an intermediate switch, the channel be-
tween the intermediate switch and the entity on its down-
stream path is ChanXSDown, and the inverse of it is
ChanXSUp whether it is another intermediate switch or the
destination node. From the point of the destination node,
the channel from the previous intermediate node to itself is
called ChanNSDown and the inverse is ChanNSUp.

Client nodes are implemented by software, therefore
there is no hardware part attached to client nodes. However,
switch entities have both software and hardware parts and
the connection between these two parts are represented by
ChanUpper because the state diagrams related to switch
entities show the behavior of hardware.

5 EFSM-Based Formal Specifications of
Jumpstart JIT Protocol

The Jumpstart JIT protocol can be defined as a set of ex-
tended finite state machines communicating with each other
via message transfer. The protocol consists of unicast and
multicast connections. In this section, we define the state
diagrams of source client, destination client, ingress switch,
and intermediate switch for each type of connection. Note
that for the sake of clarity, each arc in the state diagrams
represents a set of transitions, and the transitions are shown
in separate figures.

5.1 Single Burst Unicast Connection

5.1.1 Source client sending unicast messages

The first state machine is defined for the source client send-
ing unicast messages. The set of messages is

(5$Open,Setup,Failure,Timeout,Setup–Ack,

Connection–Failure,Close,Release,Clear–To–Send,

Connect,Transmission–Complete,Keepalive%. ~1!

Open is generated by the Transport Layer to notify JIT
Layer incoming of a burst. The Setup message is created by
the Source Client’s JIT Layer to set up the resources. Fail-
ure can be generated by any node to notify an error. Time-
out is used for each timer specified within a Timeout mes-
sage. Setup–Ack is used to acknowledge the Source Client
that the Ingress switch could make the crossconnect suc-
cessfully and the burst could be send. Connection–Failure
is used to notify upper layers that there has been an error
during the connection phase. Close is used to end the con-
nection. The Release message is used for explicit teardown.
The Clear–To–Send message is used by the Source Cli-
ent’s JIT layer to notify the Transport Layer that the setup
process is complete and the burst can be send. Connect is
generated by the Destination Client as soon as the Setup is
received if a Connect is requested. Transmission–Complete
notifies the upper layer that the transmission has been com-
pleted successfully. Keepalive is used for long bursts to
maintain the connection until the burst ends.

The set of statesS is

S5$IDLE,WAIT –FOR–SETUP–ACK,

SETUP–PROCEEDING,DATA–TRANSMISSION,

WAIT –FOR–CONNECT%. ~2!

The state machine waits at IDLE state until receiving a
triggering event~Open for this state machine!. Until it gets
an acknowledgment from the ingress, it waits at

Fig. 4 Protocol stack architecture.

Zaim et al.: Jumpstart just-in-time signalin

g . . .

572 Optical Engineering, Vol. 42 No. 2, February 2003

WAIT –FOR–SETUP–ACK. As soon as the Ack comes,
the machine goes to SETUP–PROCEEDING state and
stays there for the duration given in Burst–Time. The
Setup–Timer times out indicating start of the data burst
and the machine moves to DATA–TRANSMISSION.
If the connection will be closed but the Connect has
not been received, then the machine goes to the
WAIT –FOR–CONNECT state and waits until the Connect
comes or Conn–Timer times out.

Initial states is the state IDLE. The set of variables is

V5$SA–Constant,DT,Conn–Constant,Conn–Rcvd,Rel,

Conn,Burst–Time,Burst–Delay,KA–Time%, ~3!

where SA–Constant is used to set timer SA–Timer to an
expected value equal to the duration of round trip time from
source to ingress switch. If the source does not receive the
Ack during that time, it indicates and error and state ma-
chine goes back to IDLE. Note thatDT is the expected
delay variation on Burst–Delay calculated by the ingress
switch according to the time values in Connect message. It
is used to adjust the timing information at the source.
Conn–Constant is used to set the Conn–Timer, which is
explained in the previous paragraph. Conn–Rcvd, Rel, and
Conn, are flag variables indicating request or arrival of
Connect and Release messages. Burst–Delay indicates the
required delay to be waited at the source before sending the
burst. Burst–Time shows the implicit teardown time calcu-
lated to end the burst. KA–Timer is the Keepalive Timer
set up to send Keepalive messages.

