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Traffic Grooming in Path,

Star, and Tree Networks:

Complexity, Bounds, and Algorithms

Shu Huang, Rudra Dutta, and George N. Rouskas

Abstract— We consider the problem of traffic grooming in
WDM path, star, and tree networks. Traffic grooming is a variant
of the well-known logical topology design, and is concerned
with the development of techniques for combining low speed
traffic components onto high speed channels in order to minimize
network cost. Our contribution is two-fold. In the first part of the
paper we present a wealth of results which settle the complexity
of traffic grooming in path and star networks, by proving
that a number of variants of the problem are computationally
intractable. Since routing and wavelength assignment in these
two topologies is trivial, these results demonstrate that traffic
grooming is itself an inherently difficult problem. Our results
have implications for ring and other more general topologies,
which we explore. In the second part, we design practical
grooming algorithms with provable properties. Specifically, for
all three topologies, we obtain a series of lower and upper
bounds which are increasingly tighter but have considerably
higher computational requirements; the series of upper bounds
forms an algorithm for the traffic grooming problem with strong
performance guarantees. We also present corresponding heuris-
tics with good performance. Our work is a first step towards
a formal and systematic approach to the grooming problem in
general topologies that builds upon results and algorithms for
more elementary networks.

Index Terms— Optical, networks, networking, traffic groom-
ing, virtual topology.

I. INTRODUCTION

AVELENGTH division multiplexing (WDM) technol-

ogy has the potential to satisfy the ever-increasing
bandwidth needs of network users on a sustained basis.
In WDM networks, nodes are equipped with optical cross-
connects (OXCs), devices which can optically switch a signal
on a wavelength from any input port to any output port,
making it possible to establish lightpath connections between
any pair of network nodes. The set of lightpaths defines a
logical topology, which can be designed to optimize some
performance measure for a given set of traffic demands. The
logical topology design problem has been studied extensively
in the literature. Typically, the traffic demands have been
expressed in terms of whole lightpaths, while the metric of
interest has been the number of wavelengths, the maximum
congestion level, or a combination of the two. The reader is
referred to [7] for a survey and classification of relevant work.
With the deployment of commercial WDM systems, it
has become apparent that the cost of network components
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is one of the dominant costs in building optical networks,
and is a more meaningful metric to optimize than, say, the
number of wavelengths. Furthermore, with currently available
optical technology, the data rate of each wavelength is on
the order of 2.5-10 Gbps, while 40 Gbps rates will be
commercially feasible in the near future. In order to utilize
bandwidth more effectively, new models of optical networks
allow several independent traffic streams to share the capacity
of a lightpath. These observations give rise to the concept of
traffic grooming [9], [23], a variant of logical topology design,
which is concerned with the development of techniques for
combining lower speed components onto wavelengths in order
to minimize network cost.

Given the wide deployment of SONET/SDH technology
and the immediate practical interest of upgrading this infras-
tructure to WDM, early research in traffic grooming focused
almost entirely on ring topologies [2], [8], [13], [14], [22],
[25], [28]. More recently, the development of MPLS and GM-
PLS standards makes it possible to aggregate a set of MPLS
streams for transport over a single lightpath. Consequently,
traffic grooming in arbitrary physical network topologies is
emerging as a research area of both theoretical and practical
significance. Although some work in this direction already
exists [19], [24], [29], various aspects of the problem remain
uninvestigated. In particular, more than heuristics, a formal,
systematic approach to the traffic grooming problem is needed
whose performance can be characterized, e.g., by tight upper
and lower bounds. A worthy goal would be to develop algo-
rithms with formally verified properties, that can be flexibly
and efficiently applied in a variety of optical network and cost
models.

In this paper we consider the problem of traffic grooming
in path, star, and tree networks. Our interest in such ele-
mentary topologies is two-fold. Despite their simplicity, these
topologies are important in their own right: star networks arise
in the interconnection of LANs or MANs with a wide area
backbone [21], while passive optical networks (PONs) [20]
and cable TV networks (which are increasingly used for high-
speed Internet access) are based on a tree topology. Our
work can thus be applied to these environments directly.
Also, algorithms with provable properties for more elementary
networks may be used to attack the traffic grooming problem
in general topologies. An example of such an approach can
be found in [8], where an algorithm with strong guarantees
for ring networks is based on a decomposition into path
segments. More recently, we have developed a framework for
hierarchical grooming of large general topology networks by
decomposing the network into clusters [3]. In this approach,
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we view each cluster as a virtual star, and we select a hub node
to groom all traffic originating and terminating in the cluster.
We apply a grooming algorithm for star networks, similar to
the one we describe in this paper, to groom intra-cluster traffic
within each cluster, independently of other clusters. At the
second level of the hierarchy, the hub nodes form a virtual star
for the purpose of grooming intra-cluster traffic. This approach
has been shown to provide good grooming solutions for large
networks [3]. While a decomposition of general topologies
into elementary ones is outside the scope of this paper, the
study of path, star, and tree networks can provide insight into
the general grooming problem.

We use the electronic switching cost model in this paper,
described in more detail in Section II-B. We have used the
same cost model in previously published research [6], [8]. A
related (but not equivalent) cost model is the count of ports
required at the electronic switches at network nodes; this is
also a useful model and has been used in research reported in
the literature. Our cost model is a comparatively finer-grain
representation of the electronic switching ability required of
a network node, because it does not penalize the termination
and origination of traffic at the network nodes, which is after
all the purpose of the network and should not be aimed to be
minimized by network design.

The electronic switching cost model also has the advantage
of representing the traffic-weighted delay in the network
exactly. In addition, with current developments in switch
technologies, this cost model might well be an accurate rep-
resentation of actual equipment cost. For example, the Cisco
ONS 15454 Multi-Service Transport Platform utilizes virtual
tributary cross-connect cards in its electronic part which can
flexibly switch different traffic components (VTs), and cards
can be added to increase the switching capacity. All the above
considerations lead us to the conclusion that this cost model
is worth study, and we adopt it in this paper.

Our main results are as follows. First, we formally show
that traffic grooming is an inherently more difficult problem
than logical topology design. Specifically, while routing and
wavelength assignment is straightforward in path and star
topologies, we prove a number of variants of the groom-
ing problem in these same topologies to be computationally
intractable. We also demonstrate the implications of these
results to ring and tree networks with nodes capable of full
wavelength conversion, i.e., when wavelength assignment is
not an issue. We then proceed to provide algorithms for
obtaining practical solutions with good properties for path,
star, and tree networks. For all three topologies, we obtain a
sequence of lower and upper bounds which permit a tradeoff
between the quality of the solution and the computational re-
quirements. The sequence of upper bounds yields an algorithm
with provable guarantees for the traffic grooming problem in
the corresponding topology. We also investigate simple greedy
heuristics for each topology, which we find to have good
performance.

In Section II we introduce the traffic grooming problem
and we present background results on wavelength assignment.
In Section IIl we present the main complexity results. In
Sections IV, V, and VI, we present upper and lower bounds on
the optimal solution, and we develop corresponding algorithms
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for path, star, and tree topologies, respectively. We conclude
the paper in Section VII.

II. PROBLEM DEFINITION

In this section we review the known results on the complex-
ity of the routing and wavelength assignment (RWA) problem,
the fundamental problem underlying the logical topology
design, and we introduce the traffic grooming problem.

A. The RWA Problem

From a graph theory perspective, an optical network is
viewed as a digraph G = (V,FE) where each (directed)
edge represents an optical fiber link between its endpoints.
A request r = [u,v], for a connection from node u to node
v, is satisfied by (i) assigning to r a path p, of links in G
from u to v, and (ii) assigning to p,. a wavelength to carry the
information over the links of p, (the path p, and associated
wavelength constitute a lightpath). Consider a multiset R of
connection requests. Then, the RWA problem is to satisfy all
requests in R in such a way that if two requests r and 7’ have
paths p,. and p,, respectively, that share a common edge, then
they are assigned different wavelengths. The goal is to satisfy
all requests in R using the minimum number of wavelengths.
In its pure form, the RWA problem assumes no wavelength
conversion, i.e., the same wavelength is assigned on all links
along the path p, of request r.

First note that if the network G is a tree, then every pair
of nodes is joined by a unique path; therefore, part (i) of
the RWA problem is trivial for the elementary topologies we
consider here. It is known then that wavelength assignment
to minimize the number of wavelengths can be solved in
polynomial time in paths and stars, but that it is NP-hard
in general trees. If GG is a path, part (ii) is equivalent to
the interval graph coloring problem, which can be solved
in linear time by a greedy algorithm [16]. If G is a star,
part (ii) is equivalent to finding a minimum edge coloring
in a bipartite graph, which is solvable in polynomial time by
combining theorems of Hall and Konig [26] (refer also to the
proof of Theorem 3.5 in Section III-C). If G is a general
tree, the problem of minimizing the number of wavelengths
is known to be NP-hard, even in special cases such as binary
trees [5]. Finally, the RWA problem is NP-hard in general
topologies [17].

