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Optimal Wavelength Sharing Policies in
OBS Networks Subject to QoS Constraints

Li Yang and George N. Rouskas, Senior Member, IEEE

Abstract— We consider the general problem of optimizing
the performance of OBS networks with multiple traffic classes
subject to strict (absolute) QoS constraints in terms of the end-to-
end burst loss rate of each guaranteed class of traffic. We employ
Markov decision process (MDP) theory to obtain optimal wave-
length sharing policies for two performance objectives, namely,
maximization of weighted network throughput and minimization
of the loss rate of best-effort traffic, while meeting the QoS
guarantees. The randomized threshold policies we obtain are
simple to implement and operate, and make effective use of sta-
tistical multiplexing. In particular, the threshold randomization
feature enables the policies to allocate bandwidth at arbitrarily
fine sub-wavelength granularity, hence making effective use of
the available network capacity.

Index Terms— Optical burst switching (OBS) networks, wave-
length reservations, quality of service, Markov decision process,
randomized threshold policies.

I. INTRODUCTION

OPTICAL burst switching (OBS) is a technology posi-
tioned between wavelength routing (i.e., circuit switch-

ing) and optical packet switching. All-optical circuits tend
to be inefficient for traffic that has not been groomed or
statistically multiplexed, and optical packet switching requires
practical, cost-effective, and scalable implementations of opti-
cal buffering and optical header processing, which are several
years away. OBS is a technical compromise that does not
require optical buffering or packet-level parsing, and it is
more efficient than circuit switching when the sustained traffic
volume does not consume a full wavelength. The transmission
of each burst is preceded by the transmission of a setup (also
referred to as burst header control) message, whose purpose is
to inform each intermediate node of the upcoming data burst
so that it can configure its switch fabric in order to switch
the burst to the appropriate output port. An OBS source node
does not wait for confirmation that an end-to-end connection
has been set-up; instead it starts transmitting a data burst after
a delay (referred to as offset), following the transmission of
the setup message. For an excellent survey of OBS literature,
the reader is referred to [7].

As OBS technology becomes more mature [3], supporting
end-to-end quality of service (QoS) guarantees in OBS net-
works is arising as an important yet challenging issue. Most
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recent research in this area has focused on relative service
differentiation, in which the QoS experienced by a class of
users is specified relative to the QoS of other classes. Several
complementary schemes for relative service differentiation
have been proposed, such as assigning an additional offset
to higher priority bursts [16], intentionally dropping non-
compliant bursts [6], and allowing in-profile bursts to preempt
out-of-profile ones [10], as well as combinations thereof.

An alternative approach is to guarantee each priority class
a worst-case level of service (e.g., in terms of burst loss rate)
that is independent of the service levels provided to other
classes. A comprehensive study of absolute QoS guarantees
in OBS networks can be found in [17], where several mech-
anisms were proposed to enforce a loss probability threshold
for guaranteed traffic while reducing the loss rate of non-
guaranteed traffic, including: an early dropping mechanism to
drop non-guaranteed traffic selectively, a wavelength grouping
strategy to allocate wavelengths to priority traffic, and a path
clustering algorithm. In earlier work [14], we also considered
the problem of providing QoS guarantees to multiple classes of
users of an OBS network in terms of end-to-end loss. We de-
veloped a parameterized model for wavelength sharing among
traffic classes that can provide a desired degree of isolation
while achieving substantial statistical multiplexing gains. For
a single link, we developed a heuristic for optimizing the
policy parameters to support absolute QoS guarantees for a
given set of heterogeneous traffic classes. We also developed a
methodology for translating the end-to-end QoS requirements
into appropriate per-link parameters so as to provide network-
wide guarantees. The generalized wavelength sharing (GWS)
policies in [14] are easy to implement, can be applied to a
wide variety of traffic classes, and are effective in meeting the
QoS of priority traffic.

In this paper, we consider the general problem of optimizing
the performance of multi-class OBS networks subject to strict
(absolute) QoS constraints in terms of the burst loss rate of
each guaranteed class of traffic. We employ Markov decision
process (MDP) theory to develop optimal wavelength sharing
policies for two distinct performance objectives, while meet-
ing specified levels of QoS. Specifically, we obtain optimal
randomized threshold policies that are easy to configure and
operate, and which make effective use of statistical multiplex-
ing. A unique feature of our policies is their ability, due to
threshold randomization, to allocate bandwidth at arbitrarily
fine sub-wavelength granularity; to the best of our knowledge,
no previously published resource allocation scheme for OBS
networks has this ability. Consequently, these policies are quite
effective in their use of the available network capacity, and
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outperform our earlier generalized wavelength sharing (GWS)
policies, which in turn were shown to outperform previously
proposed schemes [14].

