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Abstract—WDM rings are now capable of supporting more
than 100 wavelengths over a single fiber. Conventional link and
path formulations for the RWA problem are inefficient due to the
inherent symmetry in wavelength assignment and the fact that
the problem size increases fast with the number of wavelengths.
Although a formulation based on maximal independent sets
(MIS) does not have these drawbacks, it suffers from the
exponential growth in the number of variables with the increasing
network size. We develop a new ILP formulation based on the
idea of partitioning the path set and representing the maximal
independent sets in the original network using the independent
sets calculated in each of these partitions. This formulation trades
off the number of variables with the number of constraints
and, as a result, achieves a much better scalability in termsof
network dimension. The proposed approach is compared with
existing formulations on ring networks of various sizes andit
is demonstrated that the new formulation achieves more than
two orders of magnitude decrease in running time, making it
possible to (1) solve optimally large network instances forany
number of wavelengths, which cannot be solved with classical
formulations, and (2) perform extensive “what-if” analysis to
evaluate the sensitivity of the optimal solutions to uncertainties
in forecast traffic scenarios.

I. I NTRODUCTION

Wavelength division multiplexing (WDM) enables optical
networks to divide the enormous bandwidth of an optical
fiber into non-overlapping wavelength channels, which can
be operated in parallel. Hence, wavelength routed optical
networking has been considered as a promising approach for
the realization of next generation large bandwidth networks.

In wavelength routed WDM networks, traffic is carried
over optical paths (lightpaths) between source and destination
nodes. In the absence of wavelength converters, a lightpath
occupies the same wavelength channel on all the fiber links
along its path and it is optically switched at intermediate
nodes. The routing and wavelength assignment (RWA) is the
problem of selecting a path and wavelength for each of the
given connection demands, subject to the constraint that no
two paths sharing a link are assigned the same wavelength.

Static RWA is one of the central problems in the dimension-
ing of WDM networks, and it also appears as a subproblem in
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many important network design applications, including traffic
grooming [1]–[3], survivability design [4], [5], and traffic
scheduling [6], [7]. In the static RWA problem [8], the input
typically consists of a set of (forecast) traffic demands (i.e.,
requested connections), and the objective is either to establish
all the connections using a minimum number of wavelengths,
or to maximize the number of accepted connections (in which
case the number of wavelengths is taken as a constraint). We
refer to the former static RWA variant as theminRWA problem,
and to the latter as themaxRWA problem. Both variants
have been studied extensively in the literature. Since both
problems are NP-hard [9], many heuristic solution methods
have been developed and evaluated under various assumptions
and network settings [10], [11].

In this work, we are interested in obtaining optimal solutions
to the static RWA problem. Several mixed integer linear pro-
gram (MILP) formulations have been proposed in the literature
for both the minRWA and maxRWA problems. In general,
most conventional formulations can be categorized as either
link-based(e.g., [12]) orpath-based(e.g., [13]). Both link- and
path-based formulations share the common drawback of being
highly symmetrical with respect to wavelength permutations.
Moreover, the problem size increases rapidly with the number
of wavelengths, hence these formulations do not scale well
to network environments that can be realized with current
technology, which supports 120 or more wavelengths per link.

An alternative formulation was developed in [13] to cap-
italize on the fact that the wavelength assignment problem
is equivalent to the graph multi-coloring problem. This for-
mulation is based on maximal independent sets (MIS) and is
such that the problem size is independent of the number of
wavelengths. However, the number of maximal independent
sets grows exponentially with the sizen of the graph to be
colored. For a general graph, the upper bound on the number
of maximal independent sets is3(n/3). Note that, in the RWA
problem formulation, the size of the graph is equal to the
number of paths in the original network, which poses severe
scalability challenges. Consequently, rather than solving the
MIS formulation directly, the authors of [13] used its LP
relaxation to obtain lower bounds. Even in ring networks,
the number of paths grows exponentially with the number of
nodes, limiting the application of the MIS formulation to small



networks.
To overcome this limitation, column generation techniques

may be used. Column generation, first proposed in the context
of graph coloring in [14], is an iterative technique which
formulates the problem with a subset of MISs and adds any
necessary additional variables on the fly by solving a second
simpler LP. This techniques has also been applied to solve the
RWA problem in [15], [16]. Although the column generation
method does yield smaller problem sizes for each iteration,
it nevertheless requires the computation of all the MISs and
also involves solving an LP which includes all the variables.
Consequently, it may not scale to realistic network sizes tobe
practical for network operators.

