
346 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997

Multicast Routing with End-to-End Delay
and Delay Variation Constraints

George N. Rouskas,Member, IEEE, and Ilia Baldine

Abstract—We study the problem of constructing multicast
trees to meet the quality of service requirements of real-time
interactive applications operating in high-speed packet-switched
environments. In particular, we assume that multicast commu-
nication depends on: 1) bounded delay along the paths from the
source to each destination and 2) bounded variation among the
delays along these paths. We first establish that the problem of
determining such a constrained tree is NP-complete. We then
present a heuristic that demonstrates good average case behavior
in terms of the maximum interdestination delay variation. The
heuristic achieves its best performance under conditions typical
of multicast scenarios in high-speed networks. We also show that
it is possible to dynamically reorganize the initial tree in response
to changes in the destination set, in a way that is minimally
disruptive to the multicast session.

Index Terms— Delay constrained multicast communication,
multicast routing.

I. INTRODUCTION

I N multicastcommunication, messages are concurrently sent
to multiple destinations, all members of the samemulticast

group. Mechanisms to support such a form of communication
are becoming an increasingly important component of the
design and implementation of high-speed networks [14]. For
reasons related to the efficient use of the network resources
involved in a multicast session, typical approaches to multicast
routing require the transmission of packets along the branches
of a tree spanning the source and destination nodes. The prob-
lem of constructing multicast trees has received considerable
attention in the past. One frequently considered optimization
objective is to minimize the total cost of the tree, which is
taken as the sum of the costs on the links of the multicast
tree. The minimum cost tree is known as the Steiner tree [7]
and finding such a tree is a well-known NP-hard problem [4].
Heuristics to construct trees of low overall cost have been
developed in [2], [6], [9], and [15].

While total tree cost as a measure of bandwidth efficiency
is certainly an important parameter, networks supporting real-
time traffic will be required to provide certain quality of
service guarantees in terms of the end-to-end delay along the
individual paths from the source to each of the destination
nodes. The problem of routing multicast traffic with real-time
constraints has been studied in [8] and [16], and heuristics
to compute low-cost trees which guarantee an upper bound

Manuscript received January 23, 1996; revised August 10, 1996. This paper
was presented in part at the IEEE INFOCOM ’96 Conference, San Francisco,
CA, March 26–28, 1996.

The authors are with the Department of Computer Science, North Carolina
State University, Raleigh, NC 27695-8206 USA.

Publisher Item Identifier S 0733-8716(97)02257-9.

on the end-to-end delay have been developed. For a survey
and extensive simulation study of a large number of existing
multicast algorithms and an evaluation of their performance
in high-speed environments, the reader is referred to [12] and
[13].

In this work we assume that, in addition to end-to-end delay
bounds, the multicast tree must also guarantee a bound on
the variation among the delays along the individual source-
destination paths. Such a bound provides synchronization
among the various receivers and insures that no receiver is
“left behind” and that none is “far ahead” during the lifetime
of the session. Although delay variation has not, to the best
of our knowledge, been considered in the design of multicast
tree algorithms, the maximum delay variation among the tree
paths was one of the performance metrics included in the
comparative study in [12] and [13].

There are several situations in which the need for bounded
variation among the path delays arises. During a telecon-
ference, it is important that the speaker be heard by all
participants at the same time, or else the communication
may lack the feeling of an interactive face-to-face discussion.
When multicast messages are used to update multiple copies
of a replicated data item in a distributed database system,
minimizing the delay variation would minimize the length of
time during which the database is in an inconsistent state. For
certain applications, the ability to examine the information
carried by the multicast message long before others can do
the same might translate into gaining a competitive edge. A
distributed game scenario in which a number of players are
connected to a game server, and compete against each other
using information sent by the server to their screens, would
be one such example.