B. The Traffic Grooming Problem

In order to utilize bandwidth more effectively, new models
of optical networks allow several independent traffic streams to
share the bandwidth of a lightpath. If the multiplexing and de-
multiplexing of lower-rate traffic components is performed at
the boundaries of the network only (i.e., at edge routers), and
the aggregate traffic transparently traverses the optical network
of OXCs, this problem is equivalent to RWA. However, it is in
general impossible to set up lightpaths between every pair of
edge routers, e.g., due to wavelength constraints or constraints
on the number of optical transceivers at each router. Therefore,
it is natural to consider optical networks in which nodes have
both optical (OXC) and electronic switching capabilities. Such
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nodes let some lightpaths pass through transparently, while
they may terminate others. Traffic on terminating lightpaths
may then be electronically switched (groomed) onto new
lightpaths towards the destination node. Introducing some
amount of electronic switching within the optical network
has two advantages: it significantly enhances the degree of
virtual connectivity among the edge routers, which otherwise
is limited by the number of optical interfaces at each router;
it may also drastically reduce the wavelength requirements
within the optical network for a given traffic demand. The
trade-off is an increase in network cost due to the introduction
of expensive active components (i.e., optical transceivers and
electronic switches). These observations motivate us to define
the following traffic grooming problem.

Let C be the capacity of each wavelength, expressed in units
of some arbitrary rate (e.g., OC3); we will refer to parameter C
as the grooming factor. Let N be the nuimber of nodes in the
network, and W be the number of wavelengths that each fiber
link in the network can support. We represent a traffic pattern
by a demand matrix 7' = [t;;], where integer ¢;; denotes the
number of traffic streams (each of unit demand) from node ¢
to node j. (We allow the traffic demands to be greater than
the capacity of a lightpath, i.e., it is possible that ¢;; > C' for
some 1%, j.) We emphasize that we take the size of a problem
instance to be on the order of (N + > irj t; ]‘), rather than the
amount of memory required to store the instance parameters
(e.g., the matrix of integers 7', the integer IV, etc).

Given matrix 7" on network G, the traffic grooming problem
involves the following conceptual subproblems (SPs):

1) logical topology SP: find a set R of lightpath requests,

2) lightpath routing and wavelength assignment SP: solve

the RWA problem on R, and

3) traffic routing SP: route each traffic stream through the

lightpaths in R.
We emphasize that this is a logical decomposition of the traffic
grooming problem, and an optimal algorithm must solve all
three subproblems simultaneously.

The goal we consider in this paper is to minimize the toral
amount of electronic switching at all network nodes. In this
cost model, every time a lightpath terminates at a network
node, one unit of cost is incurred for each unit traffic stream
carried by the lightpath if this stream has to undergo electronic
switching (i.e., the stream does not have this node as its
destination).

We note that the first and third subproblems together
constitute the grooming aspect of the problem. Also, in this
context, the number W of wavelengths per fiber link is taken
into consideration as a constraint rather than as a parameter
to be minimized.

A formulation of traffic grooming as an integer linear
problem can be found in [9].

III. COMPLEXITY RESULTS
A. Path Networks

We consider a network in the form of a unidirectional path
P with N nodes. There is a single directed fiber link from node
i to node i + 1, for each i € {1,2,---, N — 1}. An instance
of the traffic grooming problem is provided by specifying a
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Fig. 1. Example of path construction for the proof of Theorem 3.1, N =
2n+1, W =2

number N of nodes in the path, a traffic matrix T' = [t;;],1 <
1 < j < N, a grooming factor C', a number of wavelengths
W, and a goal F'. The problem asks whether a valid logical
topology may be formed on the path and all traffic in 7" routed
over the lightpaths of the logical topology so that the total
electronic switching over all path nodes is less than or equal
to F'. As we discussed above, we take the size of a problem
instance to be in the order of ( N + Zi,j tij ).

We first consider the case where bifurcated routing of traffic
is not allowed. Specifically, for any source-destination pair
(¢,7) such that ¢;; < C, we require that all ¢;; traffic units be
carried on the same sequence of lightpaths from source ¢ to
destination j. On the other hand, if ¢;; > C, it is not possible
to carry all the traffic on the same lightpath. In this case, we
allow the traffic demand to be split into L%j subcomponents
of magnitude C' and at most one subcomponent of magnitude
less than C', and the no-bifurcation requirement applies to each
subcomponent independently.

The following theorem settles the complexity of the traffic
grooming problem in paths. Our proof is more general, and
uses a reduction from a different NP-Complete problem, than
the one in [4]; the latter considered a special case where all
traffic is destined to the rightmost node in the path. As we
shall see shortly, our proof provides insight into the inherent
difficulty of the grooming problem.

Theorem 3.1: The decision version of the traffic grooming

problem in unidirectional path networks (bifurcated routing of
traffic not allowed) is NP-Complete.
Proof. The reduction is from the Subsets Sum problem [12].
An instance of the Subsets Sum problem consists of n ele-
ments of size s; € Z+ Vi € {1,2,---,n}, and a goal sum
B. The question is whether there exists a subset of elements
whose sizes total to B. Let By = max{B, ), s;—B}. (For the
purpose of the Subsets Sum problem, posing the instance with
B or Bj is equivalent.) Construct a path network using the
following transformation: N = 2n+1, W =2,C = Zl si+1,
F=mn),s; — B, and traffic matrix:

c+1, ie{,2,---,n—1}
U{n+1,n+2,---,2n},j=i+1
o = Bi+1, i=n,g=n4+lori=n+1,7=n+2
) C—B, i=n,j=n+2
Si, 1e€{l,2,---,n},j=i+n+1
0, otherwise

Due to the traffic components of magnitude C' + 1, both
wavelengths must be used to form single-hop lightpaths over
all physical links except the two central ones. Over the two
central links, at least one single-hop lightpath each must be
formed due to the traffic components of magnitude B; + 1;
this quantity is less than C for 0 < B < Zi s;, i.e., when the
Subsets Sum instance is non-trivial, and hence it can always
fit in one wavelength. The other wavelength may be used to
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form two single-hop lightpaths over these two links, or a single
two-hop lightpath over them. The electronic switching cost
in the former case is at least as large as in the latter case,
thus it suffices to consider the latter case. Thus, the logical
topology, i.e., the set of lightpaths R in the first subproblem
of Section II-B, may be considered forced on us by the
construction; this topology is shown in Fig. 1. On this logical
topology, each of the traffic components corresponding to the
object sizes of the Subsets Sum problem must be electronically
switched exactly n — 1 times at all nodes other than node
n + 1. At node n + 1, at most C units of traffic can be
optically switched, since only one lightpath passes through
optically. The C' — By units of ¢,, , 42 must be carried on the
wavelength that bypasses node n + 1, since traffic cannot be
bifurcated and the other wavelength does not have enough
capacity for it. Thus, there remains room for at most B; units
of the traffic corresponding to the object sizes of the Subsets
Sum problem to optically bypass node n + 1. To satisfy the
electronic switching goal F, at least this much traffic must
be optically passed through node n + 1, and because traffic
cannot be bifurcated, the electronic switching goal can be
satisfied iff there is a subset of objects in the Subsets Sum
problem instance whose sizes total to Bj, that is, iff the
Subsets Sum problem instance can be satisfied. Since deciding
the satisfiability of the Subsets Sum problem is NP-Complete,
the theorem is proved. ]

Because of the construction in the above proof, we have
the following corollary. This corollary demonstrates that,
even when solutions to the first two subproblems of the
traffic grooming problem (refer to Section II-B) are provided,
the problem remains NP-Complete by virtue of the third
subproblem (traffic routing). Therefore, traffic grooming is
inherently more difficult than the well-known NP-Complete
RWA problem.

Corollary 3.1: The decision version of the traffic grooming

problem in unidirectional path networks (bifurcated routing
of traffic not allowed) is NP-Complete even when a logical
topology is provided.
Note: Because of the construction in the proof of Theo-
rem 3.1, the only feasible assignment of the traffic to the
logical topology is the one that satisfies the grooming goal
F'. Thus, F' can be assigned a larger value without affecting
the satisfiability of the instance. In particular, using F' =
ny ., s;+C — By will have the same result. Since this is the
maximum possible electronic switching cost for the problem
instance (every traffic component is electronically switched at
every intermediate node), it is also proved that the problem
of deciding whether a given logical topology admits of any
feasible routing of traffic at all is also NP-Complete.

We now extend the above results to the case where bifur-
cated routing of traffic is allowed. Specifically, a traffic com-
ponent ¢;; is allowed to be split into various subcomponents
which may follow different routes (i.e., different lightpath
sequences for a path network) from source to destination. The
bifurcation is restricted to integer subcomponents.

Theorem 3.2: The decision version of the traffic grooming
problem in unidirectional path networks (bifurcated routing of
traffic allowed) is NP-Complete.

Proof. The proof is appended as Appendix I.
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Again, by the nature of the proof, we have the following
corollary.