The set of timers is

T5$SA–Timer,SETUP–Timer,Conn–Timer,

Burst–Timer,KA–Timer%. ~4!

The set of actions that operate on variables is

A5$Settimer,Update%. ~5!

The state diagram waits in the IDLE state until an Open
message is sent by the upper layer. Once the Open message
is received, the client creates a Setup message with four
variables: Rel, Conn, Burst–Time, and Burst–Delay. Rel is
the flag indicating whether a Release is required or not. If
Rel is TRUE then a Release is required for closing the
connection. The Conn variable is used to indicate
whether a Connect message should be waited for or not. If
Conn is set to TRUE, the protocol goes to the
WAIT –FOR–CONNECT state before closing the connec-
tion. The variable Burst–Time is used to tell the burst
length. If it is not specified explicitly, the protocol should
wait for an explicit Close message. The variable
Burst–Time together with the variable Burst–Delay is used
to set the Burst–Timer. Burst–Delay is updated by the
function called Update at each hop subtracting the process-
ing time from the Burst–Delay. The state diagram and the
state transitions are given in Fig. 5 and 6, respectively.

Once a Setup message is received, we change our state
to WAIT–FOR–SETUP–ACK and during that transition
we also set the timer setup acknowledgment timer
~SA–Timer! to a predetermined value. If we do not receive
an acknowledgment during this time, a timeout is generated
and the state machine goes back to IDLE state generating
a Release message to be sent to the Ingress switch indicat-
ing that we are closing the connection. Other possible trans-
actions while we are at state WAIT–FOR–SETUP–ACK
are receiving a Failure message from the Ingress switch
or a Close message from the Upper Layer. In either
case, we return to IDLE state by generating a
Connection–Failure message to Upper Layer or a Release
message to Ingress switch, respectively. On the other hand,

Fig. 5 State diagram for Source Client (unicast).

Zaim et al.: Jumpstart just-in-time signalin

g . . .

573Optical Engineering, Vol. 42 No. 2, February 2003

if we receive the acknowledgment on time, we go to
SETUP–PROCEEDING state setting the timers connection
timer ~Conn–Timer! and setup timer~Setup–Timer!.

From the SETUP–PROCEEDING state, we can go to
IDLE state by receiving a Close message from the Upper
Layer or a Failure message from the Ingress switch. Other-
wise, we wait until the Setup–Timer times out and go to
DATA –TRANSMISSION state. If we receive a Connect
message meanwhile, we stay at the same state changing the
variable connection received~Conn–Rcvd!, which indi-
cates that the Connect message has been received from the
Ingress switch, to TRUE.

DATA –TRANSMISSION is the most complicated state.
If we receive a Connect message or keepalive timer
~KA –Timer! times out, we stay in the same state triggering
the necessary actions. If we receive a Close, we check the
status of the variables Conn and Conn–Rcvd to decide
whether we will trigger transitionT8 or T9. If Conn is
TRUE and Connect has not been received then we go to the
WAIT –FOR–CONNECT state. Otherwise we go to IDLE
sending a Release message if it is required. Burst timer
timeout also can trigger bothT8 andT9. The decision is
again based on the status of the variables Conn and
Conn–Rcvd. If Conn is TRUE and Connect is not received,

then we have to wait for a Connect message. Therefore, we
go to WAIT–FOR–CONNECT state. Otherwise, we trigger
transition T8. The action set for transitionT8 with
Burst–Timer timeout consists of an if-else statement check-
ing the status of variables Rel, Conn, and Conn–Rcvd to
decide on the action to be taken.

The last state is WAIT–FOR–CONNECT, where we
wait only for a Connect message to arrive before we close
the connection.

The state transitions use four different channels shown
in Fig. 4: ChanUpper, ChanNSUp, ChanNSDown, and
ChanT1. ChanUpper is the channel between the client node
signaling protocol layer and the upper layer. ChanNSUp is
the upstream channel between the client node and the in-
gress switch. That is, the flow is from the ingress switch to
the client node. ChanNSDown is the downstream channel
between the client node and the ingress switch, and the
direction of the flow is from the client to the switch.
ChanT1 is the timer channel used to receive timeout mes-
sages from the indicated timers.

5.1.2 Destination client receiving unicast messages

The second state machine belongs to the destination side.
The role of the destination client is to complete the Setup

Fig. 6 State transitions for Source Client (unicast).

