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Computing Blocking Probabilities in Multiclass
Wavelength-Routing Networks With Multicast Calls
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Abstract—We present an approximate analytical method
to compute efficiently the call-blocking probabilities in wave-
length-routing networks with multiple classes of both unicast and
multicast calls. Our approach involves the following steps. We
start with an approximate solution to a linear single-class unicast
network which we developed earlier. Next, all classes of calls on a
particular route are aggregated to give an equivalent single-class
model. We then extend the path decomposition algorithms that we
have developed for single-class networks to handle mesh networks
with multiple classes of calls. We show how to use these path
decomposition algorithms to decompose large networks with
multicast paths into smaller subsystems with only linear paths,
which, in turn, are solved by the product-form approximation
algorithm. We also consider a state-dependent Poisson arrival
process for multicast calls which is more accurate in capturing the
behavior of these calls.

Index Terms—Blocking probabilities, multicast, multiclass
networks, wavelength-division multiplexing (WDM), wavelength
routing.

I. INTRODUCTION

OPTICAL networks with wavelength-division multi-
plexing (WDM) have the potential of delivering an

aggregate throughput in the order of Terabits per second, and
they appear as a viable approach to satisfying the ever-growing
demand for more bandwidth per user on a sustained, long-term
basis [3]. An optical network architecture that appears
promising for backbone networks is the one based on the
concept of wavelength routing. The architecture consists of
wavelength routers interconnected by fiber links. A wavelength
router is capable of switching a light signal at a given wave-
length from any input port to any output port. By appropriately
configuring the routers, all-optical paths (lightpaths) may be
established in the network. Lightpaths represent direct optical
connections without any intermediate electronics. Because of
the long propagation delays, and the time required to configure
the routers, wavelength-routing networks are expected to
operate in circuit-switched mode.

A significant amount of research effort has been devoted to
addressing the set of issues that arise in the design of wave-
length-routing networks [3]. One problem that has attracted
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considerable attention is that of computing call-blocking
probabilities in such networks. Several variations of this
problem have been studied, mainly differing in the underlying
assumptions regarding the availability, type, and location of
converters, the routing algorithm, the wavelength allocation
policy, the traffic type, and the arrival process. A major dif-
ficulty in analyzing wavelength-routing networks is the tight
coupling between routing and wavelength allocation, which
is not present in conventional circuit-switched networks and
which requires the development of new analytical techniques.

The problem of computing call-blocking probabilities under
static or fixed alternate routing with random wavelength alloca-
tion and with or without converters has been considered in sev-
eral studies, including [1], [2], [5], and [10]. Other wavelength
allocation schemes, as well as dynamic routing, are harder to
analyze and have been considered in [6], [8], and [13]. All of
the above studies assume that either all or none of the wave-
length routers have full wavelength conversion capabilities. The
case ofsparseconversion, whereby only a subset of the set of
nodes are equipped with converters was studied in [10], while
limited conversion was considered in [11], where it is assumed
that all nodes are equipped with devices which can convert each
wavelength to only a subset of the supported wavelengths. Fi-
nally, the problem of routing and wavelength assignment when
the network carries multicast calls is addressed in [9], while an
analysis of call-blocking probabilities in multifiber networks ap-
peared in [7].

Most of the approximate analytical techniques developed
for computing blocking probabilities in wavelength-routing
networks and discussed above amount to the well-known
link decompositionapproach [4]. Further, the development of
some of the techniques is based on additional assumptions, for
instance, that statistics of link loads are mutually independent,
that link blocking events are independent, or that wavelength
use on each link is characterized by a fixed probability inde-
pendent of other wavelengths and links. Link decomposition
has been extensively used in conventional circuit-switched
networks where there is no requirement for thesamewave-
length to be used on successive links of the path taken by a
call. The accuracy of these underlying approximations also
depends on the traffic load, the network topology, and the
routing and wavelength allocation schemes employed. While
link decomposition techniques make it possible to study the
qualitative behavior of wavelength-routing networks, more ac-
curate analytical tools are needed to evaluate the performance
of these networks efficiently, as well as to tackle complex
network design problems, such as selecting the nodes where to
employ converters.
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Fig. 1. A k-hop path.