The remainder of this paper is organized as follows. In
Section II, we state our assumptions regarding the OBS
network. In Sections III and IV we study a single link of
a network under the objective of maximizing the weighted
throughput subject to QoS constraints. We then apply MDP
theory to obtain optimal wavelength sharing policies for a
given link. In Section V we demonstrate how to apply this
approach to a different objective, namely, to minimize the
loss rate of best-effort traffic subject to the QoS constraints
of priority classes. In Section VI, we extend our results to an
OBS network. We present numerical results in Section VII,
and we conclude the paper in Section VIII.

II. THE OBS NETWORK UNDER STUDY

We consider an OBS network with N nodes. Each link
in the network can carry burst traffic on any wavelength
from a fixed set of W wavelengths. We assume that each
OBS node is capable of full wavelength conversion, hence an
incoming burst can be forwarded on any wavelength available
at its output port regardless of the wavelength on which
it arrived. The network does not use any other contention
resolution mechanism. Specifically, OBS nodes do not employ
any buffering, either electronic or optical, in the data path, and
they do not utilize deflection routing or burst segmentation.
Therefore, if a burst requires an output port at a time when
all wavelengths of that port are busy transmitting other bursts,
then the burst is dropped.

The network supports P classes of traffic, where P is
a small integer. Each traffic class i, i = 1, · · · , P − 1, is
characterized by a worst-case end-to-end loss guarantee Be2e

i .
Parameter Be2e

i represents the upper bound on the long-run
fraction of bursts from class i that may be dropped by the
network before reaching their destination. Without loss of
generality, we assume that bursts of class i have more stringent
loss requirements than bursts of class j, when i < j; in other
words:

Be2e
i < Be2e

j , 1 ≤ i < j ≤ P (1)

Bursts of class P are not associated with any worst-case loss
guarantee; consequently, we will refer to class P as the best-
effort class, and, for convenience, we let Be2e

P = 1.0. In
addition, each class is associated with a weight rj , which is
a measure of the importance of this class to the network. In
general, we have that rj > rj+1, 1 ≤ j ≤ P − 1, since higher
priority users are likely to pay more for service.

Once assembled at the edge of the network, a burst is
assigned to one of the P classes; the mechanism for assigning
bursts to traffic classes is outside the scope of our work. The
class to which a burst belongs is encoded in the setup (control)
message that precedes the burst transmission. We assume that
intermediate nodes make forwarding decisions by taking into
account both the availability of resources (e.g., the number
of free wavelengths at an output port) and the information
regarding the class of a burst. Specifically, an intermediate
node may drop a burst of a lower priority class even when
there are wavelengths available at its outgoing link.

In this work we consider a broad class of constrained
optimization problems, that address the requirements of both
the network providers and the users, and can be expressed as:

optimize a performance objective related to the
traffic-carrying capacity of the network while en-
suring that the loss rate of class i, i = 1, · · · , P −1,
does not exceed its worst-case loss guarantee Be2e

i .

In order to achieve this objective, the network nodes need to
employ appropriately designed mechanisms to allocate wave-
length resources to bursts of each class based on its load and
worst-case loss requirement. In the rest of this paper, we use
Markovian decision process (MDP) theory to develop optimal
wavelength sharing policies for two performance objectives:

1) maximize the weighted throughput of the network, and
2) minimize the loss rate of the best-effort class P .

More generally, our work can be extended in a straightforward
manner to obtain optimal policies for any objective that can
be expressed as the long-run average of rewards collected at
state transitions, similar to expression (10) in the next section.

III. MDP MODEL OF A SINGLE OBS LINK

Let us first consider a single link of an OBS network with
W wavelengths. Class j bursts arrive to the link according to
a Poisson process with rate λj . The service time of bursts is
assumed to have an exponential distribution with mean 1/µ
that is independent of the class of the burst. Let nj denote the
number of class j bursts in progress (i.e., receiving service) on
the link. Since the service rate does not depend on the traffic
class, we can use the total number of bursts n =

∑P
j=1 nj to

describe the system state at any point in time [1]. Intuitively,
since there is no difference in the service rates, once a burst is
admitted to service, the future system evolution is not affected
by the class of this burst. Therefore, the evolution of the
system is described by the Markov model {n(t), t ≥ 0}; for
the sake of simplicity, we will omit the index t whenever
there is no ambiguity. Transitions in the state are either due
to an arrival or a service completion event. We will use αj

(respectively, δj) to denote the arrival (respectively, departure)
of a class-j burst.