Corollary 3.2: The decision version of the traffic grooming
problem in unidirectional path networks (bifurcated routing of
traffic allowed) is NP-Complete even when a candidate logical
topology is provided.

Let us now consider the implications of these results for
related topologies, bidirectional path networks, and ring net-
works (unidirectional and bidirectional). The implications for
ring networks are of practical importance, even though the NP-
hard nature of traffic grooming for ring networks has already
been demonstrated. In particular, it is known that the RWA
problem in rings is NP-hard [27]. However, the following
lemmas show that even if all ring nodes are equipped with
wavelength converters (in which case wavelength assignment
is trivial), traffic grooming remains a difficult problem. We
state below three lemmas which settle the question for these
topologies without proof. In each case, the proof is straight-
forward and can be obtained by an appropriate restriction of
the traffic matrix. The interested reader is referred to [18].

For bidirectional paths, we assume that between every two
adjacent nodes there are now two links, each carrying W
wavelengths, in opposite directions. Traffic components are
now allowed from every node to every other node, not just
in a single direction, as we have assumed so far. A traffic
component is allowed to be carried from source node s to
destination node d on a sequence of lightpaths some of which
are in one direction and some in the reverse direction; thus a
traffic component may traverse the same link multiple times in
either direction. It is clear, however, that a traffic component
must traverse the outgoing link from node s in the direction
in which node d lies at least once, and the incoming link to
node d from the direction in which node s lies at least once.

Lemma 3.1: The decision version of the traffic grooming
problem in bidirectional path networks (in both the cases of
bifurcated routing of traffic allowed and not allowed) is NP-
Complete.

Lemma 3.2: The decision version of the traffic grooming
problem in unidirectional ring networks (in both the cases
of bifurcated routing of traffic allowed and not allowed) is
NP-Complete, even when every node has full wavelength
conversion capability.

Lemma 3.3: The decision version of the traffic grooming
problem in bidirectional ring networks (in both the cases
of bifurcated routing of traffic allowed and not allowed) is
NP-Complete, even when every node has full wavelength
conversion capability.

Considering that the goal of the grooming problem (in
unidirectional paths) with bifurcation allowed is bounded by
a polynomial of the number of nodes and the maximum
traffic component, the problem obviously is not amenable to a
fully polynomial time approximation scheme (FPTAS) unless
P = NP. However, it might be hoped that approximation
algorithms may exist for some useful approximation ratios.
We show below that this is not true.

Theorem 3.3: Constant-factor approximation of the opti-
mization version of the unidirectional path network grooming
problem (bifurcated routing of traffic allowed) is NP-hard.

An instance of the problem is provided exactly as for the
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proposition for the decision problem of traffic grooming with
bifurcation allowed. Now the problem is to find the grooming
solution which produces the minimum amount of electronic
routing.

Proof. The proof is appended as Appendix II.

Since general network topologies, including most interest-

ing topology families such as spiders, rings, grids, tori etc.
contain the path network as a subfamily, the above result
shows that it is not practical to attempt optimal or constant
ratio approximate solutions to the grooming problem in these
cases. The only topology family which does not include the
paths is a star topology. We consider star networks next,
and show that the problem is again NP-Complete. Whether
approximations are possible for star networks is a question
that remains open at this time.
Note: An approximation algorithm for ring network grooming
is given in [15], and an optimal algorithm for some values
in [1]. However, these results do not contradict ours, because
in both cases the restrictive assumption is made that traffic can-
not be switched between lightpaths of different wavelengths
even when two such lightpaths have endpoints at the same
node. This is equivalent to the assumption of no SONET cross-
connects as in [4]. In addition, the study in [1] addresses only
the all-to-all unitary traffic pattern.

B. Star Networks

We consider a network in the form of a star S with N +1
nodes. There is a single hub node which is connected to every
other node by a physical link. The N nodes other than the hub
are numbered from 1 to [V in some arbitrary order, and the hub
node is numbered 0. Each physical link consists of a fiber in
each direction, and each fiber can carry W wavelengths. The
grooming factor C, the traffic matrix 7" = [¢;;], and the goal
F' have the same significance as before.

In a star network, no node except for the hub switches
traffic, either electronically or optically. In other words, the
hub is the only node which sees traffic neither originated by,
nor destined to, itself. Thus, there will be only two kinds
of lightpaths in the logical topology: single-hop lightpaths
which either originate at a non-hub node and terminate at
the hub, or vice versa; and two-hop lightpaths that originate
and terminate at non-hub nodes, and are switched optically at
the hub. Bifurcation of traffic may or may not be allowed,
giving two flavors of the problem; if it is allowed, then
the bifurcation must be in integer subcomponents only. The
question is whether a valid logical topology and assignment
of all traffic in T to the lightpaths of the logical topology
can be found which results in F' or less electronic switching
at the hub. Note that the logical topology design and traffic
assignment can be simply expressed as deciding which of
the traffic components between non-hub nodes are allocated
a lightpath and which are electronically switched through the
hub on two single-hop lightpaths: a two-hop lightpath from
node ¢ to j can only carry traffic from component ¢;;, thus
the traffic assignment is implicit in the logical topology.

Theorem 3.4: The decision version of traffic grooming in
star networks is NP-Complete.

Proof. The proof is appended as Appendix III.

C. Tree Networks

The traffic grooming problem in trees is NP-Complete, since
the RWA subproblem is NP-Complete [5]. However, the fol-
lowing result shows that traffic grooming remains intractable
even when all interior tree nodes are equipped with wavelength
converters.

Corollary 3.3: The decision version of traffic grooming in
tree networks is NP-Complete, even when every interior tree
node has full wavelength conversion capability.

Proof. This result follows from Theorem 3.4 since the tree can
be restricted to the star. In particular, the proof of Theorem 3.4
goes through even if wavelength conversion is available at the
hub node of the star. |

While the RWA problem in tree networks is NP-Complete,
even for logical topologies in which no lightpath is longer
than three physical hops [17], to the best of our knowledge,
the complexity of the RWA problem for logical topologies
with single-hop and 2-hop lightpaths has not been settled. The
next theorem formally proves that this special RWA problem
in trees is, in fact, tractable. We use this result for developing
heuristic approaches to the traffic grooming problem in tree
networks in Section VI.

Theorem 3.5: Any logical topology containing no light-

paths longer than two physical hops on a tree network has
a valid wavelength assignment using no more than L wave-
lengths, where L is the maximum lightpath loading on any
directed link in the tree, and such an assignment can be found
in polynomial time.
Proof. Consider all the interior nodes of the tree, and arbi-
trarily designate one of them to be the root. This establishes
a parent-child partial ordering throughout the tree. Traverse
the interior nodes of the tree in some order not violating this
partial order. At each node, consider only the 2-hop lightpaths
which optically pass through that node. From the point of view
of the node, these lightpaths are similar to lightpaths in a star
network of which this node is the hub. (Note that each 2-hop
lightpath is in exactly one of these star networks.)

We know such a set of lightpaths is always possible to color.
The wavelength assignment procedure is, in brief, as follows:
consider a bipartite multigraph, in which the set of nodes in
each part corresponds to the set of star network nodes other
than the hub, and the arcs correspond to the lightpaths. Then,
the graph is at most L-full because of the lightpath loading
condition. Therefore the set of arcs can be partitioned into
at most L 1-factors (subsets containing arcs without common
nodes) [26]. The arcs of each 1-factor can be colored using
the same color, therefore L colors suffice to color all the arcs.
However, many actual colorings are possible by permuting the
colors among the 1-factors.

Consider the star network seen by the root of the tree. The
lightpaths in this network can be colored by arbitrarily picking
L colors out of the available ones, where L is the maximum
number of 2-hop lightpaths traversing any directed link to
which the root is connected. Now consider each child ¢ of the
root, and let L; denote the 2-hop lightpaths passing through
this child and either terminate or originate at the root. Child
¢ of the root must be able to color these 2-hop lightpaths
similarly, using no more than L, colors. But all the colors
may not be available on the link connecting the root to node
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1, because they have been used by the coloring chosen by the
root. However, some L; colors must be available, because we
assumed that L colors are available on each link, and we must
have Lo+ L; < L, otherwise the loading on that link exceeds
L. Thus, some wavelength assignment exists for each child
reconciling that chosen by the root. This strategy continues to
hold for each parent and its children, thus the entire topology
can be colored. The core of the algorithm consists of at most
N —2 repetitions of the star wavelength assignment algorithm,
which is polynomial; therefore so is this algorithm. ]

IV. BOUNDS AND ALGORITHMS FOR PATH NETWORKS

In order to derive bounds on the optimal solution to the
traffic grooming problem, we note that a path can be viewed
as a ring network with one link removed. In [8], a sequence
of upper and lower bounds on the optimal solution for ring
networks was obtained by decomposing the ring into path
segments. Each (upper or lower) bound in the sequence
improves over the previous one, but it takes increasingly longer
computational time to obtain. Furthermore, the sequence of
upper bounds represent solutions to the traffic grooming
problem whose performance is precisely characterized. The
decomposition is effected by considering certain ring nodes
to be completely opaque, i.e., insisting that no lightpaths
optically pass through these nodes; in essence, opaque nodes
electronically switch all traffic passing through them. For
details, the reader is referred to [8].