Zaim et al.: Jumpstart just-in-time signalin

g . . .

574 Optical Engineering, Vol. 42 No. 2, February 2003

process and start receiving data until seeing a Release mes-
sage from the peer client, or closing the connection with a
timeout. The destination client does not use the variable Rel
passed by the Setup message, but for the sake of consis-
tency, we use the same Setup message format at each state
machine.

The set of messages is

(5$Open,Setup,Failure,Timeout,Setup–Complete,

Close,Release,Connect,Transmission–Complete,

Keepalive%. ~6!

Setup–Ack is not defined in this machine because the des-
tination client does not receive nor generate an acknowl-
edgment. The set of statesS is

S5$IDLE,SETUP–PROCEEDING,DATA–TRANSMISSION%.

~7!

The destination state machine is simpler than the source
machine because there is not a waiting requirement for an
acknowledgment and a connect from another entity. There-
fore, we can eliminate two states. Initial states is the state
IDLE. The set of variables is

V5$Rel,Conn,Burst–Time,Burst–Delay,KA–Timer%. ~8!

Although variables Rel and Conn are defined in the list of
variables, they are not used. They are left on the list to be
consistent with theSetupmessage structure. The set of tim-
ers is

T5$KA –Timer,Burst–Timer%. ~9!

The set of actions that operate on variables is

A5$Settimer,Update%. ~10!

The state diagram and transitions are shown in Figs. 7 and
8.

State diagram of the destination client waits in IDLE
state until a Setup message comes. Once the Setup message

arrives, the destination client’s JIT Layer sends an Open
message to the Upper Layer. If Upper Layer responds with
a Close, then the destination generates a Failure message
toward the source node. Otherwise, it adjusts its burst de-
lay, sets burst timer~Burst–Timer! and keepalive timer
~KA –Timer! and goes to DATA–TRANSMISSION state.
If Connect is requested by the source, a Connect message is
also created with the new burst delay added in it as a pa-
rameter. This parameter will be used on future estimations.
Once the state machine is in DATA–TRANSMISSION
state, it can either receive Keepalive messages from the
source node indicating that data transmission is continuing,
in which case KA–Timer is reset, or trigger transitionT5
and go to IDLE state back. The actions triggering transac-
tion T5 are a timeout event due to the Burst–Timer or the
KA –Timer, receiving a Release message from the source or
a Close request from the Upper Layer. KA–Timer timeout
event is used to close the connection in cases where an
explicit burst time is not indicated and a Release is not
required. Otherwise, during normal course of data transmis-
sion, as KA–Timer is set to a value greater than keepalive
message intervals, a Keepalive message is expected to reset
KA –Timer before a timeout. In case a Close request comes
from the Upper Layer, the protocol generates a Failure
message, indicating that the connection is forced to be torn
down by the destination.

5.1.3 Ingress switch setting up a unicast connection

This subsection gives the state diagram of an ingress switch
receiving a Setup request from the source client. The role of
the ingress switch receiving a Setup message is in config-
uring itself, finding the appropriate wavelength and port
information for the data channel, and calculate estimated
time for the source to start sending the data. These pro-
cesses are handled in switch hardware and as fast as pos-
sible so that the switch can return an acknowledgment back
to the source client with the necessary information for data
transmission. As soon as the switch makes the necessary
allocations inside the switch, it passes the Setup message to
the next switch. The set of messages used in ingress switch
state diagrams is

Fig. 7 State diagram for Destination Client (unicast).

Zaim et al.: Jumpstart just-in-time signalin

g . . .

575Optical Engineering, Vol. 42 No. 2, February 2003

(5$Setup,Open,Failure,Close,Timeout,

Setup–Ack,Release,Connect,Keepalive%. ~11!

The set of statesS is

S5$IDLE,RUNNING–CHECKS,

DATA –TRANSMISSION,WAIT–FOR–CONNECT%.

~12!

Unlike the source node, we do not need to use two separate
states for WAIT–FOR–SETUP–ACK and
SETUP–PROCEEDING because there is not any other en-
tity sending an Ack message. Therefore, we define only one
state similar to SETUP–PROCEEDING and call it
RUNNING–CHECKS. Initial states is the state IDLE. The
set of variables is

V5$Conn–Rcvd,DT,ErrorCode,Rel,Conn,Burst–Time,

Burst–Delay,KA–Time%. ~13!