A control policy determines the action to be taken at arrival
events. We let A(n, αj) ∈ {0, 1} denote the set of actions
when a class-j burst arrives to find the system in state n.
Action a = 0 means that the arrival is rejected, and a = 1 that
the arrival is accepted. If the system is full (all wavelengths
are occupied), then the only action available is a = 0, thus

A(W,αj) = 0, j = 1, · · · , P. (2)

If the system is not full, an arriving burst may be dropped if
the free wavelengths are reserved for other classes of traffic:

A(n, αj) ∈ {0, 1}, n = 0, · · · ,W − 1, j = 1, · · · , P. (3)

There is no control at departure epochs, hence we let

A(n, δj) = 0, n = 1, · · · ,W, j = 1, . . . , P. (4)

We consider the set of stationary control policies in this
work. The definition of a stationary policy can be found
in [9]. In essence, the controls of the stationary policy at
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each state are history-independent and do not change with
time t. There are two commonly used types of stationary
policies [9]. A randomized stationary policy π, defined on the
state space S, is such that the policy probabilistically selects
one of a set of actions at each state. We let π(a|s) denote the
probability that an action a ∈ A(s) is chosen at state s; clearly,
π(A(s)|s) = 1, s ∈ S. A randomized stationary policy π is
called k-randomized stationary, k = 0, 1, · · · , if∑

s∈S

∑
a∈A{s}

1 {π(a|s) > 0} ≤ |S| + k. (5)

In other words, there exist at most k states at which the number
of control actions chosen by π is greater than 1.

A deterministic stationary policy is equivalent to a 0-
randomized stationary policy: A(s) reduces to a singleton, and
we use the action π(s) at each state s to describe the policy.

IV. THROUGHPUT MAXIMIZATION SUBJECT TO QOS
CONSTRAINTS: THE SINGLE LINK CASE

Consider a single OBS link �, and let B�
j denote the loss

guarantee for class-j traffic on this link. The quantities B�
j

should not be confused with the end-to-end guarantees Be2e
j

in (1); we will discuss in Section VI how to obtain B�
j from

Be2e
j .
Our objective is to determine an optimal stationary control

policy that maximizes the expected sum of the class-based
rewards earned by the system, subject to the constraints that
the fraction of class-j customers rejected is no greater than
B�

j , 1 ≤ j ≤ P − 1. Miller [11] studied the problem
of maximizing the expected sum of class-based awards in
a M/M/c/N system (similar to our OBS link), without
imposing any constraints on the blocking probabilities. He
showed that, for each class, the optimal policy is of threshold
form, i.e., for each class j there is a critical level Mj such that
no customers of class j are admitted if the total occupancy
n ≥ Mj ; he also showed that Mj ≥ Mi, j < i, i.e.,
higher priority classes have higher thresholds. Feinberg and
Reiman [8] extended Miller’s study by adding the constraint
that the blocking probability of class-1 customers not exceed
a given value. They showed that for this single-constraint
problem, the optimal policy has a threshold structure similar to
that in [11], but one of the thresholds may be randomized: for
a particular state s, the optimal policy chooses the threshold
M with probability p and the threshold M +1 with probability
1 − p. We discuss these works in more detail later.

A. Constrained MDP (CMDP) Formulation

The P -class problem we study is more general than that
in [8] when P > 2, as there are P−1 constraints, one for each
of the P − 1 guaranteed classes. In this section we formulate
the problem as a constrained Markov decision process.

Since our system does not block departures, the state n = 0
(corresponding to an empty system) can be reached from any
other state with probability 1. Therefore, the system satisfies
the unichain condition [9], which requires for every stationary
policy π, the transition matrix defined by π to form a Markov
chain on the state space with one ergodic class and a (possibly

empty) set of transient classes. Consequently, the optimal
policy is independent of the initial distribution [9].

We now define the one-step reward and one-step cost
functions for the controls taken at each state. We assume that a
reward rj is collected provider upon accepting a burst of class
j, j = 1, · · · , P . There is no reward whenever an arriving burst
is rejected, or for the departure state η = 0, · · · ,W −1. Define
r(n, αj) as the reward collected by the system in the arrival
state (n, αj); similarly, define r(n, δj) as the reward collected
at departure state (n, δj). We have that:

r(n, αj) =
{

rj , A(n, αj) = 1
0, A(n, αj) = 0 j = 1, · · · , P, (6)

r(n, δj) = 0, j = 1, · · · , P. (7)

We define the one-step cost function cj for class j as:

cj(n, αj) =
{

0, A(n, αj) = 1
1, A(n, αj) = 0 j = 1, · · · , P, (8)

Thus, for each rejected class-j burst, the system accumulates
one unit of cost. There is no cost associated with departure
instants, hence

cj(n, δj) = 0, j = 1, · · · , P. (9)

We also define the cost function Cj as the fraction of class
j bursts being rejected. Since the MDP satisfies the unichain
condition, the reward and cost functions are independent of
the initial state.