The exact same approach can be used to obtain a sequence
of increasingly tighter lower and upper bounds for path
networks. In this case, the path is decomposed into smaller
segments by making some of the nodes completely opaque. In
particular, each upper bound k,k = 1,2,---, in the sequence
is obtained as the amount of electronic switching in some log-
ical topology in which the distance between adjacent opaque
nodes is no more than & links apart; the logical topology is
obtained by optimally solving the traffic grooming problem
for all path segments between opaque nodes. For £ = 2,
the logical topology is such that either all the odd-numbered
or the even-numbered nodes are opaque, i.e., it consists of
either single-hop or two-hop lightpaths. It is straightforward
to verify (refer also to [8]) that the upper bound corresponding
to kK = 2 is no worse than one-half the worst-case amount
of the electronic switching in a completely opaque topology,
i.e., when all lightpaths are single-hop. This result is used in
the next section to develop an algorithm with performance
guarantees.

A. A Greedy Heuristic

We now present a simple greedy heuristic for the case
when bifurcation of traffic is allowed. Before we proceed,
we introduce the concept of reduction of a traffic matrix.
Specifically, we reduce the matrix 7" so that all elements are
less than the capacity C of a single wavelength, by assigning
a whole lightpath to traffic between a given source-destination
pair that can fill it up completely. The available wavelengths on
the links of the path segment from the source to the destination
node are also decremented by the number of lightpaths thus
assigned. Since breaking such lightpaths would increase the
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electronic switching cost by C', and since any benefit we can
get by having that wavelength available for grooming traffic
cannot exceed C, this procedure does not preclude us from
reaching an optimal solution'. We continue using the same
notation for the traffic matrix and traffic components, but
in what follows they stand for the same quantities after the
reduction process.

Consider the logical topology obtained by assigning a
lightpath to each non-zero traffic component ¢;; of the reduced
traffic matrix 7. We will call this the completely transparent
topology. If this logical topology is feasible, i.e., the number
of wavelengths required does not exceed the number of
wavelengths available at any link of the path network, then
it is also optimal since the electronic switching cost is zero.
Typically, however, this topology will be infeasible; to obtain a
feasible topology traffic must be groomed, that is, some traffic
components must be carried over a sequence of lightpaths from
source to destination, rather than on a direct lightpath. Based
on these observations, the greedy algorithm consists of the
following steps:

1) List the non-zero multihop components of matrix 7" in
some order, and let ¢;; be the first component in the list.
2) Determine a sequence of lightpaths (I1,---,l.) over
which to route component ¢;;. The sequence of light-
paths is such that the source of /; is node ¢, the desti-

nation of [, is node j, and for each k,k =1,---,r—1,
the destination of lightpath /;, is the source of lightpath
lt1-

3) For each lightpath [ in the sequence of Step 2, let s
and d be its source and destination nodes, respectively;
add an amount of traffic equal to ¢;; to the component
tsd-

4) Set the traffic component ¢;; to zero.

5) Reduce the new traffic matrix 7" using the procedure
we described above (note that by adding ¢;; units of
traffic to some components may make them larger than,
or equal to, C).

6) If the completely transparent topology corresponding
to the new, reduced traffic matrix T is feasible, stop.
Otherwise, repeat from Step 1.

The performance of the algorithm depends on (a) the order
in which the traffic components are listed in Step 1, and (b)
how the sequence of lightpaths (I3, - - -, I,-) over which to route
a traffic component is determined in Step 2. After extensive
experimentation with a number of rules, we have found that
the following one works well and is the one we use: list traffic
components in the order of the distance they travel; break
ties by listing smaller components first, and break further ties
arbitrarily.

Let t;; be the component selected at Step 1 of the algorithm;
initially, this is carried on a direct lightpath [ from ¢ to j.
Let (m,m + 1),i < m < j, be the most congested link
in the path of this component. Consider the logical topology
that provides the second upper bound, as we discussed in the
previous subsection. In this topology either node m or node

! Although reduction does not affect optimality in this case, we note that
reduction may preclude reaching an optimal solution in general topologies or
in other variants of the traffic grooming problem.
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m + 1 is opaque. We have two versions of the algorithm,
as follows. In the first version, we break lightpath [ at either
node m or node m — 1, whichever is opaque; as a result,
the component is carried on two lightpaths, one from ¢ to the
opaque node among m — 1 and m, and one from the opaque
node to j. In the second version, we break lightpath [ at the
same node as in the first version, and either at node m + 1 or
node m + 2, whichever is opaque. In this case, the component
is carried on three lightpaths, one from ¢ to the opaque node
among m — 1 and m, a two-hop lightpath to the next opaque
node, and finally on another lightpath to j. In both versions, if
the first (respectively, last) link is the most congested one, we
break the lightpath only at the first (respectively, last) opaque
node other than the source (respectively, destination) node.

The running time of both versions of the algorithm is
O(N3). The algorithm is guaranteed to do no worse than
the logical topology that provides the second upper bound;
the proof is straightforward and is omitted. However, the
algorithm can actually do much better than this upper bound,
since when it terminates some components may be carried
over lightpaths longer than two hops.

B. Numerical Results

The performance measure of interest in our study is the
normalized electronic switching cost of a solution. The nor-
malized electronic switching cost is defined as the total amount
of electronic switching for this solution, expressed as a fraction
of the amount of electronic switching for the completely
opaque logical topology, i.e., when all traffic is carried on
single-hop lightpaths. Consequently, the lower the value, the
better the grooming effectiveness of an algorithm.

Figs. 2-3 plot the normalized electronic switching cost for
a number of path problem instances with N = 30 nodes,
W = 10 or 80 wavelengths, and grooming factor C' = 32
or 128. Each figure shows results for 30 different instances.
The instances in Fig. 2 were randomly generated such that the
traffic pattern is distance-independent (i.e., uniform pattern),
while those in Fig. 3 were randomly generated to follow a
distance-dependent traffic pattern such that traffic demands
increase with the distance between source and destination
nodes. The figures do not show the lower bounds because, due
to computational considerations, for the large path networks
we consider here, we were able to obtain only a part of the
series of lower bounds, and these are always zero. Since a
path is a special case of a ring, the reader is referred to [8]
for an extensive study of the behavior of the lower bounds in
rings of various sizes.

As we can see, both versions of the algorithm have very
similar performance across all instances, with the first version
performing slightly better than the second one; this is due to
the fact that the first version carries each component over two
lightpaths (instead of three for the second version), incurring
less electronic switching cost. We also observe that both
versions perform better than the topology that provides the
2-hop opaque upper bound (0.5), and that in some cases
the solutions obtained by the algorithms have a normalized
cost around 0.1-0.15, well below the upper bound. Through
extensive experimentation, we have found that the difference
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in the normalized cost values between the two figures is not
due to the traffic pattern, but rather due to the grooming factor
used. Specifically, a larger grooming factor C' leads to higher
values of normalized electronic switching cost since when a
lightpath is broken, a large number of traffic components will
have to be electronically switched.

We have obtained results very similar to the ones shown in
Figs. 2-3 for a wide range of values for the parameters IV, C,
and W, and for various traffic patterns. We conclude that it
is possible to obtain good solutions to the traffic grooming
problem for long paths with modest computational effort.

V. BOUNDS AND ALGORITHMS FOR STAR NETWORKS

The search space of the problem is quite large: for N non-
hub nodes, each of the N (N — 1) traffic components may be
either electronically switched at the hub or optically bypass
it, and a brute-force algorithm would have to evaluate a space
of 2N(N=1) combinations. Many of these would not be valid
solutions; we use the term “valid” to denote solutions which
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do not violate any wavelength or traffic constraints, and hence
can actually be implemented as a logical topology. A partial
solution (i.e., one which defines some lightpaths but leaves
others indeterminate) is called valid if there is at least one valid
complete solution of which the partial solution is a subset.

We now present an algorithm which builds solutions incre-
mentally, visiting each possible solution exactly once while
avoiding any invalid solution. We employ pruning techniques
to further reduce the search. While the average case is im-
proved, the worst case running time of the algorithm remains
very large. However, the incremental nature of the algorithm
allows practical benefits to be obtained without completing
the exhaustive search. We demonstrate how increasingly good
bounds, both upper and lower, may be obtained with succes-
sively more computation.

A. Examining Solutions

Our strategy is to examine partial or complete solutions
to a given problem instance in the form of a traversal of
a tree formed by the partial solutions. Pruning is applied
on this tree to reduce the search space, as in standard tree
searches and branch-and-bound methods [12]. However, the
key idea of our approach is to construct the tree in a manner
that significantly reduces the search space. Specifically, only
valid solutions (complete or partial) are allowed to appear in
the tree. Among these, our aim is to examine more of those
which are maximally useful. In what follows, we consider the
traffic matrix 7" after the reduction process we described in
Section IV-A.