Buffering at the source, at the switching nodes, or at the
receivers may be used as a tool to combat delay variation.
Buffering at the source would require the source to maintain
additional information about all destinations. It would also
defeat the purpose of using a tree for routing, since each
message would have to be buffered a different amount of time
for each destination and thus would have to be transmitted
by the source multiple times. Buffering at the switching nodes
suffers from the same problems. On the other hand, having the
receivers buffer multicast messages before passing them to the
user is straightforward and could be used to cancel the effects
of delay variation. This approach, though, would work well
only when the receivers cooperate in order to accomplish a
certain task as in the replicated database application above. The
network should not rely on receivers to delay messages when
end-users may use the information in the messages to compete

0733–8716/97$10.00 1997 IEEE

ROUSKAS AND BALDINE: MULTICAST ROUTING 347

against each other. Furthermore, the amount of buffering
needed is proportional to the maximum variation of end-to-end
delays. Providing bounds for this variation will result in a more
efficient usage of buffering resources. We, therefore, believe
that buffering at the receivers may, whenever appropriate, be
used along with the multicast routing algorithms presented in
this paper in order to more successfully address the problems
caused by end-to-end delay variation.

In Section II we present a model that captures the salient fea-
tures of multicast communication in packet-switched networks.
In Section III we show that the problem of constructing trees
to guarantee a bound on the variation of the end-to-end delays
along the source-destination paths is NP-complete. In Section
IV we develop a heuristic for this problem, and in Section V
we present an approach to reorganizing the tree as nodes join
or leave the multicast group. We present numerical results in
Section VI, and we conclude the paper in Section VII.

II. NETWORK MODEL FOR MULTICASTING

We represent a network by a weighted digraph .
denotes the set of nodes, and, the set of arcs, corresponds

to the set of communication links connecting the nodes. We
will use to refer to the number of nodes in the
network. Without loss of generality, we only consider graphs
with at most one arc between an ordered pair of nodes. We
define a link-delay function which assigns a
nonnegative weight to each link in the network. The value

associated with link is a measure of the delay
that packets experience on that link, including the queuing,
transmission, and propagation components.

Under the multicast routing scenario we are considering,
packets originating at somesourcenode in the network
have to be delivered to a set of destination
nodes. We will call the destination setor multicast group
and will use to denote its size. Multicast packets
are routed from to the destinations in via the links of a
multicast tree rooted at . The multicast tree
is a subgraph of (i.e., and) spanning
and the nodes in (i.e.,). In addition,
may containrelay nodes, that is, nodes intermediate to the
path from the source to a destination. Let denote
the path from source to destination in the tree .
Then, multicast packets from to experience a total delay
of .

We now introduce two parameters to characterize the quality
of the tree as perceived by the application performing the
multicast. These parameters relate the end-to-end delays along
individual source-destination paths to the desired level of
quality of service.

• Source-destination delay tolerance,: Parameter rep-
resents an upper bound on the acceptable end-to-end delay
along any path from the source to a destination node. This
parameter reflects the fact that the information carried by
multicast packets becomes stale time units after its
transmission at the source.

• Interdestination delay variation tolerance,: Parameter
is the maximum difference between the end-to-end delays
along the paths from the source to any two destination

nodes that can be tolerated by the application. In essence,
this parameter defines a synchronization window for the
various receivers.

By supplying values for parametersand , the application
in effect imposes a set of constraints on the paths of the
multicast tree, as discussed next.

III. D ELAY- AND DELAY

VARIATION-BOUNDED MULTICAST TREES

Let and be the delay and delay variation tolerances,
respectively, specified by a higher level application. Our objec-
tive is to determine a multicast tree such that the delays along
all source-destination paths are within the two tolerances. This
delay- and delay variation-bounded multicast tree (DVBMT)
problem naturally arises as a decision problem.

Problem III.1 (DVBMT): Given a network , a
source node , a multicast group , a link-
delay function , a delay tolerance , and a delay
variation tolerance , is there a tree spanning

and the nodes in , such that

(1)

(2)

We will refer to (1) as thesource-destination delay con-
straint, while (2) will be called theinterdestination delay
variation constraint.A tree is a feasibletree if and only if
satisfies both (1) and (2). Constraints (1) and (2) represent two
conflicting objectives. Indeed, the delay constraint (1) dictates
that short paths be used. But choosing the shortest paths may
lead to a violation of the delay variation constraint among
nodes that are close to the source and nodes that are far away
from it. Consequently, it may be necessary to select longer
paths for some nodes in order to satisfy (2). The problem of
finding a feasible tree is one of selecting paths in a way that
strikes a balance between the two objectives.