In this paper, we consider the static RWA problem in
WDM ring networks. Although there is some evidence that
network operators may transition to mesh networks, vast parts
of the current optical network infrastructure are based on
SONET/SDH rings. Furthermore, any such transition to mesh
networks is likely to be slow and take place over many years.
Therefore, optimal network design techniques for WDM rings
are likely to be important for the foreseeable future.

Starting with the MIS formulation, we develop a decom-
position approach to obtain an equivalent formulation with
a much smaller number of variables. Our approach consists
of partitioning the path set and representing the maximal
independent sets in the original network using the independent
sets calculated in each of these partitions. The result is a
suite of formulations that trades off the number of variables
with the number of constraints and, as a result, achieve a
much better scalability in terms of network size. We present
numerical results to demonstrate that our new formulation
achieves more than two orders of magnitude reduction in
running time compared to the link, path, or original MIS
formulation. Specifically, we show that ring networks of least
16 nodes (the maximum size of a SONET/SDH ring) can be
solved in just a few seconds. Therefore, our new approach
has several unique practical benefits for network designersand
operators, including: (1) the ability to solve the RWA problem
optimally for any existing WDM ring network, and for any
number of wavelengths; (2) the ability to perform extensive
“what-if” analysis to evaluate the sensitivity of the optimal
solution to uncertainties in forecast traffic demands; and (3)
the potential to speed-up the solution of other hard network
design problems for which RWA is a subproblem. While it
may not be possible to obtain optimal solutions to all hard
network design problems that include RWA as a subproblem,
the capability of solving larger instances to optimality makes it
possible to evaluate the performance of heuristics and develop
more efficient ones.

The rest of the paper is organized as follows. In the next
section, we introduce the network model and notation, and,
for the sake of completeness, we present the earlier link, path,
and MIS formulations of the minRWA problem. In Section III,
we describe our new formulation based on decomposition of
the maximal independent set. We present numerical results in
Section IV, and we conclude in Section V.

II. N OTATION AND EXISTING RWA FORMULATIONS

The physical topology of an optical network can be rep-
resented as a graphG = (N ,L), whereN is the set ofN
network nodes andL is the set ofL physical links connecting
the nodes. We assume that each physical link is directed and
consists of a single fiber supportingW wavelength channels.
Nodes are connected with two links in opposite directions.
The amount of traffic demand from nodes to node d, in
terms of the number of lightpaths (connections) to be set up,
is represented astsd andT = [tsd] forms the overall network
traffic matrix.

The set of all node pairs in the network is denoted asZ, i.e.,
Z = {(i, j) : i, j ∈ N , i 6= j} andZ = |Z|. In a ring network,
there are two possible paths between a node pair(i, j) ∈ Z:
one in the clockwise and the other in the counter-clockwise
direction, represented aspij,0 andpij,1, respectively. The set of
all pathsP is the union of the set of clockwise paths (denoted
by P0) and the set of counter-clockwise paths (denoted by
P1), wherePk = {pij,k} for k = 0, 1, andP = |P|.

Using the above notation, the minRWA problem can be
defined as determining the minimum number of wavelengths
to satisfy all the demands inT , subject to the constraint
that no two lightpaths sharing a common link use the same
wavelength. On the other hand, the the maxRWA problem can
be defined as maximizing the number of satisfied demands for
a given number of wavelengths, subject to the same constraint.
In the following subsections, we present link, path, and MIS
formulations of the minRWA problem, using consistent nota-
tion. Due to space constraints, we omit the formulations for
the maxRWA problem; however, these can be derived from
the formulations presented here by appropriately adaptingthe
objective function and some of the constraints.

