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Abstract. We present an approximate analytical method to compute
efficiently the call blocking probabilities in wavelength routing networks
with multiple classes of calls. The model is fairly general and allows each
source-destination pair to serve calls of different classes, with each call
occupying one wavelength per link. Our approach involves two steps. The
arrival process of calls on some routes is first modified slightly to obtain
an approximate multi-class network model. Next, all classes of calls on a
particular route are aggregated to give an equivalent single-class model.
Thus, path decomposition algorithms for single-class networks may be
extended to the multi-class case. Our work is a first step towards un-
derstanding the issues arising in wavelength routing networks that serve
multiple classes of customers.

1 Introduction

A basic property of single mode optical fiber is its enormous low-loss bandwidth
of several tens of Terahertz. However, due to dispersive effects and limitations in
optical device technology, single channel transmission is limited to only a small
fraction of the fiber capacity. To take full advantage of the potential of fiber,
the use of wavelength division multiplexing (WDM) techniques has become the
option of choice, and WDM networks have been a subject of research both theo-
retically and experimentally [1]. Optical networks have the potential of delivering
an aggregate throughput in the order of Terabits per second, and they appear
as a viable approach to satisfying the ever-growing demand for more bandwidth
per user on a sustained, long-term basis.

The wavelength routing mesh architecture appears promising for Wide Area
Networks (WAN). The architecture consists of wavelength routers interconnected
by fiber links. A wavelength router is capable of switching a light signal at a given
wavelength from any input port to any output port. A router may also be ca-
pable of enforcing a shift in wavelength [2], in which case a light signal may
emerge from the switch at a different wavelength than the one it arrived. By
appropriately configuring the routers, all-optical paths (lightpaths) may be es-
tablished in the network. Lightpaths represent direct optical connections without
any intermediate electronics. Because of the long propagation delays, and the
time required to configure the routers, wavelength routing WANs are expected
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to operate in circuit-switched mode. This architecture is attractive for two rea-
sons: the same wavelength can be used simultaneously at different parts of the
network, and the signal power is channeled to the receiver and is not spread to
the entire network. Hence, wavelength routing WANs can be highly scalable.

Given the installed base of fiber and the maturing of optical component
technology, it appears that current network technologies are transitory, and will
eventually evolve to an all-optical, largely passive infrastructure. A feasible sce-
nario for near-term large-scale all-optical networks has emerged in [1], and it is
envisioned that wavelength routing WANs will act as the backbone that provides
interconnection for local area photonic sub-networks attached to them. The con-
tribution of our work is the development of an approximate analytical framework
for evaluating the performance of multi-class wavelength routing networks.

The problem of computing call blocking probabilities under static routing
with random wavelength allocation and with or without converters has been
studied in [3J4I5I6/7/8]. The model in [3] is based on the assumption that wave-
length use on each link is characterized by a fixed probability, independently of
other wavelengths and links, and thus, it does not capture the dynamic nature
of traffic. In [E] it was assumed that statistics of link loads are mutually inde-
pendent, an approximation that is not accurate for sparse network topologies.
The work in [5] developed a Markov chain with state-dependent arrival rates to
model call blocking in arbitrary mesh topologies and fixed routing; it was ex-
tended in [6] to alternate routing. A more tractable model was presented in [7]
to recursively compute blocking probabilities assuming that the load on link ¢
of a path depends only on the load of link 4 — 1. Finally, a study of call blocking
under non-Poisson input traffic was presented in [8], under the assumption that
link loads are statistically independent.