The source-destination constraint (1) has been previously
considered in the context of constrained Steiner trees [8], [16].
Also, in a recent study [12], [13] to evaluate the performance
of a number of multicast algorithms and their suitability to
high-speed real-time applications, the following quantity was
used as a criterion in the evaluation:

(3)

Quantity is the maximum interdestination delay variation
in a tree . According to the study, none of the existing
algorithms provides good performance in terms of. This
is not surprising, as none of the algorithms considered in [12]
and [13] takes the delay variation constraint (2) into account.

The following theorem establishes that DVBMT is NP-
complete. A heuristic approach to solving DVBMT is pre-
sented in the next section.

348 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997

Theorem III.1: DVBMT is NP-complete whenever the size
of the multicast group .

Proof: DVBMT can be easily seen to be in the class NP.
We now transform PARTITION [5] to DVBMT. It is sufficient
to find a transformation for . Let
be the set of elements of weights , making up
an arbitrary instance of PARTITION, and let .
We construct an instance of DVBMT as follows (see Fig.
1). The network has nodes, with

, where is the source node
and is the destination set. The setof links is

(4)

In other words, there is a directed link fromto , one link
from to each node , one link from each node to ,
and one link from to (i.e., the
subgraph of containing only nodes , is a
complete graph on these nodes). There is only one path from

to destination node consisting of the single link ,
but a path from to the other destination may contain any
number of the nodes , and in any order. The
link-delay function is defined as

if

if
if

(5)

As a result, if the path from to passes through node for
some , then a delay equal to is incurred along the link that
leads to . Finally, the delay and delay variation tolerances
are and , respectively.

It is obvious that this transformation can be performed in
polynomial time. We now show that a feasible tree exists for
this instance of DVBMT if and only if set has a partition.
If has a partition , , then
for some . The tree consisting of path and
path , is then
a feasible tree for DVBMT, as the delay along both paths
is equal to . Conversely, let be a feasible tree for
DVBMT. Then must include the path of delay

, as this is the only path from the source to. Let
, be the path

from to on tree . Since is a feasible tree and ,
the delay along the latter path is equal to , and (for if

, the path from to would include all ,
and the delay along the path would equal, contradicting our
hypothesis that is a feasible tree). Then, ,
implying that , , is a
partition of .

IV. A M ULTICAST TREE ALGORITHM FOR DVBMT

We now present an algorithm to construct a tree satisfying
constraints (1) and (2) for the given values of the path delay
and the interdestination delay variation tolerances. We assume

Fig. 1. Instance of DVBMT corresponding to an instance of PARTITION
with S = f1; 2; 3g.

that complete information regarding the network topology is
stored locally at node, making it possible to determine the
multicast tree at the source itself. This information may be
collected and updated using an existing topology-broadcast
algorithm [1].

The sequence of actions for constructing a multicast tree
is shown in Fig. 2. As a first step, the tree of shortest
paths from to all nodes in is constructed using Dijkstra’s
algorithm [3]. If does not satisfy the delay constraint (1), no
tree may satisfy it, implying that the toleranceis too tight.
Negotiation may then be necessary to determine a looser value
for . Suppose now that the original or negotiated value of

is such that the delay requirement (1) is met for tree.
If also meets the delay variation requirement (2), then it is
a feasible tree, and the multicast session may take place over
the tree of shortest paths.

If does not satisfy constraint (2), then the source executes
the delay variation multicast algorithm(DVMA), a search
algorithm described in the next subsection, in an attempt to
construct a new tree in which the path delays satisfy both (1)
and (2). If the algorithm finds a feasible treefor the given
instance of the DVBMT problem, then the multicast session
may proceed. However, a search heuristic may fail to discover
a feasible tree, either because no such tree exists or because
of the ineffectiveness of the search strategy employed. Hence,
DVMA always returns the tree with the smallest value of

in (3) among the trees considered. Regardless of whether
a solution to the given instance of DVBMT problem exists or
not, the tree with the smallest value of is the best tree that
can be obtained with the search algorithm at hand. The source
may then negotiate with the destinations to determine whether
an acceptable level of quality of service can be sustained for
the given value of .

A. Delay Variation Multicast Algorithm (DVMA)

Let be the tree of shortest paths from sourceto the
nodes in the destination set . Let us also assume that
meets the delay requirement (1), but that it does not meet
the delay variation requirement (2). The DVMA, described in
detail in Fig. 3, can then be used to search through the space

ROUSKAS AND BALDINE: MULTICAST ROUTING 349

Fig. 2. Flowchart of the approach to obtaining a multicast tree for the DVBMT problem.

of candidatetrees (i.e., trees spanningand the nodes in)
for a feasible solution to the DVBMT problem. DVMA either
returns a feasible tree, or, having failed to discover such a
tree, it returns one which: 1) satisfies the delay constraint (1)
and 2) has the least value of among the trees considered
by the algorithm.We now describe the basic idea behind the
operation of DVMA.