Define the long-run average reward earned by the system:

T (π) = lim inf
t→∞ t−1Eπ

⎡
⎣N(t)−1∑

i=0

r(n[i], a[i])

⎤
⎦ (10)

where π is a stationary policy, Eπ is the expectation operator
for the policy π, N(t) is the number of events by time t, n[i]
is the state of the system just prior to occurrence of event i,
and a[i] = 0, 1, is the action of the policy π at event i. The
fraction of rejected class-j bursts, j = 1, · · · , P − 1, is:

Cj(π) = lim sup
t→∞

Eπ

⎡
⎣N−1

j (t)
N(t)∑
i=0

cj(n[i], a[i])

⎤
⎦ (11)

where Nj(t) is the number of arrivals of class-j bursts by
time t. Recall that B�

j , j = 1, · · · , P − 1, is the loss rate to
be guaranteed at this link �. Then, the problem of maximizing
the constrained weighted throughput can be formulated as:

maximize T (π) (12)

subject to Cj(π) ≤ B�
j , 1 ≤ j ≤ P − 1. (13)

One might be tempted to apply the uniformization technique
in [4, Chapter 6] to the continuous-time MDP we defined
earlier in this section in order to obtain a discrete-time
MDP; and then apply the Policy-Iteration algorithm [4] to
obtain the optimal policy. Unfortunately, we cannot apply the
uniformization approach here, since our constraints may lead
to randomized policies, under which the uniformization tech-
nique does not apply, as explained in [5]. The uniformization
introduces fictitious transitions from a state to itself in the new
Markov chain X̂ , which do not exist in the original process X .
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The randomization allows for the possibility of changes in the
action at fictitious transitions in X̂ which are not available in
X . Thus, there is the possibility that the usual uniformization
technique fail to yield the same reward for X̂ as for X .

A similar constrained optimization problem was considered
in [9], in which a (P +1)-class system with finite state space
S and finite action set A was studied. The optimal solution
was obtained from a linear programming (LP) formulation;
the formulation is omitted, but can be found in [9]. Also,
the problem of maximizing the expected average reward of a
P−class system subject to the blocking probability constraint
on class-1 customers was studied in [8], and was shown to be
a special case to the one in [9].

Our objective is to find the probability π(a|n) that an action
a ∈ A {n} is chosen at state n ∈ N , as dictated by the optimal
stationary policy. As we have shown in [13], [15], our problem
defined in (12)-(13) is also a special case of the one in [9],
and satisfies the unichain condition. Thus, according to the
results of [9], there exists an optimal policy π� in the form
of:

π(a = 1|n) =
{

zn,a=1/
∑1

a=0 zn,a,
∑1

a=0 zn,a �= 0
1 {a′ = a} , any a′ ∈ A(i), otherwise

(14)

and π(a = 0|n) = 1 − π(a = 1|n). (15)

The above expressions state the probability π(a|n) for each
action a ∈ A {n} chosen at state n. In particular, zn,a in (14)
denotes the probability that action a is taken at state n per unit
of time, and its value is obtained from the optimal solution to
an appropriate LP [13], [15] along the lines of the one in [9].
The optimal policy is P -randomized, thus there are at most
P states such that 0 < π(a|n) < 1.

The optimal policy π� works as follows. If the system state
is n and a class-j burst arrives, the burst will be admitted if
π[(n, αj), a = 1] = 1; it will be rejected if π[(n, αj), a =
0] = 1. If 0 ≤ π[(n, αj), a = 1] ≤ 1, then the burst will be
admitted with probability π[(n, αj), a = 1].

B. Structure of the Optimal Policy

In [8], the authors analyzed the structure of the optimal
policy which maximizes the expected average reward subject
to the constraint that the blocking probability of class-1
customers is no greater than a given threshold. They proved
that the probabilities π dictated by the optimal policy conform
to the following expressions:

π[(n, α1), a = 1] = 1, n = 0, · · ·W − 1, (16)

π[(n, αj), a = 1] ≥ π[((n + 1), αj), a = 1],
n = 0, · · · ,W − 2 and j = 1, · · · , P (17)

π[(n, αj), a = 1] ≥ π[(n, αj+1), a = 1],
n = 0, · · · ,W − 1 and j = 1, · · · , P − 1. (18)

Expression (16) states that bursts of class 1 (the highest pri-
ority class) are always admitted as long as there are available
resources in the system. According to expression (17), the
optimal policy is such that the probability that a class-j burst
will be admitted (i.e., action a = 1 is taken) is a non-increasing
function of the system occupancy n. Finally, expression (18)
states that the probability that an arriving burst is admitted
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Fig. 1. Class thresholds, link load = 32 Erlang.

at a given state n is a non-increasing function of the burst
class (i.e., bursts of lower priority have lower probability to
be admitted than bursts of higher priority at a given state). For
our problem, we have also noticed that the optimal policy has
the same properties described in (16)-(18); however, we have
not been able to prove this result yet.