We have developed an iterativepath decompositionalgo-
rithm [15], [14] for analyzing wavelength-routing networks
with sparse conversion. A network with point-to-point calls is
decomposed into a number of path subsystems, each of which
is analyzed in isolation using an approximate algorithm. The
individual solutions are appropriately combined to form a
solution for the overall network, and the process repeats until
the blocking probabilities converge. Our approach accounts
for the correlation of both link loads and link blocking events,
giving accurate results for a wide range of loads and network
topologies. In this paper we extend the decomposition algo-
rithm in [14] to evaluate the blocking performance of optical
networks with multiple classes of calls and multicast traffic.
While previous studies have mostly focused on single-class
wavelength-routing networks, it is expected that future net-
works will be utilized by a wide range of applications with
varying characteristics in terms of their arrival rates and call
holding times. To the best of our knowledge, this is the first time
that multiclass wavelength-routing networks with multicast
calls have been analyzed.

In Section II, we describe the network model. In Section III,
we consider multiclass networks with unicast traffic, and in Sec-
tion IV we extend the analysis to networks with multicast traffic.
We present numerical results in Section V, and we conclude the
paper in Section VI.

II. THE MULTICLASS WAVELENGTH-ROUTING NETWORK

We consider a wavelength-routing network with an arbitrary
topology in which each link supports exactly wavelengths.
Unicast call requests arrive according to a Poisson process with
a rate that depends on the source-destination pair. In addition,
there are multicast calls between a source and a set of destination
nodes. The arrival of multicast calls is modeled by a state-de-
pendent Poisson process. There aredifferent classes of calls,
and an arriving multicast or unicast call belongs to one of theses
classes. Call-holding times are assumed to be exponentially dis-
tributed, with a mean that depends on the class of the call, as well
as on the source and destination nodes involved.

Some of the nodes in the network may employ wavelength
converters. These nodes can switch an incoming wavelength to
an arbitrary outgoing wavelength. If no converters are employed
in the path between the source and the destination, a unicast call
can only be established if thesamewavelength is free on all the
links used by the call; otherwise, the call is blocked. Similarly, a
multicast call can only be established in a network without con-
verters if the same wavelength is free on all links of the multicast
tree connecting the source to the destinations. If a call can be
accommodated, it is randomly assigned one of the wavelengths
that are available on the links used by the call. In a network with

converters, a wavelength is randomly assigned within each seg-
ment of a path whose starting and ending nodes are equipped
with converters.

Since our model is an extension of a model developed for
a single path, we introduce some relevant notation. A-hop
path (see Fig. 1) consists of nodes. Nodes and

are said to be connected by link (hop). Calls
originating at node and terminating at nodeuse hops
through , which we shall denote by the pair .
Calls between these two nodes may belong to one ofclasses,
and these calls are said to useroute . We also define the
following parameters for a path with no converters.

• is the Poisson arrival rate of calls
of class that originate at node and terminate at
node .

• is the mean of the exponentially distributed service
time of calls of class that originate at node and
terminate at node. We also let .

• is the number of active calls at timethat use route
belonging to class.

• is the number of wavelengths that are free on all
hops of segment at time . A call that arrives at time

and uses route is blocked if .

III. M ULTICLASS NETWORKSWITH UNICAST TRAFFIC

A. The Single-Class Single-Path Network

For completeness, in this section we review our previous re-
sults [14] for a single path of a network without converters; if
there are converters in some of the nodes in the path the state
description is slightly simplified, but everything else remains
valid, as shown in [14]. Consider the-hop path shown in Fig.
1. Let the state of this system at timebe described by the -di-
mensional process

(1)

Process is not time-reversible (see[14]), and this result
is true in general, when and . Since the number
of states of process grows very fast with the numberof
hops in the path and the numberof wavelengths, it is not pos-
sible to obtain the call-blocking probabilities directly from the
above process. Consequently, an approximate model was con-
structed in[14] to analyze a single-class-hop path. The approx-
imation consists of modifying the call arrival process to obtain a
time-reversible Markov process that has a closed-form solution.
To illustrate, let us consider the Markov process corresponding
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to a two-hop path .
We now modify the arrival process of calls that use both hops (a
Poisson process with rate in the exact model) to a state-de-
pendent Poisson process with rate given by

(2)

The arrival process of other calls remain as in the original model.
As a result, we obtain a new Markov process with the
same state space and the same state transitions as process,
but which differs from the latter in some of the state transition
rates. The intuition for the modification shown in expression (2)
can be found in [14].