Consider an N x N mask matrix M = [m;;], the rows
(respectively, columns) of which correspond to the N rows
(resp., columns) of the traffic matrix 7" other than the row
(resp., column) that includes traffic components originating
(resp., terminating) at the hub. In the mask matrix, every
element outside the diagonal has one of two values: “E” or
“0. (The traffic from a node to itself is always zero, thus
the diagonal elements can be safely ignored.) A mask matrix
stands for a proposed solution to a given problem instance.
A value of “E” for m;; indicates that the corresponding
traffic component ¢;; is carried on two single-hop lightpaths
to its destination in this solution, and thus, it is electronically
switched at the hub. On the other hand, a value of “O”
indicates that the traffic component is carried directly to its
destination node on a two-hop lightpath, and it is optically
routed by the OXC at the hub.

There are 2V(N=1) possible mask matrices for a given
traffic matrix. To create a natural progression in which can-
didate solutions may be examined, we introduce the concept
of partial mask matrices representing partial solutions. We
introduce a third value of “U” (for “unassigned”) that the
partial mask matrix elements may take, which simply indicates
that the partial solution does not specify whether the corre-
sponding traffic component should be electronically switched
or optically routed. It may appear that we have actually made
the problem harder, by increasing the search space to 3V (V=1
However, this actually allows us to create an efficient search
algorithm; since a partial mask matrix stands for multiple
complete solutions (all combinations of “E” and “O” for the
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Fig. 4. Generating the search tree for a star network.

“U” elements), pruning such a matrix as we describe below,
can eliminate a large number of complete solutions.

We traverse a binary search tree in which each vertex is
a mask matrix, such as the one shown in Fig. 4. All ver-
tices other than leaf vertices represent partial mask matrices,
whereas leaf vertices are complete mask matrices. (Due to
pruning, some non-leaf vertices may become complete mask
matrices as well, as explained below.) We start with a partial
mask matrix in which all elements have the value “U”, or
unassigned; this matrix forms the root of the search tree. We
generate level ¢ + 1 of the tree by selecting a single traffic
component and generating two children for each vertex at
level ¢, one for which the corresponding element of the partial
mask matrix is set to “E” and one for which it is set to “O”. For
instance, in Fig. 4, partial mask matrices B and C (the second
level of the tree) are derived from partial matrix A (the root)
by changing the element in the first row and second column of
matrix A from “U” to “E” and “O,” respectively. Let II; denote
the ordering (t1, 9,3, - -) such that level i of the search tree
is generated by setting the mask element corresponding to ;.
A complete search will always generate a full binary tree of
depth N(N —1), and will generate all possible complete mask
matrices as leaves, no matter what II; is. However, we may
wish to stop before generating the full tree and extract partial
information in the form of bounds; also, pruning will allow
us to avoid generating all the leaves even for an exhaustive
search. In these cases, changing the ordering II; would change
the bounds we obtain, or the amount of pruning possible; thus
the search is characterized by II;.

1) Pruning for Invalidity: Some mask matrices represent
invalid solutions to the problem instance. For example, if a
mask matrix has W elements of the same row set to “O”,
it indicates that W two-hop lightpaths are to be set up from
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the corresponding node to other non-hub nodes. But if even
one of the other NV + 1 — W traffic components sourced by
that node is non-zero, then such a solution is invalid because
there is no wavelength left to carry this traffic. Hence, for each
non-hub node ¢ of the star network, the conditions in Eq. (1)
and (2), shown at the top of the next page, must be satisfied for
any valid (partial or complete) mask matrix M. In the above

expressions, I(OS d)(M ) and I(OS d)(M ) indicate whether the

mask element m 4 is “O” or not. Specifically, I(()Sd)(M) is 1if

3 (13 ta] 3 . : d . . . . .
msq 1s “O”, otherwise it is 0; I((JS )(M) is its inverse indicator.

We have also used W, (i) < W and Wy (i) < W to denote the
number of wavelengths available for node ¢ to originate and
terminate lightpaths, respectively, after the reduction process
mentioned in Section IV-A. The term in parentheses in the
right-hand side of (1) represents the number of wavelengths
that are available at non-hub node i to source traffic (the term
W, (i)) and the two-hop lightpaths already specified in matrix
M (the sum within the parentheses). Therefore, the right-hand
side of (1) is the available outgoing traffic capacity on the link
from node 7 to the hub. The left-hand side of (1) is the traffic
demand out of node ¢ that has not been assigned to a two-hop
lightpath in matrix M, including the traffic to the hub node.
This total traffic demand must be at most equal to the capacity
of the available wavelengths for matrix M to represent a valid
partial solution. Expression (2) is similar, but refers to the
traffic demands and capacity to (rather than from) node i.

As we generate the search tree, we can avoid generating the
invalid cases by applying (1) and (2). Whenever we generate a
new mask matrix by changing the status of a traffic component
t; from “U” to “O”, it may be that another element ¢; (which
currently has the value of “U”) cannot be set to “O” as
well without violating the above conditions. (Only elements
in the same row or column as the mask element ¢; need be
examined.) In this case, ¢; being set to “O” forces some t;
in the same row or column to be “E”, and we set the mask
matrix accordingly. Returning to Fig. 4, we note that matrix
C is generated by changing the element in the first column
and second row of matrix A to “O” from “U”. Assuming an
appropriate problem instance, changing this element to “O”
forces two other elements, one in the same row and another
in the same column to be changed to “E”; thus, matrix C
differs from matrix A in three positions rather than one. In
doing so, in effect we prune the part of the search tree which
contains partial mask matrices with ¢; set to “O” and ¢; either
“O” or “U”. A mask element being set to “E” does not force
any other traffic element, so there is no corresponding pruning
in that case.

A special case of this pruning may be applied at the root
of the search tree, if there are traffic elements that cannot be

assigned to two-hop lightpaths in any valid solution. Thus,
we set the corresponding mask elements to be “E” at the
beginning, and start with the resulting partial mask matrix at
the root, instead of one with every element set to “U”.

2) Pruning for Suboptimality: With the above method, we
create a search tree in which only mask matrices correspond-
ing to valid solutions appear. We now outline how to prune
the tree of certain suboptimal mask matrices, further reducing
the search space.

A partial mask matrix corresponding to an internal vertex of
the search tree has some elements still set to “U”. In general,
all of these elements cannot be set to “O” without violating the
conditions (1) and (2). However, if the partial mask matrix is
“close” to a solution in the sense that most resource conflicts
have been already resolved in it, then it may be possible to
set all “U” elements to “O”. This is equivalent to pruning
the entire subtree rooted at the vertex representing the partial
mask matrix, and replacing it with the leaf vertex of that
subtree which yields the optimal solution within that subtree.
An example of this pruning in Fig. 4 is in going from matrix
B to matrix D.

A second method of pruning suboptimal solutions is the
familiar one applied in branch-and-bound techniques. Let £
denote the set of vertices of the tree for which no children
have been generated yet. As we show in the next section, we
can extract upper and lower bounds on the value of the best
solution that can be obtained in the portion of the tree rooted
at any vertex v € L. Hence, we can safely prune the subtree
rooted at a vertex v if the lower bound obtained from v is
greater than the upper bound obtained from at least one other
vertex in L.

The operation of the algorithm using the above procedures
is illustrated in Fig. 4. We show the search tree generated up to
three levels. In this example, N = 4 and the first three traffic
elements of the ordering II; are t15,%13,%14. Matrix A is the
starting partial mask at the root with all elements set to “U.”.
Matrices B and C are generated from A by setting the mask
element mjo to “E” and “O,” respectively. In C, this forces
two other mask elements, mi4 and myso, to become “E,” due
to pruning for invalidity. The same kind of pruning is observed
when generating E from B and G from C respectively, at the
next level; in both cases, m3 is set to “0,” which forces two
traffic components to be set to “E” in mask E and one in G.
D is generated from B by setting m;3 to “E”; this results in a
partial matrix which yields a valid mask when all remaining
“U” elements are set to “O.” This new mask matrix replaces D
due to pruning for suboptimality. The next level is generated
by the traffic element ¢14; all four partial masks D, E, F and
G produce a single child identical to themselves because the
mask element mq4 is already set in each of them.
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B. Bounds

Despite the pruning procedures described above, the com-
putation required to complete the exhaustive search for any
given problem instance may still be intractably large. We now
describe how to extract lower and upper bounds on the optimal
value of electronic switching from any intermediate state of the
tree. For ease of discussion, we assume that the intermediate
trees are those resulting from generating the tree fully up to
a given level and no further.