A. Link Formulation

Denoting the set of links outgoing from (respectively, in-
coming to) noden as L+

n (respectively,L−
n ), the minRWA

formulation can be stated as:

min V

subject to

∑

l∈L
+
n

cw,l
ij −

∑

l∈L
−

n

cw,l
ij =











0 n 6= i, j

tij n = i

−tij n = j

∀n ∈ N ,

(i, j) ∈ Z, w
(1)

∑

(i,j)∈Z

cw,l
ij ≤ 1 ∀l ∈ L, ∀w (2)

∑

(i,j)∈Z

∑

l∈L

cw,l
ij ≤ uwZL ∀w (3)

V ≥ wuw ∀w (4)

where cl,w
ij = 1, if there exists a lightpath from nodei

to node j that uses wavelengthw on link l, and is 0
otherwise.uw is a binary variable which indicates whether
wavelengthw is used andV is the number of wavelengths
used. Expressions (1) are the multi-commodity flow equations



corresponding to the routing subproblem and expression (2)
is the wavelength constraint. Constraints (3) ensure thatuw

is 1 whenever wavelengthw is used by any lightpath on
any node and expression (4) setsV to the index of the
largest wavelength used. In the actual implementation, we use
separate constraints for the incoming and outgoing lightpaths
at source and destination nodes in (1) to improve efficiency.

B. Path Formulation

For ring networks, there are only two possible paths between
each node pair. Hence, the routing subproblem reduces to
selecting either the clockwise or the counter-clockwise path
for each lightpath between a node pair, which results in
significant reduction in problem size compared to arbitrary
network topologies. The path formulation for the minRWA
problem is given as:

min V

subject to
∑

k=0,1

∑

w

cw
ij,k = tij ∀(i, j) ∈ Z (5)

∑

(i,j)∈Z

∑

k=0,1

cw
ij,kX l

ij,k ≤ 1 ∀l ∈ L, ∀w (6)

∑

(i,j)∈Z

∑

k=0,1

cw
ij,k ≤ uwP ∀w (7)

V ≥ wuw ∀w (8)

wherecw
ij,k is the binary decision variable indicating whether

there exists a lightpath on pathpij,k which uses wavelength
w. The variableX l

ij,k = 1, if pij,k is uses link l, and
is 0 otherwise. Expression (5) ensures that all demands are
satisfied, while expression (6) is the wavelength constraint.

C. MIS Formulation

The wavelength assignment problem can be transformed
into a graph multi-coloring problem by defining a new graph
Gp where each node corresponds to a path inG and two nodes
are connected to each other inGp if the corresponding paths
in G share a common link. The problem is then equivalent to
assigning separate colors to a node inGp for each lightpath
established over the corresponding path inG, such that the
two adjacent nodes are not assigned the same color. Thus, a
set of paths inG can be assigned the same wavelength if the
corresponding nodes inGp form an independent set.

We denote the number of lightpaths on pathpij,k as bij,k,
and let vm be the number of wavelengths assigned to the
independent setm. Let M denote the set of all maximal
independent sets inGp, which can be calculated efficiently
using the Bron-Kerbosch algorithm [17]. Also, letY m

ij,k be the
path-path set incidence function defined as

Y m
ij,k =

{

1, if path setm contains pathpij,k,

0, otherwise.
(9)

The ILP formulation can now be written as

min V

subject to

∑

k=0,1

bij,k = tij ∀(i, j) ∈ Z (10)

bij,k ≤
∑

m∈M

vmY m
ij,k ∀(i, j) ∈ Z, k = 0, 1 (11)

∑

m∈M

vm ≤ V (12)

The first set of constraints ensures that the traffic demand
between each node pair is satisfied by using lightpaths over
the clockwise and counter-clockwise paths. Since, the number
of wavelengths assigned to a path is the sum of the number
of wavelengths assigned to maximal independent sets which
include that path, the second set of constraints ensures that
each path is assigned a sufficient number of wavelengths.

The MIS formulation has the clear advantage of being
independent of the numberW of wavelengths, whereas the
sizes of the path- and link-based formulations increase with
W . Moreover, the link and path formulations have a symmetry
problem. Specifically, given a feasible solution, different solu-
tions with the same objective value can be obtained by simply
changing the order of wavelengths. This means that there are
W ! different optimal solutions to the problem; since the ILP
solver has to evaluate all of these solutions, the running time
can be unnecessarily long. On the other hand, the number of
MISs in Gp increases exponentially with the number of paths,
which in turn increases quadratically with the number of nodes
in G. Therefore, the number of variables,vm, grows rapidly
with the size of the network, limiting the applicability of the
MIS formulation to small networks.

In the following section, we develop methods to obtain
formulationsequivalentto (10)-(12) using a smaller number
of variables, so that larger network instances can be solved
without sacrificing the benefits of the MIS-based formulation.