We do not use variables SA–Constant and Conn–Constant
in this machine because these are the variables used to set
setup acknowledgment timer and connection timer and they
are used in ingress switch state machine. The set of timers
is

T5$Burst–Timer,Conn–Timer,KA–Timer%. ~14!

The set of actions that operate on variables is

A5$RunChecks,Settimer,Update%. ~15!

A Setup message is sent by the source client. Once the
Setup message is received, the ingress switch runs some
checks, e.g., cyclic redundancy code~CRC!, buffer over-
flow, cross connect error, etc. A RunChecks function is de-
fined in this state machine. This function returns an error
code specified with the variable ErrorCode. If there is an
error, this variable indicates the type of error found and the

state machine returns to IDLE state. If it is NULL, the state
machine goes to the DATA–TRANSMISSION state. The
list of possible errors and the resulting error codes are given
in Table 2.

The Ingress switch does not use Rel variable line desti-
nation client. The state diagram and the state transitions are
given in Figs. 9 and 10. The Ingress switch state machine
waits at the IDLE state and triggered with the arrival of a
Setup message similarly with the two previous state ma-
chines. Once the Setup message comes, the switch hard-
ware sends an Open message to the software layer of the
switch and runs the checks we already mentioned. Al-
though it is not a normally expected behavior, if the switch
hardware receives a Release message from the source im-
mediately after receiving the Setup request, it passes the
Release message to the following switch and sends a Close
message to the Software layer. In case, the hardware passes
the error checks successfully, it sends back a
Setup–Ack(DT) message. Here theDT parameter is used
by the source node to determine the waiting interval be-
tween reception of the Setup–Ack and start of the data
transmission. After sending back the Setup–Ack, it passes
the Setup message to the next switch, updates the burst
delay by subtracting its processing time from the
Burst–Delay variable it receives with Setup message. If the
Burst–Time is specified explicitly in the Setup
message, the switch sets the Burst–Timer. After setting
the connection and keepalive timers, it goes to
DATA –TRANSMISSION state.

Once we are at DATA–TRANSMISSION state, we can
get a burst timer timeout indicating, we reached to the es-
timated teardown time and we close the connection. On the
action part of that transition, we have an if control that is
used for deciding whether or not we must send a Connect
message. If the Conn variable is set during the Setup mes-
sage, indicating the source requires a Connect message
back and the Connect message is received,† the switch

†The variable Conn–Rcvd is TRUE only if a Connect message is received.

Fig. 8 State transitions for Destination Client (unicast).

Zaim et al.: Jumpstart just-in-time signalin

g . . .

576 Optical Engineering, Vol. 42 No. 2, February 2003

sends a Connect message back to the source. On the other
hand, if the burst timer times out, a Connect message is
expected, but the Connect has not been received yet, then
the switch goes to WAIT–FOR–CONNECT state, closing
the connection. In another case where we receive a Release
message from the source, we must check the status of the
variables Conn and Conn–Rcvd. If Conn is TRUE, that is a
Connect message is expected but the Connect has not been
received, then we go to the WAIT–FOR–CONNECT state
again closing the connection and creating the Release mes-
sage. On the other hand, if Conn is FALSE, that is a Con-
nect message is not expected, or Conn is TRUE and a Con-
nect has already been received, then we go to the IDLE
state again by closing the connection and creating the Re-
lease. The two other possible transitions at the
DATA –TRANSMISSION state are receiving a Failure
from the following switch and going to a KA–Timer time-
out. In case of a Failure, we just pass it to the source node.
In case of a timeout, we close the connection informing the
Software Layer.

The state transitions use five different channels: ChanS-
SUp, ChanSSDown, ChanNSUp, ChanNSDown, and
ChanT1. ChanNSUp, ChanNSDown, and ChanT1 have al-
ready been defined. ChanSSUp is the channel between the
ingress switch and the intermediate switch with the flow
from intermediate switch to ingress switch. ChanSSDown
is the same channel with opposite flow direction.

5.1.4 Intermediate switch setting up a unicast
connection

The state diagram of an intermediate switch is similar to the
state diagram of an Ingress switch shown in Fig. 9. The
transition diagrams, on the other hand, are also almost iden-
tical with different communication channels and only one
transition deleted. The transitions for an intermediate
switch are given in Fig. 11. We do not give the set of

Fig. 9 State diagram for Ingress switch (unicast).