Let be the destination set, and assume for the moment
that a feasible tree spanning and a subset
of has already been determined. Let
be the set of destination nodes not in the tree. In other
words, no paths from the sourceto the nodes in have
been determined yet. DVMA operates by augmenting tree

to eventually include all nodes in . DVMA repeats the
following three steps as long as .

1) Select a destination node .
2) Find a “good” path from a node to that uses

no nodes in other than , and no links in .
3) Construct a new tree by including all nodes and links

of this path to the initial tree , and update to exclude
and any other destination nodes along this path.

The second step is crucial to the operation of DVMA
and warrants further explanation. Recall that our objective
is to construct a feasible tree that includes all nodes in.
Therefore, a “good” path in 2) above is one which, if connected
to in 3), the resulting tree would be a feasible tree for
the subset of the set of destination nodes it contains. To find
such a path, we construct theshortest paths from a node

of to . The graph used to find these paths is created
by excluding all nodes of other than and all links of

from the original graph . The exclusion of these nodes and
links from guarantees that connecting any of thepaths so
constructed to will not create a cycle.

It is possible, though, that none of thepaths from to
will yield a feasible tree. For this reason, we repeat the

process for all nodes in an attempt to find a “good”
path between any and . Even so, the algorithm may
still not be able to find such a path. For instance, a feasible tree
for this destination set may not exist in the first place. Recall,
however, that we would like the algorithm to return the best
tree (in terms of maximum interdestination delay variation) it
can find. We now modify our definition of a “good” path so
that, if a path yielding a feasible tree can not be found, a
“good” path is one which: 1) the total delay fromto (i.e.,
the delay from to in , plus the delay from to over the
path) is at most , and 2) the tree created by connecting
this path to has the least value of maximum delay variation
among the trees constructed by connecting the other paths to

. In essence, the purpose of the greedy rule 2) is to prune
the search space, i.e., to prevent certain candidate trees from
receiving further consideration.

The only question that remains to be answered, is how an
initial tree is constructed. To answer this question consider

, the tree of shortest paths, which, by hypothesis, does
not satisfy the delay variation constraint (2). Let be the
destination node with the longest path in this tree. Since it is
not possible to make the delay fromto any smaller than
the delay incurred over the path fromto in , to construct
a feasible tree we must find longer paths fromto some or all
of the other destination nodes. Hence, we start with an initial

350 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997

Fig. 3. Heuristic algorithm for the DVBMT problem.

tree consisting only of the shortest path fromto and
repeat the three steps described above to create a feasible tree
that will include all other destination nodes.

To complete the description of the search strategy employed
by DVMA, note that it is possible that no feasible tree for the
given destination set includes the shortest path fromto .
However, if a feasible tree exists, it will containsomepath
from to . If the process of constructing a feasible tree
starting from the shortest path fromto fails, the second
shortest path from to is considered as the initial tree,
and the process is repeated. Our search for a feasible tree
terminates when one is found, or when trees based on the first

shortest paths from to have been constructed, whichever
occurs first. In the latter case, the algorithm will return the tree
with the smallest value of in (3). The details of the resulting
algorithm (DVMA) can be found in Fig. 3.

The correctness of DVMA is provided by Lemma IV.1,
while Lemma IV.2 determines the running time complexity
of DVMA.

Lemma IV.1—Correctness of DVMA:Algorithm DVMA
returns a tree spanning and all nodes . The tree
satisfies constraint (1) and either satisfies constraint (2) or is
the one with the smallest value of in (3) among the trees
considered by the algorithm.

ROUSKAS AND BALDINE: MULTICAST ROUTING 351

Proof: We first show that the algorithm returns a tree
spanning and the nodes in . If DVMA returns ,

there is nothing to prove. Otherwise, is one of the ’s
constructed during one iteration of the loop that starts at line
4. is initialized to some path at line 5. Clearly, at this
point is a tree containing the sourceand at least one more
destination . New nodes and links are added toat
line 15, where a new path from a node in to a node

is incorporated. The resulting graph is a tree
since path cannot contain any nodes or links ofother than

itself. All other nodes and links of were removed at line
10 before path was determined. The new treehas at least
one more node, . Since was in the tree initially, no
nodes are ever removed from, and paths are added to it until
all nodes in are in , our first claim is true.