III. M AXIMAL INDEPENDENTSET DECOMPOSITION

(MISD) AND RWA FORMULATIONS BASED ONMISD

As we discussed in Section II-C, the limiting factor for the
MIS-based RWA formulation is the exponential increase in
the number of MISs with the number of nodes (vertices) of
Gp. In this section, we propose a new approach to decrease
the number of independent sets. The method is based on
identifying two nearly equal and preferably large independent
subgraphs in the path graph,Gp, and dividingGp into three
components, two of which are the identified independent
subgraphs and the third subgraph includes the rest of the nodes
in Gp. As will be discussed shortly, this graph partitioning
enables an efficient decomposition of MISs inGp. Importantly,
such graphs can be easily identified in ring networks by using
the path-link incidence information. Then, the MISs inGp

are represented as combinations of independent sets in each
subgraph. The result is a very beneficial trade-off between the
number of variables and constraints in the RWA formulation.



A. Maximal Independent Set Decomposition with 2 Indepen-
dent Path Sets (MISD-2)

Realizing that the clockwise paths do not intersect with
counter-clockwise paths,Gp can be divided into two discon-
nected components,G0

p andG1
p, corresponding to the setsP0

andP1, respectively. The MISs inG0
p (respectively,G1

p) are
denoted asM0 (respectively,M1). Also, we definevk

m as
the number of wavelengths assigned to the MISm ∈ Mk for
k = 0, 1. Then (11) and (12) in the basic MIS formulation are
replaced with:

bij,k ≤
∑

m∈Mk

vk
mXm

ij,k ∀(i, j) ∈ Z, k = 0, 1 (13)

∑

m∈Mk

vk
m ≤ V k = 0, 1 (14)

Note that, for eachmi ∈ M0 and mj ∈ M1, mi ∪ mj

gives an MIS forGp.

B. Maximal Independent Set Decomposition with 4 Indepen-
dent Path Sets (MISD-4)

In order to further decrease the number of variables in
the formulation,Gk

p (k = 0, 1) is divided further into three
partitions:Gk,core

p , Gk,0
p , andGk,1

p . The partitions are selected
such that there are no links between the nodes inGk,0

p and the
nodes inGk,1

p . The remaining nodes are collected in the set
Gk,core

p . This operation is equivalent to partitioning the path
set Pk into three subsets, where none of the paths inPk,0

intersect with any of the paths inPk,1. Also,Pk,core includes
the remaining paths inPk, which may intersect with the paths
in Pk,0 and/orPk,1.

For the ring network case, an appropriate partitioning can be
obtained based on the links that each path uses. Assuming that
nodes in the ring network are numbered from 1 toN in the
clockwise direction, and denoting the clockwise (respectively,
counter-clockwise) links asL0 (respectively,L1):

• Pk,0 ⊂ Pk, is defined as the set of paths that use only
links in Lk between nodes{1, . . . , ⌊N/2⌋}.

• Pk,1 ⊂ Pk, is defined as the set of paths that use only
the rest of the links inLk.

• Pk,core ⊂ Pk, consists of the paths that use links from
both parts.

This partitioning results in 4 independent path sets, namely
P0,0, P0,1, P1,0 andP1,1.

For developing the formulation, it is necessary to introduce
a new set definition, referred to ascore set. Core sets forGk

p

are denoted asQk and defined as the sets of nodes inGk,core
p

which are maximal subsets of any MIS inGk
p. In other words,

Qk includes the intersection of any MIS inGk
p with the node

setGk,core
p , as an element. Consequently, any MIS inGk

p can
be written as the union of a set inQk with some nodes inGk,0

p

and/orGk,1
p . The core sets are calculated using the following

Algorithm 1. The running time complexity of the algorithm is
O(|Qk|N2).

Algorithm 1 Calculation of core setsQk.

Initialize Qk = maximal independent sets inGk,core
p .

for each core setq ∈ Qk do
for each nodep ∈ q do

if p has a link to a noder ∈ Gk,0
p ∪Gk,1

p , and none of
the nodes inq \ {p} have a link to that nodethen

Append the setq \ {p} to Qk.
end if

end for
end for
Add ∅ to Qk.