Table 2 Error types and codes.

Error Type Error Code Explanation

no–error 0 The check returns without any error

crc–error 1 CRC error

ime–buf–overflow 2 An ingress switch message buffer overflow

eme–buf–overflow 3 An intermediate switch message buffer overflow

sigmess–state 4 A state machine error

sigmess–xcnct 5 A cross connect error

label–lut 6 A label look-up table error

Zaim et al.: Jumpstart just-in-time signalin

g . . .

577Optical Engineering, Vol. 42 No. 2, February 2003

messages, states, etc., as they are all the same with Ingress
switch.

For intermediate switches some channels are defined as
ChanXS because it is not known whether there is a switch
or a node connected to the switch to which the diagrams
belong. Therefore these channels are defined anonymously.
The channels between the intermediate switch and the
switch connected to it are called, as in earlier cases,
ChanSS. The channel to the Software Layer is also Chan-
Upper and the timer channel is again ChanT1.

The only transition different from the Ingress switch is
transition T3. An ingress switch, after completing error
controls successfully sends back to the source a Setup–Ack
both for acknowledgment purposes and to inform the
source about the calculated start time of data burst. On the
other hand, an intermediate switch does not have such a
function because in Jumpstart protocol, there is no ac-
knowledgment process between the entities. The rest of the
state machine is similar to that of the Ingress switch.

5.2 Persistent Unicast Connection

In Sec. 5.1, it is explained that during a persistent connec-
tion, a number of single bursts are placed in a general ses-
sion framework. In other words, as illustrated in Fig. 2, a

persistent path setup process is similar once a session is
setup. That is, in this case, we must open a session first.
Once the session is initialized, the rest is single burst setup
until we close the session sending a Session Release mes-
sage. Therefore, due to the space limitations, we do not
give all the state machines related to persistent connection
but explain only briefly the difference of the state machines
with the Source Client case.

5.2.1 Source client creating persistent unicast
connection

The set of messages is

(5$SessionOpen,SessionDeclaration,Session–Failure,

SessionRelease,SessionClose,Declaration–Ack,

Open,Setup,Failure,Timeout,Setup–Ack,

Connection–Failure,Close,Release,

Clear–To–Send,Connect,

Transmission–Complete,Keepalive%. ~16!

Fig. 10 State transitions for Ingress switch (unicast).

Zaim et al.: Jumpstart just-in-time signalin

g . . .

578 Optical Engineering, Vol. 42 No. 2, February 2003

The set of statesS is

S5$IDLE,WAIT –FOR–DEC–ACK,

WAIT –FOR–SETUP,WAIT–FOR–SETUP–ACK,

SETUP–PROCEEDING,DATA–TRANSMISSION,

WAIT –FOR–CONNECT%. ~17!

Initial states is the state IDLE. The set of variables is

V5$Session–Time,SKA–Time,SA–Constant,DT,

Conn–Constant,Conn–Rcvd,Rel,Conn,

Burst–Time,Burst–Delay,KA–Time%. ~18!

The set of timers is

T5$Session–Timer,SKA–Timer,SA–Timer,

SETUP–Timer,Conn–Timer,Burst–Timer,KA–Timer%.

~19!

The set of actions that operate on variables is

A5$Settimer,Update%. ~20!

In the persistent connection, we place on-the-fly connec-
tion diagrams in a framework that includes session control
message flows. This time, the triggering action is a Session
Declaration, which requires a Declaration Ack from the
destination. Once the session is initialized successfully, the
state diagram becomes almost identical to the on-the-fly
diagrams. The main difference is in the control functions
such as SKA–Timer timeout, which indicates a Session
Keepalive Timer timeout or a Session Release message that
will force the state diagram go to the IDLE state wherever
it was. The state diagram and the state transitions are given
in Fig. 12 and 13, respectively.

As seen in the message set, we added a set of new mes-
sages related to session handling such as SessionOpen, Ses-
sionDeclaration, etc. Compared with on-the-fly source dia-
grams, we added two new states for session initialization.
The other five states are the same, although we changed the
name of the IDLE state in Fig. 5 to WAIT–FOR–SETUP
for the sake of clarity. On the other hand, in this diagram,

Fig. 11 State transitions for an Intermediate switch (unicast).