Under the new arrival process, the Markov process is
time-reversible and the stationary vectoris given by

(3)

where is the normalizing constant for a-hop path
with wavelengths. Let be the marginal
distribution over the states for which

. It can be verified [14] that
. Likewise, for

a -hop path, , with the modified state-dependent Poisson
arrival process, the marginal distribution over the states for
which , is given by

(4)

It is easily seen that this distribution is the same as in the case
of a network with wavelength converters at each node. An in-
teresting feature of having wavelength converters at every node
is that the network has a product-form solution even when there
are multiple classes of calls on each route, as long as call arrivals
are Poisson and holding times are exponential [4]. Further, when
calls of all classes are assigned wavelengths from the same set,
we can aggregate classes to obtain an equivalent single-class
model with the same steady-state probability distribution over
the aggregated states, as we show next.

B. The Multiclass Single-Path Network

Let us now consider a-hop path with wavelength converters
at all nodes, and with classes of calls. If

is the arrival rate of calls of classon route ,
and is the mean of the
exponential holding time of calls of class, the probability of
being in state is

(5)

Let and . is the total number
of calls of all classes that use segment of the path, and
is the total offered load of these calls. Taking the summation of
(5) over all states such that , we
obtain

(6)

Observe that this is identical to the solution (4) for the
single-class case obtained by substitutingby and by

in (6). We conclude that by employing class aggregation
on a multiclass path with converters at all nodes, we obtain
a system equivalent to a single-class path with converters. In
Section III-A, we showed that the modified single-class wave-
length-routing network without converters has a steady-state
marginal distribution similar to the exact single-class network
with converters. We now show that a modified multiclass
network without wavelength converters can also be subjected
to class aggregation to obtain an equivalent single-class model.
The modification applied to the arrival process of calls is
similar to the single-class case, and it is given by

(7)

Then, by summing up the probabilities of all
states of the modified multiclass network such that

, the probability that the equivalent
single-class network without converters is in state

is given by

(8)

C. Blocking Probabilities in the Multiclass Case

Since the arrival rate of calls of each class on each
route is Poisson, the blocking probability, , of a
call of class using route is just the fraction of
time that there are no wavelengths that are free on all
hops along route (see thePASTA theorem in [12]).
Thus, , where
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, if , and zero otherwise. As can be
seen, the blocking probability is class-independent.

Next, we focus on the call-blocking probabilities in the mod-
ified model. The arrival process of calls of classon route

is a state-dependent Poisson process whose rate at time
, is a function of the state of the process and is

given by

(9)

The modified arrival process satisfies:

. By applying thePASTAtheorem
conditioned on being in state, the conditional call blocking
probability, , of calls of class on route is given
by the fraction of time spent in statein which there are no
wavelengths that are free on all hops of route . Therefore

if
otherwise

(10)

Let be the unconditional probability that a call of class
, on route gets blocked in the modified multiclass model.

This is given by

(11)

and is also independent of the class. Thus, by computing the
blocking probability on the equivalent single-class path, we can
obtain the solution to the multiclass path.

D. Multiclass Mesh Networks

The solution to single-class networks with a mesh topology,
wavelength converters at an arbitrary subset of nodes, and static
or fixed alternate routing, has been presented in [14]. This so-
lution involves decomposition of the network into short path
segments with two or three hops, and analyzing these approxi-
mately using expression (3), or the corresponding expression for
a three-hop path which can be found in [14]. The solutions to in-
dividual segments are appropriately combined to obtain a value
for the blocking probability of calls that traverse more than one
segment. The effect of the wavelength continuity requirement
is captured by an approximatecontinuity factorthat is used to
increase the blocking probability of calls continuing to the next
segment to account for the possible lack of common free wave-
lengths in the two segments (for details on the continuity factor
see [14]). The process repeats until the blocking probabilities
converge. By applying class aggregation, the same algorithms
may be used to calculate blocking probabilities for multiclass

networks. Specifically, we use these steps for a network with
classes of calls.