1) Upper Bounds: In general, a matrix at the tree vertex
v € L will have some elements set to “E” and “O”, and some
“U.” We can always generate a valid solution from such a
matrix by converting all the “U” to “E.” Furthermore, the best
solution in the subtree rooted at v cannot be any worse than
this. Let us denote the value of electronic switching obtained
from this “pessimistic” solution as ) (v):

po)= >

s,de{1,---,N},s#d

teaIS? (v) 3)

Then, 1(v) is an upper bound on the best (lowest) amount of
electronic switching that can be obtained from the solutions in
the subtree rooted at v. Let us denote by £; the set £ obtained
after generating the tree completely up to level i. Then we can
define a series {¥;} of upper bounds as:

U, = irellﬁnl Y(v) )

Let ug and up be the two children of v, ug is the matrix in
which the traffic component, say m;, generating the new level
is set to “E” and up the one in which it is set to “O.” There
are three possible cases:
1) m,; was set to “U” in v, therefore both ur and uo are
present; in this case ¥(ug) = ¥ (v), and ¥ (up) < P(v).
2) m,; was set to “E” in v because of an earlier pruning for
feasibility; then, up is generated, and ¢ (ug) = 9 (v).
3) m; was set to “O” in v because of an earlier pruning
for suboptimality; only uo is generated, and ¥(ugp) =
¥(v).
Thus, we assert that min{¢(ug), ¥ (vo)} < ¥(v). Since
every vertex v € L; generates children to form £, 1, we have
that {U;} is a strong sequence of upper bounds:

Vi <V, Viel2 - NN-1)-1 Q)

2) Lower Bounds: We can similarly obtain a lower bound
on the best objective value under v by taking the most
optimistic completion of v, i.e., by turning every “U” into
a “0”; no complete valid solution in the subtree rooted at v

can yield a lower objective value. Let Igd)(M ) be 1 if mygq

is “E” in v, and O otherwise; ](;d) (M) is its inverse indicator.

We now define the lower bound as the optimistic objective

value ¢(v):
2

s,de{1,---,N},s#d
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Whereas 1/(v) represents a valid solution and therefore is an
objective value that can actually be attained, ¢(v) in general is
not an attainable value. As before, we define {®;} as follows:

@, = min §(v) %
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Using arguments similar to those made for { ¥, }, we can assert
that {®;} is a strong sequence of bounds:

B> P, Vi€l 2 N(N-1)-1 (8

3) Tightness of Bounds: Consider node v € L;. ¢(v) is
obtained by setting all the “U” elements of v to “O,” while
¥ (v) is obtained by setting the same elements to “E.” Thus,
the difference between these two quantities is equal to the
sum of the traffic components corresponding to the mask
elements which are set to “U” in v. At level i, the first ¢
traffic components in II; have already been used to generate
the tree, thus the corresponding mask elements cannot be
“U” in v. (The other elements may be “U”, but this is not
guaranteed because of the pruning methods we follow.) We
use o;(I1;) to denote the sum of the first ¢ elements of
II;,i = {1,2,---,N(N — 1)} and let 0o(II;) = 0. Then we
have:

P(v) —d(v) <

Z tsd
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Let vg be the vertex which determines the value of ®,, that is,
¢(vep) = D,. Equation (9) holds for ve, and also ¥; < ¥ (ve).
Combining these observations, we assert that:

\I/i — ‘I% < Z tsq
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—o;(IL;) (10)

For the fastest convergence, II; should be an ordering of the
traffic components from the largest to the smallest. Then,

?
) > — t,
g ( t) = N(N — 1) de{lgN} L d
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Thus, the performance of the valid solutions which produce
our sequence of upper bounds can be precisely characterized,
since we can rewrite the guarantee (10) as:

Z tsq
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Ui —@; < (1 - 12)

v -n)

C. A Greedy Heuristic

The framework of upper bounds allows us to evaluate other
heuristic solutions, both as to how closely they approach
the optimal, and as to the relative amounts of computation
needed. We now describe one greedy heuristic for which we
have empirical evidence that it performs quite well (refer to
Section V-D).

We start by reducing the traffic matrix as we described in
Section V-A. We then create an ordering II; of the traffic
components in which the traffic components are sorted in
order of magnitude, from largest to smallest, with ties broken
arbitrarily. The greedy algorithm attempts to assign two-
hop lightpaths to traffic components in this order. A traffic
component is assigned a lightpath if it is possible without
violating the constraints (1 and 2), otherwise it is not. The
algorithm terminates when each traffic component has been
considered. The complexity of the greedy algorithm is O(N?).
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By combining the framework of upper bounds we propose
with the greedy approach above, we can create a scheme which
will practically have better performance than the upper bounds
themselves, though it is not straightforward to characterize the
amount of improvement. As described, the greedy algorithm
assumes that no decision regarding electronic or optical rout-
ing has been made for any traffic component; this is the equiv-
alent of starting with a mask matrix in which every element
is “U.” However, it is straightforward to modify the algorithm
so that it starts with a matrix in which some elements are “O”
or “E.” In this case, the algorithm completes the matrix by
simply skipping any traffic components which have already
been decided (i.e., the corresponding mask element is “O”
or “E”) when assigning lightpaths. Since the “pessimistic”
completion described in Section V-B.1 sets all unassigned
mask elements to electronic routing, the greedy completion
can do no worse and may possibly do better. Since the greedy
completion of the partial solution corresponds to a feasible
solution, the value of total electronic switching obtained is
still an upper bound on the optimal. Thus, we define a series
of upper bounds {\Ilgg)} based on this idea. As before, we
choose to define a new series of upper bounds {¥?} based on
this idea:

' = min @ (v) (13)

vEL;
where (%) (v) denotes the electronic switching value obtained
from the greedy completion of a partial mask matrix v. By a
similar argument as used for {U;}, {\Ilgg)} is also a strong
sequence of upper bounds.

D. Numerical Results

We characterize a traffic matrix for a star network by two
parameters: the loading factor and the amount of hub traffic.
The loading factor is the sum of all the traffic components
expressed as a percentage of the total bandwidth available in
the network (i.e., the total bandwidth of all the fiber links).
For low values of loading, the network is underutilized; such
networks are not interesting as it is likely that every traffic
component can be given a lightpath. For 100% loading, only
traffic components equal to C' can be given a lightpath; all
other traffic must be electronically switched at the hub. The
interesting and most realistic operating condition is when the
loading factor is just under 100%, so that opportunities for
grooming exist without the problem being trivial; thus, we
present results for a loading factor of 90%. The amount of
hub traffic is the (average) fraction of the total traffic on each
link that is accounted for by traffic to and from the hub. We
present results for two values of the hub traffic, 30% and 60%.

Figs. 5 - 7 plot the normalized electronic switching cost
of the series of upper and lower bounds against the level
of the search tree. For the results shown in these figures we
have used W = 24 wavelengths, C' = 16, and the number of
non-hub nodes N = 6, 10, 20. Three curves are shown in each
figure, one for the series {®;} of lower bounds, one for the
series {¥;} of upper bounds, and one for the series {\Ilgg )} of
upper bounds (denoted as “Greedy enhanced” in the figures)
computed by applying the greedy algorithm to complete a
mask matrix rather than the pessimistic completion used for
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Fig. 6. Star result: N = 10, 30% hub traffic

{W;}; by definition, this last series will always outperform
the original series {¥;} of upper bounds. We observe that the
sequence of upper and lower bounds do indeed converge to
the optimal relatively quickly. For N = 6,10, we were able
to reach the optimal within a few minutes of computation on
a SUN Sparc-10 workstation; in these cases, the “Greedy en-
hanced” algorithm also finds the optimal solution, as expected.
In fact, the optimal is reached before all levels of the search
tree are considered (for N = 6 the maximum number of levels
is 30, and for N = 10 it is 90). For N = 20, we terminate
the algorithm after examining one million candidate solutions;
note that this is a tiny fraction of the 23%° possible solutions.
For most cases with N = 20, the optimal was not reached,
and this is demonstrated in Fig. 7, where the lower and upper
bounds have not converged. We also observe that the series
{\Ilgg )} of upper bounds outperforms the series {¥;}. In fact,
in all our experiments we have found that the greedy algorithm
always performs well.
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VI. BOUNDS AND ALGORITHMS FOR TREE NETWORKS
A. Decomposition into Star Networks

The leaf nodes of a tree network do not route traffic either
electronically or optically, and we concentrate on the interior
nodes. Consider an interior node p of tree 7, and the set
of nodes {q1,¢2, " -,qn} adjacent to p in 7. We define the
(n+41) x (n+1) matrix 7(5») = [Ti(f)] as in expression (14),
shown at the top of the next page. This matrix represents the
traffic of the tree 7 seen from the point of view of interior
node p. Now consider 7S») as the traffic matrix for a star
network S,,. The hub node of this star network sees exactly
the same traffic scenario as that seen by node p in the tree
network, and we refer to S, as the “decomposed star network”
for node p.