Zaim et al.: Jumpstart just-in-time signalin

g . . .

579Optical Engineering, Vol. 42 No. 2, February 2003

almost every state has a self-loop due to session Keepalive
Timer. In this case, we can go to a session timeout at any
state once the session is initialized so we needed to add a
self-loop to check that event. The other important change
comes with additional transitions from every state to IDLE
state. In this state machine, it is always possible to close the
session, which will automatically close the connections
also. Therefore, we can go to IDLE state from every state in
case we receive a SessionClose request from the Upper
Layer or a Failure~e.g., session failure! from the Ingress
switch. The last but not the least point we need to mention
is that, during Keepalive timeouts, we generate Keepalive
messages. Although in practice Keepalive message gener-
ated for session continuation and message continuation will
differ, in this machine, we use the same message for both
purposes. The same is true for Failure messages.

5.2.2 Destination client receiving persistent unicast
session declaration

The set of messages is

(5$SessionOpen,SessionDeclaration,Session–Failure,

SessionRelease,SessionClose,

Declaration–Ack,Open,Setup,Failure,

Timeout,Setup–Ack,Connection–Failure,Close,

Release,Clear–To–Send,Connect,

Transmission–Complete,Keepalive%.

The set of statesS is

S5$IDLE,WAIT –FOR–SETUP,SETUP–PROCEEDING,

DATA –TRANSMISSION%. ~22!

Initial states is the state IDLE. The set of variables is

V5$SKA–Time,Rel,Conn,Burst–Time,Burst–Delay,

KA –Time%. ~23!

The set of timers is

T5$SKA–Timer,SA–Timer,Burst–Timer,KA–Timer%.
~24!

The set of actions that operate on variables is

A5$Settimer,Update%. ~25!

The state diagram and the state transitions are given in
Figs. 14 and 15, respectively.

Fig. 12 State diagram for Source Client (persistent unicast).

Zaim et al.: Jumpstart just-in-time signalin

g . . .

580 Optical Engineering, Vol. 42 No. 2, February 2003

Fig. 13 State transitions for Source Client (persistent unicast).

Fig. 14 State diagram for Destination Client (persistent unicast).

Zaim et al.: Jumpstart just-in-time signalin

g . . .

581Optical Engineering, Vol. 42 No. 2, February 2003

Fig. 15 State transitions for Destination Client (persistent unicast).

Fig. 16 State diagram for Ingress switch (persistent unicast).

Zaim et al.: Jumpstart just-in-time signalin

g . . .

582 Optical Engineering, Vol. 42 No. 2, February 2003

5.2.3 Ingress switch setting up a persistent unicast
connection

This subsection gives the state diagram of an Ingress switch
receiving a SESSIONDECLARATION message from the
source client, and configuring itself, and passing the mes-
sage to the next switch. The set of messages is

(5$SessionDeclaration,SessionOpen,SessionClose,

SessionRelease,Declaration–Ack,Open,Setup,

Setup–Ack,Failure,Close,Timeout,Release,

Connect,Keepalive%. ~26!

The set of statesS is

S5$IDLE,CHECKS–FOR–SESSION,

WAIT –FOR–SETUP,RUNNING–CHECKS,

DATA –TRANSMISSION,WAIT–FOR–CONNECT%.

~27!

Initial states is the state IDLE. The set of variables is

V5$Conn–Rcvd,DT,ErrorCode,Rel,Conn,Burst–Time,

Burst–Delay,KA–Time,SKA,Time%. ~28!

The set of timers is:

T5$Burst–Timer,Conn–Timer,KA,Timer,SKA–Timer%.
~29!

The set of actions that operate on variables is

A5$RunChecks,Settimer,Update%. ~30!

The state diagram and the state transitions are given in
Figs. 16 and 17, respectively.

Fig. 17 State transitions for Ingress switch (persistent unicast).

Zaim et al.: Jumpstart just-in-time signalin

g . . .

583Optical Engineering, Vol. 42 No. 2, February 2003

From the point of a persistent connection setup, an In-
termediate switch is exactly similar to an Ingress switch,
except for the channel names and the difference in handling
SETUP requests, which was explained in Sec. 5.1.4. There-
fore, it is not explained separately for the persistent call
case.