Other wavelength allocation schemes, as well as dynamic routing are harder
to analyze. First-fit wavelength allocation was studied using simulation in [4],
and it was shown to perform better than random allocation, while an analytical
overflow model for first-fit allocation was developed in [9]. A dynamic routing
algorithm that selects the least loaded path-wavelength pair was also studied
in [9], and in [I0] an unconstrained dynamic routing scheme with a number of
wavelength allocation policies was evaluated. Except in [d[T1], all other studies
assume that either all or none of the wavelength routers have wavelength con-
version capabilities. The work in [7] takes a probabilistic approach in modeling
wavelength conversion by introducing the converter density, which represents the
probability that a node is capable of conversion independently of other nodes
in the network. A dynamic programming algorithm to determine the location of
converters on a single path that minimizes average or maximum blocking prob-
ability was developed in [I1] under the assumption of independent link loads.

Most of the approximate analytical techniques developed for computing block-
ing probabilities in wavelength routing networks [ABJ6/8IITOITT] amount to the
well-known link decomposition approach [I2], while the development of some
techniques is based on the additional assumption that link loads are also inde-
pendent. Link decomposition has been extensively used in conventional circuit-
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switched networks where there is no requirement for the same wavelength to
be used on successive links of the path taken by a call. The accuracy of these
underlying approximations also depends on the traffic load, the network topol-
ogy, and the routing and wavelength allocation schemes employed. While link
decomposition techniques make it possible to study the qualitative behavior of
wavelength routing networks, more accurate analytical tools are needed to eval-
uate the performance of these networks efficiently, as well as to tackle complex
network design problems, such as selecting the nodes where to employ converters.

We have developed an iterative path decomposition algorithm [I3] for ana-
lyzing arbitrary network topologies. Specifically, we analyze a given network by
decomposing it into a number of path sub-systems. These sub-systems are an-
alyzed in isolation using our approximation algorithm for computing blocking
probabilities in a single path of a network [14]. The individual solutions are ap-
propriately combined to form a solution for the overall network, and the process
repeats until the blocking probabilities converge. Our approach accounts for the
correlation of both link loads and link blocking events, giving accurate results
for a wide range of loads and network topologies where only a fixed but arbitrary
subset of nodes are capable of wavelength conversion. Therefore, our algorithm
can be an important tool in the development and evaluation of converter place-
ment strategies. Also, in [I5] we studied the first-fit and most-used wavelength
allocation policies, and we showed that they have almost identical performance
in terms of blocking probability for all calls in the network. We also demon-
strated that the blocking probabilities under the random wavelength allocation
policy with no converters and with converters at all nodes provide upper and
lower bounds for the values of the blocking probabilities under the first-fit and
most-used policies.

All previous studies of call blocking probabilities have considered single-class
wavelength routing networks. However, future networks will be utilized by a wide
range of applications with varying characteristics in terms of their arrival rates
and call holding times. In this paper, we present a method to extend the results
in [14] and [13] to multi-class optical networks. To the best of our knowledge,
this is the first time that multi-class wavelength routing networks are analyzed.

The development of our approximate techniques involves two steps. The ar-
rival process of calls on some routes is first modified slightly to obtain a modified
multi-class network model. Next, all classes of calls on a particular route are
aggregated to give an equivalent single-class model. This equivalent model has
the same call blocking probability on any given route as the modified multi-class
network, and can be solved using our previous algorithms.

In Section [2, we describe the network under study. In Section [, we explain
how the modified multi-class model and the equivalent single-class model are
obtained for a single path of a network. In Section [, we describe a decomposi-
tion algorithm for mesh networks. Section [ presents numerical results, and we
conclude the paper in Section [G]
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Fig. 1. A k-hop path

2 The Multi-class Wavelength Routing Network

We consider a wavelength routing network with an arbitrary topology. Each
link in the network supports exactly W wavelengths, and each node is capable
of transmitting and receiving on any of these W wavelengths. Call requests
between a source and a destination node arrive at the source according to a
Poisson process with a rate that depends on the source-destination pair. If the
request can be satisfied, an optical circuit is established between the source and
destination for the duration of the call. Further, calls between any two nodes
may be of several classes. Without any loss of generality, we may assume that
there are R classes of calls. Call holding times are assumed to be exponentially
distributed, with a mean that depends on the class of the call.