In the star, no node other than the hub does any electronic or
optical routing. Thus, the optimal value of electronic switching
for the star denotes the optimal (minimum) value of the
electronic switching by the hub node of the star only. Since
node p is locally in the same traffic scenario as the hub of
its decomposed star network, this is the minimum amount of
electronic switching that node p can perform in the tree 7
under any logical topology and traffic grooming solution. We
denote this quantity by ¢7(p); thus ¢7(p) is the value of
electronic switching that would be obtained by solving the
decomposed star S, optimally. We also note that {®;} and
{\I'Z(.g)} for the star S, are upper and lower bounds on its
optimal electronic routing value and hence on ¢7(p).

B. Heuristic Based on Star Decomposition

We now show how to obtain a feasible solution to the tree
network using the solutions for the star network. We call an

interior node of the tree network opaque if it switches all
traffic electronically. (Conversely, if a node performs optical
routing without any restriction other than traffic and wave-
length constraints, we call it a transparent node.) As with
the star, we can create a feasible logical topology in which
no node routes any traffic optically. All traffic at all interior
nodes is routed electronically, creating a completely opaque
topology as before. Since this is a feasible topology, the
amount of electronic switching performed in this topology is
an upper bound on the optimal; in fact, it is the loosest such
bound because there is no logical topology in which more
electronic switching will need to be performed. Let the amount
of electronic switching an interior node p does as an opaque
node in the tree be 7 (p). Then, the completely opaque upper
bound is given by ¥ = 3> ¢ (p).

However, realistically we would like to use the optical
routing capability of the nodes and create a solution to the
tree network in which the amount of electronic switching
to be performed is reduced from the maximum at least at
some nodes. Recall that ¢7(p) is the minimum amount of
electronic switching node p can do locally. However, to attain
this value, the traffic to/from other nodes from/to node p must
be groomed according to the optimal solution to S®). For
two interior nodes p and ¢ which are adjacent, it will not in
general be possible to simultaneously attain ¢7(p) and ¢7(q)
as electronic switching values, because the optimal solutions
of the two decomposed stars will in general require the same
traffic component in the tree to be groomed differently. For
this reason, the lower bound we derived in the last section will
in general be unattainable.

To examine what combinations of star decompositions may
nevertheless be useful in creating feasible solutions for the tree
network, consider a decomposed star network for an interior
node p. The hub node corresponds to p, whereas the other
nodes of the star correspond to the nodes of the tree that are
adjacent to p in 7. Some of these nodes may be leaf nodes
of the tree, in which case the solution to the decomposed star
may be transferred to the tree without any change. However,
in general some of the non-hub nodes of the star will be
other interior nodes of the tree, and will have their own star
decompositions. To create a feasible solution to the tree, we
must adopt some method of reconciling the star solutions for
adjacent interior nodes of the tree. We now propose one way
of doing this.

An opaque node electronically switches all traffic that
passes through it. Therefore, traffic components can be rear-
ranged and reassigned to lightpaths arbitrarily at such a node.
It is easy to see that the conflict between star solutions to
adjacent interior nodes does not arise if the decomposed star
for one of the interior nodes is solved optimally while the other
one is left as an opaque node. In other words, if we interpose at
least one opaque node between every two transparent nodes of
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Fig. 8. Tree result: N = 90 — 150, W = 200,C = 32

the tree (for which we solve the decomposed star optimally),
then there is no problem in combining the corresponding star
solutions.

In such a solution, each node p performs either ¢ (p)
amount of electronic switching (the best possible), or 7 (p)
(the worst). For the best topology which utilizes a combi-
nation of transparent and opaque nodes, we would like to
choose the nodes such that we get the greatest benefit in
terms of electronic switching. Specifically, we would like
to find the set of nodes N; to be designated as transparent
nodes, (composed of pairwise non-adjacent interior nodes)
such that 3° . (17 (p) — ¢7(p)) is maximized. This problem
is equivalent to finding a maximum weight independent set in
a tree network, which is solvable in polynomial time using a
recursive algorithm. Therefore, using this algorithm, we can
obtain the optimal set of nodes N;, and hence the optimal
decomposition of the tree network into stars.

C. A Greedy Heuristic

We now describe a greedy heuristic for tree networks.
Because the sequence of feasible solutions we have proposed
above get progressively more costly to compute, efficient
heuristics would be valuable; and because our solutions never
form lightpaths of more than two hops, it is possible that
heuristics which are allowed to form longer lightpaths will
outperform these solutions in specific cases.

We first list the traffic elements in descending order. The
heuristic attempts to optically route the traffic components in
this order. In other words, it considers each traffic component
in the list and attempts to assign an end-to-end lightpath for it
(i.e., one that originates at the source node and terminates at
the destination of the component). This attempt may fail for
one of two reasons: either there is no free wavelength on the
path from source to the destination, or, even if such a wave-
length is available, reserving a lightpath for this component
would not leave sufficient bandwidth at some intermediate
link to accommodate the rest of the traffic that must flow
over that link. In the latter case, the algorithm abandons this
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Fig. 9. Tree result: N = 50 — 150, W = 200,C = 32

component, and continues with the next one on the list. If, on
the other hand, the failure is due to wavelength availability,
a lightpath is formed up to the intermediate node where a
continuous wavelength is available, and then the rest of the
path is tried similarly. The algorithm terminates when all
traffic elements have been examined. Traffic components not
assigned to lightpaths because of lack of sufficient bandwidth
are carried on single-hop lightpaths from source to destination,
undergoing electronic switching at all intermediate nodes.

D. Numerical Results

Figs. 8 and 9 plot the normalized electronic switching cost
of the solutions using the star decomposition and the greedy
algorithm for thirty problem instances. Each instance in Fig. 8
was generated to have a number IV of tree nodes between 90
and 150, W = 200, and C' = 32. Each interior tree node has
between 3 to 5 children, thus the number of leaf nodes (likely
to represent traffic endpoints) is a large fraction of the total
number of nodes. The depth of each tree is at most equal to 4,
the fraction of leaf-to-leaf traffic is between 50-60%, and the
average link loading is 10%. Traffic demands were randomly
generated to follow a distance-dependent traffic pattern such
that traffic decreases with the distance between the source and
destination nodes (i.e., traffic components were drawn from
distributions with means inversely proportional to the path
length). Each instance in Fig. 9, on the other hand, has between
50 and 150 nodes, W = 200, and C' = 64; the fraction of leaf-
to-leaf traffic is between 80-90%, and the average link loading
is 5%.

As we can see, the star decomposition has a normalized
electronic switching cost of between 0.3 and 0.5. The greedy
heuristic, on the other hand, sometimes performs better than
the decomposition, and sometimes worse. It is more oppor-
tunistic in taking advantage of the specific nature of a problem
instance, whereas the star decomposition provides a more
robust guarantee of reasonably good performance. Since the
running time of the heuristic is low, it would be reasonable
to run both algorithms and select the best solution. We have
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obtained similar results for a wide range of problem instances,
all with the same general nature. More numerical results can
be found in [10] by the interested reader.

Overall, the numerical results for all three topologies (paths,
stars, and trees), indicate that significant gains in terms of
electronic switching costs can be achieved by appropriate
traffic grooming.

VII. CONCLUDING REMARKS

We considered the traffic grooming problem in WDM path,
star, and tree topologies with the objective of minimizing the
amount of network-wide electronic switching. We established
that a number of variants of the grooming problem are NP-
complete for path and stars, and we also showed that it remains
so in tree and ring networks even in the presence of wave-
length converters. We have obtained lower and upper bounds
on the objective function for both star and tree networks, and
we have presented a set of heuristics for all three topologies
that perform well across a wide range of traffic patterns and
loads.

APPENDIX I
PROOF OF THEOREM 3.2

The reduction is from the Multi-Commodity Flow (MCF)
problem in three-stage networks with three nodes in the
second stage, which has been proved NP-Complete in [11].
An instance of the problem consists of three sets N7, Na, N3,
of nodes forming the first, second, and third stage, respectively,
of a simple staged network (with |[N2| = 3), a set of directed
arcs E C (N7 x N2) U (My x Nj3), each of unit capacity,
and a set of flow requirements @ C (N7 x N3), each of unit
magnitude. The question is whether a feasible flow assignment
satisfying the flow requirements exists.

We construct a path network with as many nodes as the three
stage network, with a one-to-one correspondence between
the nodes of the staged network and those of the path, as
illustrated in Fig. 10. We define the following quantities. Let
A be the set of all ordered node pairs (i, j) of the path network
such that (s, d) € E for the staged network, where i is the path
node corresponding to s and j is the path node corresponding
to d. Similarly, let B be the set of all ordered path node pairs
(i,7) of the path network such that the corresponding pair
(s,d) € @ for the staged network. For the link from path
node i to i+ 1,4 € {1,2,---,N — 1}), let w; = |{(l,k) :
(I,k) € Al <,k > i+ 1}|. That is, w; is the number of
arcs that would cross the link from 7 to 7 4 1 if the arcs of
the staged network were drawn between corresponding nodes
of the path network. We construct a path network using the
following transformation: N = [N1|+3+ N3], C = |Q| + 2,
W = max;{w;}, F' = |Q)|, and traffic matrix:

-1, (i,j) € A

b= 1, (i,j7) € B

) (W —w)C, 1e{1,2,---,N—-1},j=i+1
0, otherwise

That is, each arc of the staged network generates a traffic
component of magnitude C' — 1(= |Q| + 1), and each flow
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requirement of the staged network generates a traffic compo-
nent of magnitude 1, between the corresponding nodes of the
path network.