Expression (17) implies that for each class j, there is at
most one state Mj < W where 0 < π[(Mj , αj), a = 1] < 1;
we refer to this as the threshold state for class j. If a class-
j burst arrives to find fewer than Mj bursts in the system,
the burst is always accepted, and if it arrives to find more
than Mj bursts, it is always rejected. If, on the other hand,
the burst arrives to find exactly Mj bursts being served, then
it is accepted with probability π[(Mj , αj), a = 1], and it is
rejected otherwise. Similarly, expression (18) implies that the
threshold states are such that Mj ≥ Mj+1, j = 1, · · · , P − 1,
i.e., higher priority bursts are accepted in a larger number of
states than lower priority ones.

To illustrate the structure of the optimal randomized thresh-
old policy, we consider a single OBS link with W = 32
wavelengths and P = 3 classes of traffic. Classes 1 and 2
require a link loss guarantee of B�

1 = 10−3 and B�
2 = 10−2,

respectively. We assume that class-1 (respectively, class-2)
bursts represent 20% (respectively, 30%) of the traffic, and
the remaining traffic is best-effort. We let the rewards rj for
admitting a class-j burst take the values: r1 = r2 = 2, r3 = 1.

Figure 1 plots the thresholds for each class when the overall
link load ρ = 32 Erlang. As we can see, the threshold for class
1 is M1 = 31 and π[(M1, α1), a = 1] = 1.0; therefore, as long
as there is a free wavelength in the system, class 1 bursts are
always admitted. The threshold for class 2 is M2 = 31, and
π[(M2, α2), a = 1] = 0.121. Hence, class-2 burst will be
always admitted if the number of bursts being served is less
than 31; if there are exactly 31 bursts in service at the time a
class-2 burst arrives, it is admitted with probability 0.121, and
it is rejected with probability 0.879. The threshold for class
3 is the lowest, M3 = 23, and π[(M3, α3), a = 1] = 1; thus
class 3 bursts are admitted if n ≤ M3.

Figure 2 plots the class thresholds as a function of link load.
Since the threshold of class 1 is always M1 = 31, we only
plot the thresholds of class 2 and 3, respectively. As expected,
the thresholds of both classes decrease with the increase in
traffic load, in order to ensure that the loss rate for class 1
does not exceed the given threshold B�

1.



44 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

Class 3

Th
re

sh
ol

ds

24 25 26 27 28 29 30 31
Link Load

10

20

30

Class 2

Fig. 2. Class 1 and 2 thresholds vs. link load.

V. BEST-EFFORT LOSS MINIMIZATION SUBJECT TO QOS
CONSTRAINTS: THE SINGLE LINK CASE

Let us now consider the minimization of the loss rate of the
best-effort traffic class P , rather the maximization of weighted
throughput, as the optimization objective; as in the previous
section, the optimization is subject to the constraints that the
loss rate of each priority class i, i = 1, · · · , P − 1, not exceed
its guarantee B�

i . This objective aims to maximize the total
(unweighted) amount of traffic carried by the network subject
to the QoS constraints. We now show how to obtain optimal
randomized policies for this objective.

The problem of minimizing the loss rate of best-effort
traffic subject to the QoS constraints of guaranteed classes
can be formulated as a CMDP similar to the one described
in Section IV-A. Specifically, define the weights (rewards) rj

associated with the various traffic classes as:

rj =
{

0, j = 1, · · · , P − 1
1, j = P

(19)

In this case, the long-run average reward (10) earned by the
system is equivalent to the number of class-P (best-effort)
bursts accepted per unit of time; the cost functions Cj repre-
senting the fraction of class-j bursts, j = 1, · · · , P −1, remain
the same as in expression (11). Consequently, the optimization
objective (12) of the CMDP formulation in expressions (12)-
(13) is to maximize the fraction of accepted class-P bursts, or,
equivalently, to minimize the long-term average loss rate of
best-effort traffic. Since the new weights in (19) do not affect
the nature of the CMDP or the properties of the problem,
the techniques we presented in the previous section can be
applied directly to obtain optimal randomized policies for this
objective.

We emphasize that while we only consider two optimization
objectives in this work, namely, maximization of weighted
throughput and minimization of best-effort loss rate, the
CMDP formulation and solution approach of the previous
section are quite general. As such, they may be used to
obtain optimal wavelength sharing policies for a wide range of
objectives, subject to QoS constraints, as long as the objectives
and QoS constraints can be expressed as functions of the
policy actions at burst arrival and departure events similar to
expressions (10) and (11), respectively.