1) Path decomposition:Decompose the multiclass mesh
network topology into single-path subsystems using the
algorithm in [14].

2) Time-reversible process approximation: For each
single-path subsystem, modify the arrival process as in
(7) to obtain an approximate time-reversible Markov
process.

3) Class aggregation: For each path subsystem, apply
class aggregation to obtain an equivalent single-class
subsystem.

4) Calculation of blocking probabilities: For each sub-
system, obtain the blocking probabilities as follows. If the
path is at most three hops long, use (11) and (8) directly.
If the path is longer than three hops, decompose it into
two- or three-hop paths which are solved in isolation, and
combine the solutions to obtain the blocking probabilities
along the original longer path (see [14]).

5) Convergence:Repeat Steps 2 to 4, after appropriately
modifying the original arrival rates to each single-path
subsystem to account for the new values of the blocking
probabilities obtained in Step 4 (see [14]), until the
blocking probabilities converge.

IV. M ULTICLASS NETWORKSWITH MULTICAST CALLS

A. Multicast Calls With Poisson Arrivals

Let us now consider a network employing optical splitters
which can carry both unicast and multicast calls. A small set
of predetermined multicast trees is used for routing each multi-
cast call, and the call is blocked if no free wavelength is found in
any of the trees. Consider a multicast call fromto a set of desti-
nation nodes . There are two possibilities.
First, and all the destination nodes may lie on a single linear
path. Let and be the nodes at the extremities of this path.
For purposes of evaluating call blocking probabilities, this mul-
ticast session is equivalent to a unicast call between node
and . Let be the Poisson arrival rate of unicast calls
between nodes and be the mean of their expo-
nential holding time, and . Let be
the Poisson arrival rate of multicast calls from source nodeto
a set of destination nodes, be the mean of their ex-
ponential holding time and . Then, the given
multicast network can be analyzed as a unicast network with the
following simple modification: . The re-
sulting network may be analyzed using our path decomposition
algorithm.

In general, the source and destination nodes need not lie on a
single path. Even in this case, the multicast tree may be broken
up into several linear segments, such that each segment starts at
the source (or a branch node) and terminates at a branch node (or
a destination node). This network can be also analyzed using our
path decomposition algorithm by considering each segment of
the tree as a subsystem. In turn, each subsystem may be analyzed
as a unicast network after applying the modification above for
each multicast group using the subsystem. The blocking prob-
ability of a multicast call can then be expressed in terms of the
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Fig. 2. The NSF network.

blocking probability along the segments to which its tree has
been decomposed.

B. Multicast Calls With State-Dependent Poisson Arrivals

In practice, it is unlikely that there will be several concur-
rently active multicast sessions among the same set of source
and destination nodes. To account for this fact, we now consider
a state-dependent Poisson arrival model for multicast calls. Let
us assume that there may be at most one active multicast session
for each group, defined by the ordered pair , where

is the source node and is the set of destination nodes. The
ordered pair may also be used to represent the route of the
multicast group. Likewise, the route of a unicast call from node

to node is denoted by the ordered pair . Let represent
the total number of routes in the network for both unicast and
multicast calls.

We first consider the single-class case. Let be the
Poisson arrival rate of calls on a unicast route. Let
be the mean of the exponential holding time. Let be
the mean of the exponentially distributed time until the arrival
of a multicast call to group , conditioned on there being
no active sessions. The arrival process of multicast calls is,
therefore, state-dependent Poisson. Let be the mean of
the exponential holding time. We use a Poisson approximation
to obtain the blocking probabilities of this type of network,
which we now proceed to describe.