In our model, we allow some of the nodes in the network to employ wave-
length converters. These nodes can switch an incoming wavelength to an arbi-
trary outgoing wavelength. (When there are converters at all nodes, the situation
is identical to that in classical circuit-switching networks, a special case of the
more general scenario discussed here.) If no wavelength converters are employed
in the path between the source and the destination, a call can only be established
if the same wavelength is free on all the links used by the call. If there exists no
such wavelength, the call is blocked. This is known as the wavelength continuity
requirement (see [13/T4]), and it increases the probability of call blocking. On
the other hand, if a call can be accommodated, it is randomly assigned one of
the wavelengths that are available on the links used by the call . Thus, we only
consider the random wavelength assignment policy in this paper.

Since many of our results are developed in terms of a single path in a wave-
length routing network, we introduce some relevant notation. A k-hop path (see
Figure [[) consists of k£ + 1 nodes. Nodes (i — 1) and i, 1 < ¢ < k, are said to
be connected by link (hop) 4. Calls originating at node i — 1 and terminating at
node j use hops ¢ through j,j > ¢ > 1, which we shall denote by the pair (4, j).
Calls between these two nodes may belong to one of R classes, and these calls
are said to use route (i,7). We also define the following parameters.

- Az(-;),j > 4,1 < r < R, is the Poisson arrival rate of calls of class r that
originate at node (i — 1) and terminate at node j.

! In a path with wavelength converters, a wavelength is randomly assigned within each
segment of the path whose starting and ending nodes are equipped with converters.
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-1/ ,ul(;) is the mean of the exponentially distributed service time of calls of

class r that originate at node (i — 1) and terminate at node j. We also let

P =A%)ty

- Ni(jr)(t) is the number of active calls at time ¢ on segment (i, j) belonging to
class r.

— F;;(t) is the number of wavelengths that are free on all hops of segment (4, 5)
at time t. A call that arrives at time ¢ and uses route (i, ) is blocked if

Fij(t) = 0.

3 Blocking Probabilities in a Single Path of a Network

3.1 The Single-Class Case

In this section we briefly review some of our previous results for a path of a single-
class wavelength routing network. Consider the k-hop path shown in Figure [l
Let the state of this system at time ¢ be described by the k2-dimensional process:

X, (8) = (Nu(t), Na(t), -+, New(8), Frz(t), -+, Fi(t), Foa(t), -+, F1ye(t)) - (1)

A closer examination of the process X (t) reveals that it is not time-reversible
(see [14]). This result is true in general, when k > 2 and W > 2.

Since the number of states of process X (t) grows very fast with the number k
of hops in the path and the number W of wavelengths, it is not possible to obtain
the call blocking probabilities directly from the above process. Consequently, an
approximate model was constructed in [I4] to analyze a single-class, k-hop path
of a wavelength routing network. The approximation consists of modifying the
call arrival process to obtain a time-reversible Markov process that has a closed-
form solution. To illustrate our approach, let us consider the Markov process
corresponding to a 2-hop path:

Xo(t) = (N11(t), Ni2(t), Naz(t), F12(1)) (2)

We now modify the arrival process of calls that use both hops (a Poisson process
with rate A1z in the exact model) to a state-dependent Poisson process with rate
Aq2 given by:
Ji2(W —ni2)
T hihe ©
11/12

The arrival process of other calls remain as in the original model. As a result,
we obtain a new Markov process X5(¢) with the same state space and the same
state transitions as process X,(t), but which differs from the latter in some of
the state transition rates.

We made the observation in [I4] that under the new arrival process (B]) for
calls using both hops, the Markov process X5(t) is time-reversible and the sta-
tionary vector 7 is given by:

fi1 nii
gt g s A2 ) \Womemmm = fie)
X
G2(W) ni1! nia! nao! < W —ni2 )

Aqg (n117n12yn227 f12) = A2

m (n11, n12, n22, fi2) =

W — ni2 — N22
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where G, (W) is the normalizing constant for a k-hop path with W wavelengths.
Let P(n11,n12,n922) be the marginal distribution over the states for which
Nij(t) = ngj, 1 <@ < j < 2.1t can be verified [14] that
L pitt pia’ pas
GQ( ) n11! ’I’L12! n22!