VI. WAVELENGTH SHARING POLICIES SUBJECT TO QOS
CONSTRAINTS: THE OBS NETWORK CASE

Typically, users (applications) are interested in the end-to-
end loss, rather than loss at individual links. Let us assume
that the end-to-end loss guarantees Be2e

j are given for all
guaranteed classes j. One approach to obtaining optimal
wavelength sharing policies for the OBS network would be to
formulate the problem as a CMDP for the network as a whole,
in a manner similar to the one we presented in Section IV.
However, there are several challenges with such an approach.
For instance, the action associated with a policy (i.e., accept
or reject a burst) must be modified since accepting a new
burst at the edge of the network does not mean that the burst
will not be later rejected at a downstream link before reaching
its destination. Therefore, determining the reward or cost of
each policy action may require keeping track of the history
of the burst as it traverses the network, hence destroying
the Markovian property. Even if this challenge were possible
to overcome, the state space of the process describing the
whole network increases exponentially with the number of
links, making the problem of determining an optimal policy
intractable.

Instead, we follow a sub-optimal approach that consists of
two phases and decomposes the network-wide problem into a
set of independent single-link problems. In the first phase,
we translate the end-to-end loss guarantees Be2e

j into link
loss guarantees B�

j , j = 1, · · · , P − 1. In order to keep link
management and configuration functions simple, we insist that
link loss guarantees B�

i depend only on the traffic class j, not
on the link �; in other words, each traffic class is provided the
same loss guarantee on all network links. The translation of the
end-to-end guarantees into link guarantees is performed using
the algorithm we developed in [14]. The algorithm determines
the link loss guarantees such that the end-to-end guarantees are
satisfied regardless of the specific path taken by the bursts, by
assuming that the length of all paths are equal to the diameter
of the network. Consequently, the network is over-provisioned,
in the sense that the per-link guarantees are quite stringent;
as a result, the actual end-to-end loss rate of the guaranteed
classes may be somewhat lower than the end-to-end guarantee,
as seen in Section VII-B.2. For a detailed description of the
algorithm, the reader is referred to [14].

Once the values of B�
j are obtained for all classes j, in

the second phase we use the techniques we described in
Section IV to obtain the optimal randomized policy for each
network link, independently of the other links. The simulation
study we present in the following section demonstrates that
this approach for tackling the problem for the network as a
whole, while sub-optimal, provides good results and outper-
forms previously proposed solutions.

VII. NUMERICAL RESULTS

In this section, we compare the following two policies:

1) CMDP policy. This is the optimal randomized threshold
policy from the constrained MDP (CMDP) formulation
we developed in Section IV. Specifically, we used the
simplex method to solve efficiently the corresponding
linear program [13], [15] and obtain the optimal policy.
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2) Generalized wavelength sharing (GWS) policy. We
introduced the parameterized GWS policy in [14], and
showed how to obtain near-optimal values for its param-
eters under this constrained objective.

We emphasize that the GWS family of policies is of particular
interest due to the following observations: (1) they belong to
a different class than the policies obtained through the CMDP
approach, (2) they include many previously proposed schemes
(including complete sharing and wavelength partitioning) as
special cases; and (3) they lead to efficient product-form
solutions for the steady-state probabilities (thus, obviating the
need for time-consuming simulation).

A. A Single OBS Link

Consider a single OBS link with W = 32 wavelengths
and P = 3 classes of traffic. Classes 1 and 2 require a link
loss guarantee B�

1 = 10−3 and B�
2 = 10−2, respectively. We

assume that class-1 (respectively, class-2) bursts represent 20%
(respectively, 30%) of the traffic, and the remaining traffic is
best-effort. There is no guarantee associated with the best-
effort traffic.

1) Constrained Maximization of the Weighted Throughput:
We let the reward values for the three classes be r1 = r2 = 2,
r3 = 1, and we compare the CMDP and GWS policies in
terms of the overall weighted throughput that they achieve,
subject to the QoS (loss rate) constraints. In particular, we
consider the GWS policy which maximizes the weighted
throughput

T =
3∑

j=1

rjλj(1 − bj)/µ, (20)

subject to:

b1 ≤ B�
1, b2 ≤ B�

2, (21)

where bj is the blocking probability for guaranteed class j
under this policy.

Figure 3 plots the weighted throughput against the link load.
The CMDP policy throughput is 5-15% higher than that of
the GWS policy. This result is due to statistical multiplexing:
the CMDP policy makes effective use of multiplexing, but the
GWS policy does not allow any sharing of wavelengths among
classes. Also, the CMDP throughput increases smoothly and
almost linearly with the link load, whereas the GWS through-
put curve is non-monotonic. The latter is due to the fact that
the GWS policy has a granularity of one wavelength; as the
load increases, it may have to shift one or more wavelengths to
higher priority classes, resulting in a decrease in throughput as
these wavelengths may not be utilized efficiently. The CMDP
policy, on the other hand, has the ability to allocate bandwidth
at an arbitrarily fine (i.e., sub-wavelength) granularity by
appropriately adjusting the probabilities of the threshold states
for each class. This unique feature affords the CMDP policy
a substantial flexibility in allocating bandwidth, and hence a
much higher degree of efficiency in utilizing the available
resources.
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2) Constrained Minimization of the Best-Effort Traffic Loss:
We also consider the objective of reducing the loss of the best-
effort class. As we discussed in Section V, the class rewards
for this objective are r1 = r2 = 0, r3 = 1. We assume the
same traffic and QoS parameters above.