Finally, for each core setq ∈ Qk, the maximal sets of nodes
in Gk,k′

p which are independent from each other and the nodes
in q (Mk,k′

q ) are calculated fork, k′ = 0, 1.
With these definitions, for eachq ∈ Qk and mi ∈ Mk,0

q

andmj ∈ Mk,1
q , mi ∪ q ∪ mj corresponds to an MIS inGk

p.
The MISD-4 formulation can now be obtained by replac-

ing (11) and (12) in the basic MIS formulation with the
following equations:

bij,k ≤
∑

q∈Qk

vk,core
q Xq

ij,k ∀pij,k ∈ Pk,core, k = 0, 1 (15)

bij,k ≤
∑

q∈Qk

∑

m∈M
k,k′

q

vk,k′

q,m Xm
ij,k

∀pij,k ∈ Pk,k′

,

k, k′ = 0, 1
(16)

∑

q∈Qk

vk,core
q ≤ V k = 0, 1 (17)

∑

m∈M
k,k′

q

vk,k′

q,m = vk,core
q ∀q ∈ Qk, k′ = 0, 1 (18)

In this formulation,vk,core
q is the number of wavelengths as-

signed to the core setq ∈ Qk andvk,k′

q,m denotes the number of
wavelengths assigned to the setm ∈ Mk,k′

q . Expressions (15)
and (16) ensure that each set is assigned a sufficient number of
wavelengths that the number of wavelengths on each path is
greater than or equal to the number of lightpaths on that path.
Expression (17) setsV to the number of wavelengths used,
while constraints (18) ensure consistency between wavelength
assignment in different path partitions.

This decomposition approach can be further extended to
develop formulations with 8 (MISD-8), 16 (MISD-16) or more
independent path sets. Due to page constraints, the exact
formulations are omitted.

C. Comparison of the MIS and MISD-x Formulations

In Fig. 1 we plot the number of independent sets in the basic
MIS formulation, as well as the MISD-2, MISD-4, and MISD-
8 formulations, using a logarithmic y-axis, against the number
N of ring nodes. We observe that the number of independent
sets in MISD-2 is just the square root of the corresponding
number in the basic MIS formulation. This is due to the fact
that the path graph for ring network is composed of two
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Fig. 1. Comparison of formulations in terms of MIS decision variables

disconnected subgraphs. We also note that the MISD-4 and
MISD-8 formulations achieve a further significant reduction
in the number of MISs. For instance, on a 16-node ring
network, the number of MISs in MISD-4 is nearly an order of
magnitude smaller than in MISD-2, while for a 32-node ring,
the corresponding reduction in maximal independent sets is
nearly three orders of magnitude.

This decrease in MIS size comes at the expense of additional
constraints (i.e., those corresponding to expression (18)), the
number of which is equal to the total number of core sets.
However, the number of additional constraints is low relative
to to the great reduction in the number of independent sets.
As an example, for a 16-node ring, the number of core sets in
the MISD-4 formulation is just 953. As a result, by adding a
small number of constraints, MISD-4 successfully eliminates
a large number of variables in the MILP formulation.

D. Illustrative Example

To better clarify the operation of the MISD algorithms,
in this section we present a simple illustration using the 4-
node ring network depicted in Fig. 2. Each link of the ring is
associated with an ID shown in the figure. The set of all paths
are listed in Table I.
MIS Formulation. The basic algorithm calculates the set
of MISs, M, using the whole set of paths,P , without
partitioning. The number of MISs is found to be 121.
MISD-2 Formulation. The MISD-2 algorithm partitions the
sets into two subsets. The set of clockwise paths is

P0 = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23},

and the set of counter-clockwise paths is

P1 = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}.

Then, the MISs inP0 andP1 are calculated as:
M0 = {{1, 9, 17, 19}, {1, 9, 13}, {1, 7}, {1, 11, 19}, {3, 17, 19},
{3, 13}, {5, 19}, {15, 9}, {21, 9, 17}, {21, 11}, {23, 17}},
M1 = {{8, 16, 24, 6}, {8, 16, 4}, {8, 2}, {8, 22, 6}, {14, 24, 6},