P(ni1,n12,n22) = (5)
Likewise, for a k-hop path, k& > 2, with the modified state-dependent Poisson
arrival process, the marginal distribution over the states for which V;;(t) = n;;,
1 <v <5<k, is given by:

1 Pi
P(ni1,nig, -, ngk) = Go(W) H ng' (6)
{(,5)1<i<j<k}

It is easily seen that this distribution is the same as in the case of a network
with wavelength converters at each node. An interesting feature of having wave-
length converters at every node is that the network has a product-form solution
even when there are multiple classes of calls on each route, as long as call ar-
rivals are Poisson, and holding times are exponential [16/12]. Further, when calls
of all classes occupy the same number of wavelengths, we can aggregate classes
to get an equivalent single class model with the same steady-state probability
distribution over the aggregated states, as we show next.

3.2 The Multi-class Case

Let us now consider a k-hop path with wavelength converters at all nodes, and

with R classes of calls. If )\Z;), 1<i<j5<k 1<r <R,is the arrival rate

of calls of class r on route (4,7), and 1/u§;), 1<i<j<k 1<r<R,isthe
mean of the exponential holding time of calls of class r, the probability of being

in state n = (ngll), n§21)7 . nglf), ”52)» SRR ,n,(:,:)) is given by:

R R | (R . ™
= Gy(W)

{(G4)I1<i<j<k} r=1 iJ

Let 05 = >, pl(-;) and s;; = >, ng) As defined, s;; is the total number
of calls of all classes that use segment (7,7) of the path, and o;; is the total
offered load of these calls. Taking the summation of (@) over all states such that

Do "5;) = 545, 1 <1 < j < r, we obtain:

) - B 1 O
P (8117812»"',5%) = Z P(ﬁ) - Gk(W) N H ' Sij! (8)
{nl 32, n =515} teahsisisky

Observe that this is identical to the solution () for the single-class case obtained
by substituting o;; by p;; and s;; by n;; in (§).
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Based on the above results, we conclude that by employing class aggregation
on a multi-class path with converters at all nodes, we obtain a system equivalent
to a single-class path with converters. In Section B.1], we showed that the modified
single-class wavelength routing network without converters has a steady-state
marginal distribution similar to the exact single-class network with converters.
We now show that a modified multi-class network without wavelength converters
can also be subjected to class aggregation that results in an equivalent single-
class model. The modification applied to the arrival process of calls is similar to
the single-class case, and it is given by:

o 1 (S, ) (S ) (i mom o) (g
J

A (z)=A! »
i @=A; FisFit1yG+1)T55

Then, the probability that the equivalent single-class network without con-

verters is in state Sy = (s11,812,° ", S1ks S22, Sk f12, f13, -5 S—1)k) I8
given by:

7 (Sz) =
F1a—1) -1 Im—1)~f(m-1)1-1) Jutru—Ffu—1ya-1)
| k Hm=2
H Sije H fll Fmt=f(m—1)1 fu—fa—in
0_3” fli+n
i,j 1 1=2 ( u ”)
fu

(10)
Once again, the parameters of the single-class model are given by:
R R
sy=y.ny) 1<i<j<k, o= ) 1<i<j<k (11)
r=1 r=1

3.3 Blocking Probabilities in the Multi-class Case

Since the arrival rate of calls of each class on each route is Poisson, the blocking

probability, QZ(;), of a call of class r using route (i, j) is just the fraction of time
that there are no wavelengths that are free on all hops along route (i, j) (see the

PASTA theorem in [I7]). Thus, we have:

17 if Fij(T) =0

(r) _ 12 ftT:oI{Fij(t):o}dt
Qij = 0, otherwise

T—00 T

(12)

,  Where I{Fi]‘(T):O} = {

As can be seen, the blocking probability is class-independent.
Next, we focus on the call blocking probabilities in the modified model. The
arrival process of calls of class r on route (i,j) is a state-dependent Poisson

process whose rate at time 7, Al(-;) (1) is a function of the state X (7) of the
process, and is given by:

i—1 [k
Fii (1) 1= (ZH Nig(T) + Fkk(T))
FiiFit1,ip1 - Fjj

AD(DAD (X (1)) = Ny

i (13)
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Note that the modified arrival process satisfies the criterion:

g 2 T 1<ry,re<r (14)

By applying the PASTA theorem conditioned on being in state z, the conditional
call blocking probability, 771(; ) (z), of calls of class  on route (i, j) is given by the
fraction of time spent in state z in which there are no wavelengths that are free
on all hops of route (7, ). Therefore:

(r) T
Pij (z) = lim

it (15)
oo [l Iix =y dt

o Ipy=0.x0=xydt _ {1, if fi; =0
0, otherwise

Let Pi(f) be the unconditional probability that a call of class r, on route (i, j)

gets blocked in the modified multi-class model. This is given by:

s Da A5 @r@P @) Epyy,m0) AT @)7()
g (r) o (r)
> iy (2)m(z) > iy (2)m(2)
and can also be seen to be independent of the class r. Thus, by computing

the blocking probability on the equivalent single-class path, we can obtain the
solution to the multi-class path.

(16)

4 Blocking Probabilities in Mesh Topologies

The solution to single-class networks with wavelength converters at an arbitrary
subset of nodes has been presented in [14/13]. This solution involves decom-
position of the network into short path segments with two or three hops, and
analyzing these approximately using expression (). The solutions to individual
segments are appropriately combined to obtain a value for the blocking proba-
bility of calls that traverse more than one segment. The effect of the wavelength
continuity requirement is captured by an approximate continuity factor that is
used to increase the blocking probability of calls continuing to the next segment
to account for the possible lack of common free wavelengths in the two segments.
The process repeats until the blocking probabilities converge. By applying the
transformations in (1), the same algorithms may be used to calculate block-
ing probabilities for multi-class networks. Specifically, we use these steps for a
network with R classes of calls:

1. Path decomposition: Decompose the multi-class mesh network topology
into L single-path sub-systems using the algorithm in [T3].

2. Time-reversible process approximation: For each single-path sub-sys-
tem, modify the arrival process as given by expression (@) to obtain an
approximate time-reversible Markov process for the path.
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3. Class aggregation: For each sub-system, apply the transformations in ()
to obtain an equivalent single-class path sub-system.

4. Calculation of blocking probabilities: For each path sub-system, ob-
tain the blocking probabilities as follows. If the path is at most three hops
long, use expressions (I6) and (1) directly. If the path sub-system is longer
than three hops, analyze it by decomposing it into 2- or 3-hop paths which
are solved in isolation, and combine the individual solutions to obtain the
blocking probabilities along the original longer path (see [14]).

5. Convergence: Repeat Steps 2 to 4, after appropriately modifying the origi-
nal arrival rates to each single-path sub-system to account for the new values
of the blocking probabilities obtained in Step 4 (see [13]), until the blocking
probabilities converge within a certain tolerance.

5 Numerical Results

In this section, we validate the approximate method described in Section [ by
comparing the blocking probabilities for each route as obtained from the approx-
imate method with those obtained through simulation of the exact model.