The final tree also satisfies the delay constraint (1). If
this is true by hypothesis, If , this is also true

since no path is ever added to any treeunless (1) is satisfied
(refer to lines 3 and 12). Finally, if the algorithm terminates at
line 18, the tree returned is a feasible one. Otherwise, line 19
guarantees that the tree returned is the one with the smallest
value of among the ones constructed during the execution
of the algorithm.

Lemma IV.2: The worst case complexity of DVMA is
, where is the number of paths generated at line 3

of Fig. 3, the number of paths generated at line 11,
is the size of the multicast group , and is the
number of nodes in the network.

Proof: The running time of DVMA is dominated by the
iteration between lines 4 and 20. This outer loop is executed
at most times. During one iteration of the outer loop, the
“while” loop at line 7 is executed at most times.
Let be the number of nodes in the tree during theth
iteration of the “while” loop. The innermost loop starting at
line nine will iterate times. Inside this loop the complexity
is determined by the-shortest path algorithm at line 11, which
takes time [10] for a graph with nodes. Graph
has nodes throughout the innermost loop. The latter
then takes time proportional to . For a worst
case analysis, we let , for all iterations , take the value that
maximizes the quantity , where . It is
straightforward to show that for this value ofthe complexity
of the innermost loop becomes . After accounting for
the “while” and outer loops, the overall complexity of the
algorithm is .

The maximum value that parametersand can take is,
in the worst case, equal to the maximum number of paths of
delay at most between any two nodes in the network. If

is not very large, we expect the maximum value of both
and to be a small constant. The actual values ofand

were left unspecified in the description of the algorithm, as in
any particular implementation they will be determined by the
desired compromise between the quality of the final solution
of the algorithm and its speed.

V. DYNAMIC REORGANIZATION OF THE MULTICAST TREE

For certain applications, nodes may join or leave the initial
multicast group during the lifetime of the multicast connection.

We assume that nodes currently in the multicast group may
leave the group after issuing aleave request,while nodes that
wish to join an ongoing multicast session must first issue ajoin
request.Under such a scenario, it is necessary to dynamically
update the multicast tree in response to changes in multicast
group membership to insure that constraints (1) and (2) are
always satisfied for the current destination set.

Let be the multicast tree of an ongoing multicast session
with destination set and suppose that as a result of a join or
leave request, the new destination set is. One possible way
of approaching thisdynamicversion of the DVBMT problem
would be to run DVMA anew to obtain a feasible tree
for set and, following a transition period, use the new
tree for routing subsequent packets of this session. There is
a certain overhead associated with this approach, including
the computational cost of running DVMA and the cost of
the network resources involved in the transition fromto

(i.e., the cost of tearing down old paths and establishing
new ones). Since the new tree can be significantly different
than , this overhead can be very high. Furthermore, such a
radical approach may cause receivers totally unrelated to the
destination nodes added or deleted to experience disruption in
service. All these drawbacks make this strategy inappropriate
for real-time environments and applications where frequent
changes in the destination set are anticipated.

We now describe a different strategy that minimizes both
the cost incurred during the transition period and the disruption
caused to the receivers. Specifically, the multicast tree is never
modified unless it is absolutely necessary to do so. Even then,
the new tree is not computed anew, rather, a feasible tree for
the new multicast group is constructed by making incremental
and localized changes to the old tree. Our approach has the
additional advantage that the algorithm used to construct an
initial tree for the multicast connection can also be used to
reorganize the tree during the lifetime of the session.

We first describe how leave requests are handled under
our approach. Assume that node decides to end its
participation in the multicast session. If is not a leaf node
in the current multicast tree , then no action needs to be
taken. The new tree can be the same as, with the only
difference being that nodewill stop forwarding the multicast
packets to its local user. If, however,is a leaf node of ,
then tree has to be pruned to excludeand, possibly, relay
nodes used in solely for forwarding packets to. The new
tree is essentially the same asexcept in parts of the path
from the source to .

When a node decides to join the multicast group,
we distinguish the following three cases.