Suppose the wavelength-routing network has an unlimited
number of wavelengths. Then, the state of the network may just
be defined by the number of active calls on each route, including
multicast routes. Let be the number of active calls on
route at time . The state of the system at timemay, therefore,
be represented by . Let
represent the probability in steady state. When
there is an unlimited number of wavelengths, the Markov chain

has a product-form solution, and may be written
as: , where is the

TABLE I
ARRIVAL AND SERVICE PARAMETERS FOR

THE NSF NETWORK

marginal probability that the number of active calls on route
is in steady state. If is a unicast route, is given

by: . For
multicast routes, we have:

, and if . Thus, the
mean arrival rate of calls on multicast routeis given by

. We substitute this to obtain an approximate
state-independent Poisson arrival model for multicast calls.
Thus, the arrival rate of calls to multicast routeis assumed
Poisson with mean . Given these Poisson
arrivals, we can use the modification in Section IV.A to obtain
an equivalent single-class network. With a multiclass network,
we first apply the Poisson approximation to each class of
multicast calls with state-dependent Poisson arrivals. From
this, an equivalent single-class network may be constructed in
the same way as shown in Section III-B. Then, the modification
in Section IV-A is applied to this single-class network.

V. NUMERICAL RESULTS

In this section, we validate our approximate algorithm for
multiclass networks. First, we consider a network with unicast
traffic only and a topology similar to that of the NSF network,
shown in Fig. 2. There are 16 nodes and 240 unidirectional
routes. There are three classes of calls on each route. The ar-
rival and service rates of calls of a particular class are the same
on each route and are shown in Table I. The blocking probabil-
ities are plotted in Fig. 3 for four routes, as a function of the
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Fig. 3. Blocking probabilities for the NSF network.

number of wavelengths on each link. Route A is a single-hop
route from node 1 to node 5. Route B has two hops, connecting
node 1 to node 3 via node 2. Route C has three hops, connecting
node 1 to node 4 via nodes 2 and 3. Route D has four hops, con-
necting node 4 to node 5 via nodes 3, 2 and 1.

From Fig. 3 we can see that the blocking probability de-
creases as increases, as expected. We also observe that
the length of the path used by a call considerably affects the
blocking probability experienced by the call. Specifically, for
a given number of wavelengths, the blocking probability
increases with the number of hops in a route, such that calls on
Route A (a single-hop path) have the lowest blocking proba-
bility while calls on Route D (a four-hop path) the highest. Most
importantly, we can see that there is good agreement between
the analytical and simulation results. The results indicate that
our approximate method can be used to estimate accurately the
blocking probabilities for all calls in the network.

We also consider the 3 3 torus network in Fig. 4 with mul-
ticast calls. There are 18 one-hop unicast routes and 18 two-hop
routes, for a total of 36 unicast routes. There are six multicast
trees, each of which may be listed by the set of links they consist
of: ,
and . We assume these constitute routes 37 to 42.
Each multicast route is assumed to carry at most two concurrent
multicast calls. There are three classes of calls (unicast or
multicast) on each route. The arrival rate of calls on each
unicast route was set to 0.4, 0.6, and 0.5 calls per time unit for
Class 1, Class 2, and Class 3, respectively. The arrival rate of
calls on each multicast route, conditioned on there being no
existing multicast calls was set to 0.4, 0.6, and 0.5, for the three

Fig. 4. The 3� 3 torus network.

classes. Also, the mean holding time was set equal to ,
and time units, respectively.

In Fig. 5, we plot the call blocking probabilities obtained
through the approximation method and through simulation, as-
suming random wavelength allocation. The results obtained by
the approximate analysis are in close agreement to simulation
results for blocking probability values ranging from very high
(e.g., around 10 ) to very low (around 10 ). We also note that
both therelative and theabsolutedifferences in the blocking
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Fig. 5. Call blocking probability in torus multicast network.

probability values computed by the analysis and the simula-
tion are small, but the relative difference is larger for very low
blocking probability values as expected.

VI. CONCLUDING REMARKS

We have considered the problem of computing call blocking
probabilities in multiclass multicast wavelength-routing net-
works which employ the random wavelength allocation policy.
Our approach consists of modifying the call arrival process
to obtain an approximate multiclass network model with only
point-to-point calls, using class aggregation to map this to an
equivalent single-class network and employing path decompo-
sition algorithms on the latter to determine the call blocking
probabilities. Results similar to the ones presented here have
been obtained for a wide range of traffic loads and different
classes of calls, and for other network topologies. Overall, our
work demonstrates that path decomposition can be a practical
and powerful technique, allowing us to analyze networks with
multiple classes of point-to-point and multicast traffic.
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