Fig. 2. The 4-node ring network for the example in Section III-D

TABLE I
THE SET OF PATHS BETWEEN EACH NODE PAIR IN THE4-NODE RING

NETWORK OFFIG. 2

path # i j k links path # i j k links

1 1 2 0 1 13 3 1 0 5-7
2 1 2 1 8-6-4 14 3 1 1 4-2
3 1 3 0 1-3 15 3 2 0 5-7-1
4 1 3 1 8-6 16 3 2 1 4
5 1 4 0 1-3-5 17 3 4 0 5
6 1 4 1 8 18 3 4 1 4-2-8
7 2 1 0 3-5-7 19 4 1 0 7
8 2 1 1 2 20 4 1 1 6-4-2
9 2 3 0 3 21 4 2 0 7-1
10 2 3 1 2-8-6 22 4 2 1 6-4
11 2 4 0 3-5 23 4 3 0 7-1-3
12 2 4 1 2-8 24 4 3 1 6

{14, 4}, {20, 6}, {10, 16}, {12, 16, 24}, {12, 22}, {18, 24}},
respectively.

The setM is equal to the cross product of sets inM0 and
M1 (each of size 11 , and is equal to the setM (of size 121)
for the original MIS formulation above.
MISD-4 Formulation. The MISD-4 algorithm partitions the
clockwise paths into 2 independent sets and a core set as
follows:

• P0,0 = {1, 3, 9}: the set of paths that use only the first
two clockwise links, links 1,3.

• P0,1 = {13, 17, 19}: the set of paths that use the other
two clockwise links, links 5,7, only.

• P0,core = {5, 7, 11, 15, 21, 23}: the remaining set of
paths that use any of the four clockwise links, links 1,3,5,
and 7.

Then, the set of core sets for the clockwise paths,Q0, is
calculated as follows:

• Initialize Q0 to MIS set ofG0,core
p :

Q0 = {{11, 21}, {7}, {5}, {15}, {23}}
• For q = {11, 21}, path 11 intersects with path 3, but

path 21 does not intersect with path 13; hence, set{21}
is added toQ0.

• For q = {11, 21}, path 21 intersects with path 19, but
path 11 does not intersect with path 19; thus, set{11} is



TABLE II
INDEPENDENT SETS ING0,0

p AND G0,1

p CORRESPONDING TO EACH CORE

SETq ∈ Q0

q M0,0

q M0,1

q

{11, 21} {{}} {{}}
{7} {{1}} {{}}
{5} {{}} {{19}}
{15} {{9}} {{}}
{23} {{}} {{17}}
{21} {{9}} {{17}}
{11} {{1}} {{19}}
{} {{1, 9}, {3}} {{17, 19}, {13}}

added toQ0.
• ∅ is added toQ0

As a result,

Q0 = {{11, 21}, {7}, {5}, {15}, {23}, {21}, {11}, {}}

Then, for eachq ∈ Q0, M0,0
q andM0,1

q are found as given
in Table II.

Comparing with the setM0 obtained above for MISD-2, we
observe that, for eachq ∈ Q0, mi ∈ M0,0

q andmj ∈ M0,1
q ,

mi∪q∪mj corresponds to an MIS in graphG0
p corresponding

to setP 0. The setsQ1, M1,0
q , andM1,1

q are similarly obtained
for the counter-clockwise paths.

IV. N UMERICAL RESULTS

We now present numerical results to compare the efficiency
of the link, path, MIS, MISD-2, MISD-4, and MISD-8 for-
mulations of the RWA problem we presented in Sections II
and III. To this end, we used the CPLEX 11 optimization
software to solve the corresponding formulations of identical
problem instances on a cluster of compute nodes with dual
Woodcrest Xeon processors running at 2.33GHz with 1333
MHz memory bus, 4GB of memory and 4MB L2 cache.

In our comparisons, we used a large set of random problem
instances that were generated by varying the numberN of
nodes in the ring network (N = 6, 7, . . . , 24), the number
W of wavelengths per link (W = 10, 20, . . . , 160), and the
traffic demandstsd (in lightpaths) between the various source-
destination pairs(s, d) in the network. We also imposed a time
limit of 2 CPU hours for CPLEX to find a solution for a given
formulation and problem instance; if it failed to do so within
the 2-hour limit, we terminated the execution run and report
this fact in the figures shown in this section.