6 Conclusions

We presented a formal description of the Jumpstart JIT sig-
naling protocol for unicast traffic. As mentioned in Ref. 7,
although JIT signaling supports four different connection
setup schemes, Jumpstart covers only two of them since
they require the simplest schedulers. On the other hand,
while predictive reservation schemes may have a potential
positive effect on the overall blocking probability of the
network, the switch hardware becomes significantly more
complex.

We defined two different unicast traffic flows: single-
burst unicast and persistent unicast. In the single-burst uni-
cast connection, we set a connection only for sending one
burst and then close the connection. On the persistent case,
the connection is setup once for the duration of a session
and a number of bursts use the same connection until the
session is closed. The state diagrams and transitions for
both traffic flows are given in this paper. Protocol testing
based on these EFSMs are also defined as another study.
For testing, we define reachability trees based on the EF-
SMs and generate possible input and output sequences.
Then using reduction techniques, we obtain the unique
input-output~UIO! sequences as mentioned in Refs. 14 and
15. Future work includes the definition of multicast traffic,
which is part of the Jumpstart JIT protocol specifications.

Acknowledgments

This research effort is being supported through a contract
with ITIC ~Intelligence Technology Innovation Center!.

References

1. P. W. King, ‘‘Formalization of protocol engineering concepts,’’IEEE
Trans. Comput.40~4!, April, 1991 ~!.

2. H. Hansson, B. Jonsson, F. Orava, and B. Pehrson, ‘‘Formal design of
communication protocols,’’ ISS’90~1990!.

3. K. Nail and B. Sarikaya, ‘‘Testing communication protocols,’’ IEEE
Software~1992!.

4. G. J. Holzmann, ‘‘Protocol Design: Redefining the State of the Art,’’
IEEE Software~1992!.

5. K. J. Turner, ‘‘The use of formal methods in communications stan-
dards.’’

6. E. Gunawan, T. P. Tong, and S. Nansi,Survey of Formal Description
Techniques (FDTs) For Protocol Converter Design, pp. 422–425,
IEEE Tencon, Beijing~1993!.

7. I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson, ‘‘Jump-
start: a just-in-time signaling architecture for WDM burst-switched
networks,’’ IEEE Commun. Mag.40~2!, 82–89~2002!.

8. H. Bowman, G. S. Blair, L. Blair, and A. G. Chetwynd, ‘‘Formal
description of distributed multimedia systems: an assessment of po-
tential techniques,’’Comput. Commun.~Dec. 1995!.

9. J. Y. Wei and R. I. McFarland, ‘‘Just-in-time signaling for WDM
optical burst switching networks,’’J. Lightwave Technol.18~12!,
2019–2037~2000!.

10. M. Yoo, C. Qiao, and S. Dixit, ‘‘QoS performance of optical burst
switching in IP-over-WDM networks,’’IEEE J. Sel. Areas Commun.
18~10!, 2062–2071~2000!.

11. J. S. Turner, ‘‘Terabit burst switching,’’J. High-Speed Net.8~1!, 3–16
~1999!.

12. C. Qiao and M. Yoo, ‘‘Optical burst switching~OBS!—a new para-
digm for an optical internet,’’J. High-Speed Net.8~1!, 69–84~1999!.

13. M. Yoo and C. Qiao, ‘‘Just-enough-time~JET!: a high speed protocol
for bursty traffic in optical networks,’’ inProc. IEEE/LEOS Tech.
Global Info. Infra. pp. 26–27~1997!.

14. R. Lai, ‘‘A survey of communication protocol testing,’’J. Syst. Soft-
ware ~2001!.

15. D. P. Sidhu and T.-K. Leung, ‘‘Formal methods for protocol testing: a
detailed study,’’IEEE Trans. Software Eng.15~4!, 413–426~1989!.

Abdul Halim Zaim received his BSc degree (with honor) in com-
puter science and engineering from Yildiz Technical University,
Istanbul, Turkey, in 1993, his MSc degree in computer engineering
from Bogazici University, Istanbul, Turkey, in 1996, and his PhD
degree in electrical and computer engineering from North Carolina
State University, Raleigh, in 2001. As a teaching assistant and lec-
turer, he taught several courses at Istanbul and Yeditepe Universi-
ties between 1993 and 1997. In 1998 to 1999, he was with Alcatel,
Raleigh, North Carolina. He is currently a postdoctoral research as-
sociate at North Carolina State University (NCSU) (working at
MCNC under contract with NCSU) and an adjunct professor at
NCSU. His research interests include computer performance evalu-
ation, satellite and high-speed networks, network protocols, optical
networks, and computer network design.