Figure 4 displays the burst drop probability of each class
under the GWS and CMDP policies. As we can see, the
requirements of classes 1 and 2 can be guaranteed under both
policies. On the other hand, the burst loss for class 3 increases
with the link load, as expected. But whereas the class-3 burst
loss under the GWS policy is the highest across all load values
shown in the figure, under the CMDP policy, class-3 burst loss
is 70-80% lower for low to moderate traffic loads; while at
high loads, the burst loss rate of best-effort traffic under the
CMDP policy is roughly half that under GWS policy. These
results reflect the significant statistical multiplexing gains that
are possible with the CMDP policy. Note also that the CMDP
curves are much smoother than the GWS curves that exhibit a
seesaw behavior; this result is again due to the finer granularity
of the CMDP policy.
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B. The NSF and Torus Networks

We now use simulation to demonstrate the effectiveness of
the CMDP policies in providing end-to-end guarantees. For all
results shown, we estimated 95% confidence intervals using
the method of batch means. We used the simulator we devel-
oped as part of the Jumpstart project [12], [15]. The simulator
accounts for all the details of the Jumpstart OBS signaling
protocol [3], which employs the just-in-time (JIT) reservation
scheme, including all messages required to set up the path of a
burst and feedback messages from the network; the Jumpstart
signaling protocol has been implemented in a proof-of-concept
testbed on the Advanced Technology Demonstration Network
(ATDNet) [2]. The burst size is assumed exponentially dis-
tributed with mean equal to one, and is taken as the unit
of time in the simulation. The offset of each burst is set to
the product of the number of hops on the path of the burst
times the processing time at each intermediate switch, plus the
switch configuration time at the last switch. We do not use
larger offsets for bursts of higher priority; instead, priority is
taken into account when resolving contention according to the
CMDP and GWS policies, respectively.

In our experiments, we used two 16-node networks. The
4 × 4 torus network shown in Figure 5 is based on a regular
topology, while the network in Figure 6 is based on an
irregular topology derived from the 14-node NSF network.
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Each link in either network carries W = 32 wavelengths,
and there are P = 3 classes of traffic. Classes 1 and 2
require an end-to-end loss guarantee of Be2e

1 = 10−3 and
Be2e

2 = 10−2, respectively; class 3 is the best-effort class
and does not require any guarantees. We assume shortest path
routing, and we consider two traffic patterns:

1) Uniform pattern: each switch generates the same traffic
load, and the traffic from a given switch is uniformly
distributed to other switches.

2) Distance-dependent pattern: the amount of traffic be-
tween a pair of switches is inversely proportional to the
minimum number of hops between these two switches.

1) Constrained Maximization of the Weighted Throughput:
We first let the reward values be r1 = 100, r2 = 30, r3 = 1.
These values are selected to reflect the fact that higher priority
traffic is worth more, in terms of revenue, to the network
provider. Figures 7 and 8 plot the weighted throughput of
the NSF network for the GWS and CMDP policies and
the uniform traffic pattern, against the network load; similar
results were obtained for the distance-dependent pattern. As
Figure 7 shows, the throughput for the guaranteed classes is
almost identical under the two policies. The main difference
between the policies is in the throughput of the best-effort
class, which is up to 50% higher under the CMDP policy, as
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Fig. 10. Torus network, distance-dependent traffic, class 3 (best-effort).

shown in Figure 8. This result can be explained by noting that
when the reward of guaranteed traffic is high, both the GWS
and CMDP policies admit as much of this traffic as possible
subject to the loss constraints; hence the weighted throughput
for guaranteed classes will be the same under both policies.
The CMDP policy, however, achieves higher throughput for
the best-effort class due to statistical multiplexing gains as well
as the finer granularity at which it can allocate wavelengths
among the traffic classes. Also note that with the GWS policy,
class 3 throughput decreases as the load increases from 280-
360 Erlang. This behavior is due to the saturation of the
bottleneck links: as the load increases, an increasing number
of links have no wavelengths available for class-3 bursts, as
resources are reserved to satisfy the QoS of guaranteed classes.
On the other hand, due to statistical multiplexing, the CMDP
policy can provide service to the best-effort traffic even at
high loads; however, class-3 throughput saturates at very high
loads, as resources are needed for the guaranteed classes.