Fig. 3 compares the various formulations of minRWA in
terms of the CPU time (in log scale) it takes for CPLEX to find
an optimal solution, against the sizeN of the ring network;
similar results for maxRWA are omitted. Each data point in the
figure represents the average of 30 random instances generated
by drawing traffic demands (in lightpaths) uniformly at random
in the interval[0, 5]. The data points in the light gray area of
the figure labeled “tLim” correspond to instances that could
not be solved within the 2-hour time limit we mentioned
above. On the other hand, the data points in the top dark gray
area of the figure labeled “Mem” correspond to instances for
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Fig. 3. Solution times of minRWA formulations as a function of N , W =

120

which the formulation could not fit in the available memory
for CPLEX to run.

The link formulation fails to solve instances withN > 10
nodes within the time limit. The path formulation is more
efficient: CPLEX is able to find the optimal solution for
N ≤ 16, but the running time exceeds the 2-hour limit for
all instances withN > 16. MIS runs faster than the path and
link formulations up to 8 and 10 nodes, respectively. However,
the formulation size gets too large for CPLEX to solve beyond
10 nodes. The new MISD formulations perform much better,
with running times below 1 sec up to 14-15 nodes (for MISD-
4 and MISD-8), several orders of magnitude less than the
other three. Beyond 12 nodes, MISD-2 performs noticeably
worse than MISD-4 and MISD-8, and beyond 20 nodes its
size becomes too large to fit in memory; similarly, MISD-
8 starts outperforming MISD-4 for networks withN ≥ 18
nodes. MISD-8 is able to obtain the optimal solution for 24
nodes, 8 nodes more than the path formulation in about the
same amount of time.

From a practical perspective, MISD-4 and MISD-8 make
it possible to solve RWA optimally for a maximum-size (16-
node) SONET ring in only a few (i.e., 3-4) seconds. Such
an instance can only be tackled by the path formulation, but
takes CPLEX almost two hours, on average, to find the optimal
solution. Consequently, MISD-4 and MISD-8 allow network
designers and operators to perform extensive “what-if” anal-
ysis by investigating large numbers of scenarios regarding
forecast demands, cost and price structures, etc; such analysis
would either not be possible previously, or would require vast
amounts of computational resources and time.

Fig. 4 presents another set of experiments we performed
to determine the maximum number of nodes in a problem
instance that can be solved by each formulation for different
values of the numberW of wavelengths within 3000 sec.
The problem instances were generated in the same manner
as those shown in Fig. 3. The dark gray area in the figure
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Fig. 4. Size of the largest network sizeNmax that can be solved with each
minRWA formulation for a given numberW of wavelengths, within 3000
seconds of CPU time

denotes instances that are infeasible. Note that, since the
MIS and MISD-z formulations are independent ofW , the
corresponding curves are straight lines parallel to thex-axis;
also, these formulations find optimal solutions even when the
problem is infeasible for the indicated number of wavelengths
(of course, the optimal solution in this case is a value ofW
higher than the indicated one). As we can see, among the
MIS-based formulations, MISD-8 has the best scalability (it
can find solutions forN = 24 nodes), followed by MISD-
4 and MISD-2 (the latter can find solutions forN = 16
nodes, i.e., a maximum size SONET ring), while MIS can only
solve instances up toN = 10 nodes due to excessive memory
requirements. Within the 3000 sec limit, the link formulation
can obtain solutions for up toN = 10−11 nodes for moderate
number of wavelengths, but asW increases, it is limited to
very small networks. Finally, the path formulation performs
better than the link formulation, but is also severely restricted
asW increases to the limits of current technology.

In summary, the results we have presented in this section
suggest that the MISD formulations can provide significant
time savings in solving minRWA and maxRWA problem
instances on realistic size networks, and they are able to
increase the network sizes that can be solved to optimality.

V. CONCLUDING REMARKS

RWA is one of the most important and classical problems
arising in the design of WDM networks, and it has been
extensively studied. However, with the increasing number of
wavelengths supported by optical transmission technology,
existing formulations face significant scalability challenges.
We have developed an independent set formulation based on
graph partitioning that has the advantage of being independent
of the number of wavelengths, and has better scalability than
existing MIS formulations. We have demonstrated that the
new approach enables the solution of problems several orders

of magnitude faster than the conventional methods and is
able to solve larger network instances to optimality. We are
currently working to extend this work in two directions: (1)
develop efficient MIS decomposition techniques for networks
of general topology, and (2) investigate the impact of these
more efficient RWA formulations on the complexity of other
important network design problems, including traffic groom-
ing, which include RWA as a subproblem.
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