• , i.e., the new node is not part of the multicast tree
. We augment to include a path from a node to

the new node by letting and at lines 5
and 6, respectively, of DVMA (see Fig. 3) and executing
the code between lines 7 and 17 to search for a path that
would result in a feasible tree for the set . Hence,
the transition phase involves only the establishment of a

352 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997

Fig. 4. Algorithm comparison for networks with average node degree equal to 2.5 and multicast group size equal to 5% of the number of nodes.

new path and does not affect any of the paths from the
source to nodes already in the multicast group.1

• , i.e., is a relay node of , and the path from
the source node to is such that the delay variation
constraint (2) is satisfied for the new multicast group

. Tree is then a feasible tree for the
new set and can be used without any change other
than having node now forward multicast packets to its
user, in addition to forwarding them to the downstream
nodes.

• , but the path from to is such that constraint
(2) is not satisfied for the new set . Consequently,
a longer path from to has to be found. Let be
the destination nodes in that are downstream of, i.e.,
those destination nodes in the subtree ofrooted at).
Let be the tree after excluding its subtree rooted at

. Our approach then is to let and
at lines 5 and 6, respectively, of DVMA. We then execute
the code between lines 7 and 17 to connect the destination
nodes in into tree . In the new tree , packets will
be routed from to the nodes in over new paths, but
none of the paths to nodes in – will change.

VI. NUMERICAL RESULTS

We first study the average case behavior of four algorithms
in terms of the maximum delay variation in (3). The four
algorithms are: 1) DVMA, with and (this
value of forces the algorithm to return the tree with the
smallest value of it can find); 2) Dijkstra’s algorithm [3]
which constructs the tree of shortest paths (SPT) from the
source to any node in the network (the tree is pruned so

1If this fails to discover such a path, there are two possible courses of action:
1) run DVMA for the new multicast group or 2) deny nodeu its participation
in the multicast session. Which course of action to be taken will depend on
the nature of the application and the cost of rerouting the connection.

that all leaves are destination nodes); 3) Prim’s algorithm [11]
which constructs a tree of minimum weight (MST) spanning
all nodes in the network (this tree is also pruned as above);
and 4) thetradeoff(TDF) algorithm [2] between the minimum
spanning tree heuristic for the Steiner tree problem [6] and
SPT. We have run the algorithms on randomly generated
graphs constructed to resemble real-world networks using the
method described in [15]. The nodes of the graphs were placed
in a grid of dimensions 4900 4900 km (roughly the size of
the continental United States), and the delay along each link
was set to the propagation delay of light along the link. Figs.
4–7 plot against the number of nodes in the network
for the various algorithms. Each point plotted represents the
average over 300 graphs for the stated values of, , and
the average degree of each node. Also shown in the figures
are 95% confidence intervals.

The results shown in Figs. 4–6 correspond to networks with
average node degree equal to 2.5 and multicast groups of sizes
equal to 5, 10, and 15% of the total number of nodes. We
observe that the trees constructed by DVMA have a maximum
delay variation that is always smaller than that of the SPT,
TDF, and MST trees. The MST is by far the worst tree in
terms of . This is expected as Prim’s algorithm minimizes
the total weight of the tree, without paying any attention to the
individual source-destination paths. The tree of shortest paths
SPT results in values of that are between those of the MST
and those of DVMA. The tradeoff algorithm TDF constructs
trees with maximum delay variation larger than that of SPT, a
result that is in contrast to the expectations expressed in [12].

From Figs. 4–6, we see that as the sizeof the multicast
group increases as a percentage of the sizeof the network,
the improvement of DVMA over SPT decreases from roughly
an order of magnitude when to about 40% when

. This is expected since, the smaller the size of the
multicast group, the easier it is for DVMA to find alternative,

ROUSKAS AND BALDINE: MULTICAST ROUTING 353

Fig. 5. Algorithm comparison for networks with average node degree equal to 2.5 and multicast group size equal to 10% of the number of nodes.