We first provide results for 3-hop paths which are the basic blocks of our de-
composition algorithm (results for 2-hop paths can be found in [I8]). In Table [l
we show the arrival and service rates for calls on each route (4,j),1 < j < 3, of a
3-hop path. There are R = 3 classes of calls for each route. In Figure 2] we plot
the blocking probability against the number W of wavelengths for three (out of
the six) types of calls in this path: calls using Route (1,1), i.e., the first hop of
the path, calls on Route (2,3), that is, those using the last two hops, and calls
on Route (1,3) using all three hops of the path. As we can see, the blocking
probability decreases as W increases, as expected. We also observe that calls on
Route (1,3) (i.e., calls using all three hops of the path) experience the highest
blocking probability, again as expected. Most importantly, however, we can see
that there is good agreement between the values of the blocking probabilities ob-
tained through our analytical technique and those obtained through simulation.
Similar results have been obtained for different values for the arrival and service
parameters and for different number of classes, indicating that our approximate
method is accurate over a wide range of network characteristics.

Next, we consider a network with topology similar to the NSF network,
shown in Figure[3. There are 16 nodes, and 240 uni-directional routes. There
are three classes of calls on each route. The arrival and service rates of calls of
a particular class are the same on each route, and are shown in Table Bl The
blocking probabilities are plotted in Figure Bl for four routes, as a function of the
number of wavelengths on each link. Route A is a single-hop route from nodes
1 to 5. Route B has two hops, connecting node 1 to node 3 via node 2. Route C
has three hops, connecting node 1 to node 4 via nodes 2 and 3. Route D has
four hops, connecting node 4 to node 5 via nodes 3, 2 and 1.

From Figure[d we can see that the length of the path used by a call consider-
ably affects the blocking probability experienced by the call, an observation that
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Table 1. Arrival and service parameters for a 3-hop path

Class 1|{Class 2|Class 3
)\[ n /\[ m )\[ n
3.0/3.0(1.0|3.0]1.0{ 3.0
1.0/6.0(2.0/6.0|1.0/6.0
1.0/2.0(1.0{2.0(2.0| 2.0
1.0/3.0|1.0{3.0{2.0|3.0
1.0/2.0|1.0{2.0(3.0|2.0
3.0/6.0(1.0/6.0/1.0/6.0
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Fig. 2. Blocking probabilities for a 3-hop path and the parameters shown in Table[]

is consistent with all our previous results in this section. Specifically, for a given
number W of wavelengths, the blocking probability increases with the number
of hops in a route, such that calls on Route A (a single-hop path) have the
lowest blocking probability while calls on Route D (a four-hop path) the high-
est. Further, the results indicate that our approximation method can be used to
estimate accurately the blocking probabilities for all calls in the network.
Results similar to the ones presented in Figures BJ4 have been obtained for
a wide range of traffic loads and different classes of calls, and for other net-
work topologies (see [18]). Our main conclusion is that our approximate ana-
lytical technique can be applied to compute the call blocking probabilities in
wavelength routing networks of realistic size and topology. The approximate
technique affords a significant reduction in the time for computation of blocking
probabilities. For instance, the simulation program took approximately 100 min-
utes while running on a Sun-sparc Ultra 10 workstation, to compute call blocking
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Table 2. Arrival and service parameters for the NSF Network

Call Blocking Probability

l ‘Class l‘Class Z‘Class 3‘

N 01 | 02 | 0.15
ul 30 | 60 | 40

Fig. 3. The NSF network
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35 4

Fig. 4. Blocking probabilities for the NSF network
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probabilities for the network with topology similar to the NSF network. The ap-
proximation method took less than a minute for the same network. In addition,
the simulation program runs until there are at least 100000 call arrivals of every
class. For call blocking probabilities less than 10~4, the simulation program must
consider greater than 10° call arrivals of each class, resulting in an even longer
computation time.

6 Concluding Remarks

We have considered the problem of computing call blocking probabilities in
multi-class wavelength routing networks which employ the random wavelength
allocation policy. Our approach consists of modifying the call arrival process
to obtain an approximate multi-class network model, using class aggregation to
map this to an equivalent single-class network, and employing path decomposi-
tion algorithms on the latter to determine the call blocking probabilities.
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