Figures 9-10 are similar to Figures 7-8, respectively, but
present results for the Torus network under the distance-
dependent traffic pattern and the same QoS parameters. Specif-
ically, The relative performance of the CMDP and GWS
curves are very similar to the one observed for the NSF
network. Indeed, the only significant difference between the
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two networks is due to the fact that the regular Torus network
can accommodate a higher offered load, and hence achieve a
higher weighted throughput, than the irregular NSF network,
the traffic-carrying capacity of which is limited by the exis-
tence of bottleneck links.

2) Constrained Minimization of the Best-Effort Traffic Loss:
Finally, we compare the CMDP and GWS policies under the
objective of minimizing the loss rate of best-effort traffic
subject to the usual QoS constraints for classes 1 and 2.
Figures 11 and 12 plot the results under the uniform and
distance-dependent traffic pattern, respectively, for the NSF
network; Figures 13 and 14 show similar results for the Torus
network. Each figure plots the burst drop probability against
the network load and contains a set of four curves for each
policy (CMDP or GWS): one burst drop probability curve for
each traffic class, and one curve for the overall burst drop
probability (i.e., the average burst drop probability over the
three classes) in the network.

As we can see, the relative behavior of the two sets of
curves for each policy is similar across all four figures.
Specifically, both the CMDP and GWS policies are able to
meet the QoS requirements for the two priority classes across
the range of loads shown, implying that both policies are
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effective in providing QoS guarantees. However, the results
also demonstrate that the CMDP policy is more efficient in
utilizing the available capacity and sharing it among the three
classes. In particular, the loss rate of best-effort traffic, as
well as the overall loss rate, is significantly lower under the
CMDP policy: at low load, the reduction in the best-effort
and overall loss rate over the GWS policy is close to one
order of magnitude lower, while at moderate to low load the
reduction can be up to 40-50%. More importantly, in most
cases the CMDP policy also achieves lower loss rates for the
two guaranteed classes, hence it improves the performance of
the network across all traffic classes.

The relative performance of the two policies is due to
two factors. First, the CMDP policy is optimal among the
class of randomized threshold policies considered here. On the
other hand, the parameters of the GWS policy are computed
using a heuristic, as the associated optimization problem is
intractable [14]; it is possible, therefore, that an optimal GWS
policy might perform closer to the CMDP policy. Second,
as we mentioned earlier, the CMDP randomized threshold
policy allocates bandwidth at sub-wavelength granularity by
adjusting the probabilities of the threshold states; while the
GWS policy operates at the granularity of a whole wavelength.

The advantage of the GWS policy is that it yields product-form
solutions for the link burst loss probabilities [14], whereas
such solutions are not possible for the CMDP policy.

C. Discussion of Results

Overall, the results we presented in this section demon-
strate that appropriate CMDP policies can be effective in
optimizing the overall performance of the network with respect
to various objectives, while meeting specified levels of QoS
for individual traffic classes. The CMDP policies were also
shown to outperform previously proposed schemes across the
network topologies and traffic patterns considered here. In
particular, by selecting the rewards for the various classes
appropriately, the CMDP policy can be adapted to optimize
a wide range of objectives. In general, when the reward
obtained for guaranteed classes is much higher than that for
the best-effort class (e.g., as in Figures 7-10), the increase in
throughput over the GWS policy is relatively small (as seen
in Figures 8 and 10), since both policies increase the amount
of guaranteed traffic as much as possible, subject to the loss
constraints. However, as the weight of the best-effort class
increases (e.g., as in Figures 3 and 11-14), the increase in
weighted throughput compared to GWS becomes significant.

The performance advantage of the CMDP policy is due
to its fine (i.e., sub-wavelength) granularity, which allows
it to allocate wavelength resources efficiently among the
various classes of traffic and exploit the resulting statistical
multiplexing gains. This fine granularity also permits the
policy to gradually re-allocate resources among traffic classes
as network conditions (e.g., load) change, resulting in the
smooth dynamics evident in Figures 3, 8, and 10. Also,
the CMDP policy is optimal within the class of randomized
threshold policies, hence it may serve as a benchmark for
other heuristic schemes. Finally, from a practical point of view,
the randomized threshold policy is easy to implement in core
network nodes.

VIII. CONCLUDING REMARKS

We have considered the general problem of optimizing the
performance of multi-class OBS networks subject to strict QoS
constraints in terms of the burst loss rate of each priority
class. We have formulated the problem as a constrained
Markov decision process (CMDP), and we have developed
techniques to obtain optimal wavelength sharing policies under
two performance objectives: maximization of the weighted
throughput and minimization of the best-effort loss rate. The
CMDP policies are in the class of randomized threshold
policies, hence they make it possible to allocate bandwidth
at fine (sub-wavelength) granularity; they are also practical to
implement and operate in a distributed manner. Consequently,
these policies can be an effective optimization tool in contexts
where it is important to provide isolation among multiple
classes of users while simultaneously making efficient use of
available network resources.
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