Ilia Baldine attended Moscow State University, Moscow, Russia,
and received his BS degree in 1993 in computer science from the
Illinois Institute of Technology and his MS degree in 1995 and his
PhD degree in 1998 in computer science from North Carolina State
University. He joined the Advanced Network Research Group at
MCNC in 1998 and has been an active participant in JiNao, Celes-
tial, Helios, and Jumpstart projects. Dr. Baldine has published a nu-
merous papers on network security, all-optical networks, and other
related topics.

Mark Cassada received his BS and MS degrees from North Caro-
lina Statue University. His studies included antenna theory, elec-
tronic circuits, switched power supplies, and field programmable
gate array (FPGA) design. He has worked in the telecommunica-
tions field for over 8 years. Throughout the course of his work he
has focused on FPGA analog and digital board designs. Currently,
he is a network hardware engineer/team leader for the Advanced
Networking Research Group at MCNC.

George N. Rouskas is a professor of computer science at North
Carolina State University. He received his Diploma in computer en-
gineering from the National Technical University of Athens (NTUA),
Greece, in 1989, and his MS and PhD degrees in computer science
from the College of Computing, Georgia Institute of Technology, At-
lanta, in 1991 and 1994, respectively. He received a 1997 National
Science Foundation (NSF) Faculty Early Career Development (CA-
REER) Award, and coauthored a paper that received the Best Paper
Award at the 1998 SPIE conference on all-optical networking. He
also received the 1995 Outstanding New Teacher Award from the
Department of Computer Science, North Carolina State University,
and the 1994 Graduate Research Assistant Award from the College
of Computing, Georgia Tech. During the 2000 and 2001 academic
year he spent a sabbatical term at Vitesse Semiconductor, Morris-
ville, North Carolina, and in May and June 2000 he was an invited
professor at the University of Evry, France. He was a coguest editor
for the IEEE Journal on Selected Areas in Communications, Special
Issue on Protocols and Architectures for Next Generation Optical
WDM Networks, published in October 2000, and is on the editorial
boards of the IEEE/ACM Transactions on Networking, Computer
Networks, and Optical Networks. He is a senior member of the
IEEE, and a member of the ACM and the Technical Chamber of
Greece.

Harry G. Perros is a professor of computer science, an Alumni Dis-
tinguished Graduate Professor, and program coordinator of the
master of science degree in computer networks at North Carolina
State University. He received his BSc degree in mathematics in
1970 from Athens University, Greece, his MSc degree in operational
research with computing from Leeds University, England, in 1971,
and his PhD degree in operations research from Trinity College
Dublin, Ireland, in 1975. He has held visiting faculty positions at
INRIA, Rocquencourt, France in 1979, NORTEL, Research Triangle

Zaim et al.: Jumpstart just-in-time signalin

g . . .

584 Optical Engineering, Vol. 42 No. 2, February 2003

Park, North Carolina in 1988 and 1989 and 1995 and 1996, and the
University of Paris 6, France, in 1995 and 1996, 2000, and 2002. He
has published extensively in the area of performance modeling of
computer and communication systems and has organized several
national and international conferences. In 1994 he published the
monograph Queueing Networks with Blocking: Exact and Approxi-
mate Solutions (Oxford Press) and in 2001 the textbook An Intro-
duction to ATM networks (Wiley). He chairs the International Fed-
eration for Information Processing (IFIP) Working Group 6.3 on the
Performance of Communication Systems, is a member of IFIP

Working Groups 7.3 and 6.2, and is senior member of the IEEE. His
current research interests are in the areas of optical networks and
satellites.

Daniel Stevenson received his MS degree in physics from the Uni-
versity of North Carolina and has worked in various commercial
R&D organizations including Bell Labs, GTE, and Nortel Networks.
He currently directs Advanced Network Research at MCNC, where
he pursues interest in optical networking.

Zaim et al.: Jumpstart just-in-time signalin

g . . .

585Optical Engineering, Vol. 42 No. 2, February 2003