Because the magnitude of the traffic components corre-
sponding to the arcs of the staged network are each |Q|+1, the
goal cannot be achieved if even one of these traffic components
is completely electronically switched. Thus, at least one unit
of traffic for such a traffic component must be optically routed,
and this is true of every such traffic component. Hence, for
the goal to be achieved, the logical topology must include at
least one direct lightpath for each of these traffic components.
That is, any logical topology satisfying the goal must include
at least one lightpath with source node ¢ and destination j for
each node pair (¢, j) € A. However, exactly one such lightpath
for each (i,j) € A can be formed, since, together with the
W — w; single-hop lightpaths that must be formed over each
link from node ¢ to ¢ 4+ 1 to carry the single-hop traffic, they
will occupy every wavelength on every link. In other words, a
complete logical topology is forced. On this logical topology,
the single-hop lightpaths are completely occupied with the
single-hop traffic. Each of the lightpaths (7, j) € A must carry
the entire traffic from ¢ to j, since there are only lightpaths
from one ‘“stage” to another in the path, and so are the
traffic components. The remaining bandwidth and remaining
traffic components are exactly the ones corresponding to the
arc capacities and flow requirements, respectively, of the
MCEF 3-stage problem instance. Every possible path for every
traffic component involves exactly one intermediate node from
source to destination, thus if it is at all feasible to route the
traffic, the electronic switching goal will be met. Therefore, the
path network grooming problem instance is satisfiable iff the
MCEF problem instance is. Since the MCF problem is known
to be NP-Complete, so is the path grooming problem. |

APPENDIX II
PROOF OF THEOREM 3.3

The reduction is from the same Multi-Commodity Flow
used in the proof of Theorem 3.2.

Suppose that we have a polynomial time approximation
algorithm M which has approximation ratio Ry (I) < oo for
the traffic grooming problem instance I with OPT(I) > 0,
where OPT(I) is the optimal value. (Excluding the cases
where OPT(I) = 0 does not change the intractability of the
problem, since those cases are trivially solvable.) It implies
that there would be a polynomial time algorithm M satisfying
Ry (I) = Oﬂlf—(TI()I) < K, where, M(I) is the result returned
by the algorithm M, for some positive integer K > 1. Then
construct the instance I as follows: For any given instance
ITMCFE of the MCF problem, we add K|Q| dummy nodes to
N>. We name them as D={D, ... D|q}. First we define
the following sets: A and B are sets of node pairs exactly as
before. Let H be the set of all ordered node pairs (s,d) of
the path network such that either (s € M} and d = Dy) or
(s = Dgjq| and d € N3). Let L be the set of all ordered
node pairs (s,d) of the path network such that s = D;,d =
D;y1,Viel,2,...,K|Q| — 1.

Then we construct a path network with as many nodes as the
three stage network, exactly as in the proof of Theorem 3.2,
with the following additions.



80 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 4, APRIL 2006

(a)

(b)

Fig. 10. Example of path construction for the proof of Theorem 3.2: (a) 3-stage network instance, (b) corresponding path instance together with the forced

logical topology, W = 6

For the link from node i to i+1 (¢ € {1,2,...,... N—1}),
let w; = |{(s,d) : (s,d) € AUHUL,s < i,d>1i+1}.
Construct a path network using the following transformation:
N = [NM1|+3+K|Q|+ N3], C = K|Q|+2, W = max;{w;},

C -1, (s,d)e AUH
f(sd) _ 1, (s,d) € B

W —wi+1)C—1Q|, (s,d)eL

(W —w;)C, d=s+1,(s,d) ¢ L

All other traffic components are zero, and F' = |@Q|. Since
K is independent of I, this construction is in polynomial time.
Since the traffic t(*) = 1, (s,d) € B, can always be routed
as {s,D1,...,Dg|q|,d}, M(I) will always return a feasible
solution.

If M(I) < K|Q]|, it implies that none of the traffic com-
ponents of magnitude K|Q| + 1 is completely electronically
routed. Thus at least one unit of traffic for such a traffic
component must be optically routed, and this is true of
every such traffic component. Hence the virtual topology must
include at least one direct lightpath for each of these traffic
components. That is, any virtual topology satisfying the goal
must include at least one lightpath with source node s and
d for each node pair (s,d) € AU H U L. However, exactly
one such, together with the W — w; single-hop lightpaths that
must be formed over each link from node ¢ to 7 + 1 to carry
the single-hop traffic, will occupy every wavelength on every
link; thus a complete virtual topology is forced.

Furthermore, if even one traffic component in B is routed
through the route {s,Di,..., Dg|q,d}, it will introduce
exactly an amount of electronic routing K |Q|. Since |Q| > 2
(again we exclude only trivial cases), we have K|Q| > 2.
Therefore the amount of electronic routing is at least K|Q| +
|Q| — 1, which is larger than K|Q|. Hence, M(I) < K|Q)|
implies that no traffic component in B is routed by the
route {s, D1, ..., Dg|q|,d}, which, in turn, implies that the
instance IMYF is satisfiable.

On the other hand, if M(I) > K|Q), since 5pwily < K,
then |Q| < OPT(I), i.e., the instance of IMCSJ is not
satisfiable. Thus, using the algorithm M, we can solve the
MCEF problem in polynomial time. Obviously, if we assume
that P # N P, then M cannot exist. [ |

APPENDIX IIT
PROOF OF THEOREM 3.4

Recalling that the problem consists of deciding which traffic
elements are routed optically and which are not, we recognize
that requiring the electronic switching at the hub to be F' or
less is equivalent to requiring that the optical routing at the hub
be ) or more, where (Q = 2%21 t;j — F. In what follows,
we use () rather than F' for notational convenience.

We reduce the decision version of the Knapsack prob-
lem [12] to the grooming problem. An instance of the Knap-
sack problem is given by a finite set U of cardinality n,
for each element u; € U a weight w; € Z7T, and a value
v; € ZT Vi € {1,2,---,n}, a target weight B € Z*, and a
target value K € Z . The problem asks whether there exists
a binary vector X = {z1,x2, -+, x,} such that > | z;w; <
B, and 2?21 x;v; > K. Given such an instance, we construct
a star network using the following transformation: N = n—+2,
W =n, C =max;(w;+v;)+1,Q = K+ i (C—w;—v;),
and traffic matrix:

C — wj, i=n+1,j=12,---n
C—w]'—’Uj, i:n—|—2,j:1,2,~-~,n
Sh_qwy—B, i=n+1,j=0

0, otherwise

In the resulting star network, the only traffic components
switched through the hub optically or electronically are those
from one of the source nodes n + 1 and n + 2 to one of the
destination nodes 1,2,---,n. The amount of traffic of each
such component is less than the capacity of a wavelength.
There is also traffic from the hub node to each destination
node, and traffic from source node n + 1 to the hub. Due to
the traffic from the hub, any one, but not both, of the traffic
components from the source nodes may be optically routed for
each destination node. Not all traffic sourced by source node
n + 1 may be optically routable, due to the traffic to the hub,
which requires terminating some lightpaths at the hub. There
is no such restriction for source node n + 2, so a lightpath
may be formed from it to every destination node which does
not sink a lightpath from source node n + 1. Therefore, we
need only to consider candidate solutions in which there is
a lightpath from exactly one of nodes n + 1, n + 2, to each
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node i € {1,2,---,n} to determine the satisfiability of the
instance.

Let X denote a candidate solution of the Knapsack in-
stance. Consider the solution of the star network in which
X (respectively, X) represents the indicator vector of the
lightpaths formed from node n + 1 (resp., n + 2). Applying
the transformation to the satisfiability criteria of Knapsack, we
obtain:

n
i=1

n n
= Zl’z(c —tnt1,4) < Z(C — tnt1,i) — tnt1,0
i=1 i=1

n n
= Y @itng1i) +tnrro < (=Y )C 15)
i=1 i=1
n
Zl‘ﬂ}i Z K
i=1
n n
= > @iltngri —tng2.) = Q— Y tniag
i=1 i=1
n
= Y (@itngr + Titni2i) > Q (16)
i=1

Thus, the weight constraint translates to the requirement that
the lightpaths from source node n+ 1 to the hub can carry the
hub traffic as well as all traffic components which have not
been given a lightpath, i.e., the logical topology is feasible.
The value criterion translates to the requirement regarding
the minimum amount of optical routing. Therefore, a given
vector X either satisfies both the Knapsack and the grooming
instance, or fails to satisfy both. Hence, the grooming instance
is satisfiable iff the Knapsack instance is. ]
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