Fig. 6. Algorithm comparison for networks with average node degree equal to 2.5 and multicast group size equal to 15% of the number of nodes.

i.e., longer, paths for the nodes physically closer to the source.
On the other hand, the performance of DVMA improves
dramatically as the average nodal degree increases. This can be
seen by comparing Fig. 4 to Fig. 7 which presents plots for the
same size of destination set (), but for an average
nodal degree equal to four. The improvement is a result of the
fact that a higher nodal degree translates into a larger number
of paths between any two nodes, and a larger number of trees
for DVMA to choose from. In addition, when the average
nodal degree equals four, DVMA is able to construct trees
with , independently of the number of nodes in the

network. These trees would be able to meet the delay variation
requirements of even the most demanding applications. The
behavior of the other algorithms is not significantly affected
by the nodal degree, as none of these attempt to optimize in
terms of . In SPT, for instance, is determined by the
relative distance of the various destinations from the source,
which is almost independent of the nodal degree. Overall,
our results suggest that DVMA achieves its best performance
under conditions that are typical of multicast applications
running in high speed networks, namely, when: 1) the size
of the multicast group is relatively small compared to the total

354 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997

Fig. 7. Algorithm comparison for networks with average node degree equal to four and multicast group size equal to 5% of the number of nodes.

Fig. 8. Algorithm comparison for dynamic reorganization of the multicast tree (100-node networks, average node degree is three, initial group size is
ten, 75% join, and 25% leave operations).

number of nodes and/or 2) the number of incoming/outgoing
links at each node is relatively large.

We now compare the behavior of three approaches to
reorganizing the multicast tree in response to changes in group
membership. Our objective is to investigate how the value of

changes over time as nodes join or leave the group. The
first approach, denoted by the label “Dynamic Algorithm” in
Figs. 8 and 9, is to make incremental and localized changes
to the existing tree to accommodate additions or deletions of
destinations, as described in Section V. The second approach

is to run DVMA anew each time the multicast group changes.
The third approach is to use a new SPT whenever a node
is added to or deleted from the multicast group. We present
results for 100-node networks, average nodal degree equal to
three, and an initial multicast group of size ten. The initial tree
for the first two approaches was constructed using DVMA. A
total of ten join or leave requests was performed for each
group. In a leave request, the destination to be deleted was
selected with equal probability among the nodes in the group,
while in a join request the receiver to be added was also

ROUSKAS AND BALDINE: MULTICAST ROUTING 355

Fig. 9. Algorithm comparison for dynamic reorganization of the multicast tree (100-node networks, average node degree is three, initial group size is
ten, 50% join and 50% leave operations).

selected with equal probability among the nodes that were
not part of the destination set. Figs. 8 and 9 plot the value
of for the trees after each join or leave request. The value
plotted at point zero of the axis corresponds to the value of

for the initial group before any nodes are added or deleted.
In Fig. 8, a request was chosen as either a join or leave request
with probability 0.75 and 0.25, respectively, independently of
previous requests. These probabilities were both equal to 0.5
in the scenario of Fig. 9.

DVMA always constructs trees with values of lower
than those of trees constructed through incremental changes.
This improved performance is achieved at the expense of
constructing a totally new tree. On the other hand, by making
incremental changes to the tree, the value of is always
lower than that of SPT. Our results suggest that, if the number
of join operations is not very large, the dynamic approach of
Section V performs reasonably well. However, as the number
of nodes added to the multicast group increases, it may be
necessary to periodically run DVMA anew to keep the value
of low.

VII. CONCLUDING REMARKS

We considered the problem of determining multicast trees
that guarantee certain bounds on the end-to-end delays from
the source to the destination nodes, as well as on the variation
among these delays. The problem of constructing such trees
is NP-complete, and we developed a heuristic that exhibits
good average case behavior. The heuristic performs well
under conditions typical of multicast scenarios in high-speed
networks, namely, when the network is not too sparse and
when the size of the multicast group is small compared to the
total number of nodes. The strategy employed by the heuristic

is also applicable to the problem of reorganizing the tree in
response to changes in the multicast group membership.

Our heuristic does not attempt to optimize the multicast
tree in terms of cost (bandwidth consumption). In fact, since
its strategy for satisfying the interdestination delay variation
constraint is to select longer paths for some of the destination
nodes, the cost of the final tree may be somewhat high. One
straightforward approach to addressing the cost issue is to
modify the heuristic to: 1) return the least cost tree among the
feasible trees it constructs and/or 2) restrict the search space
by excluding from consideration candidate trees of high cost.
Techniques similar to the ones used to construct constrained
Steiner trees [8], [16] might also be applicable here. The
specification and analysis of algorithms that minimize the tree
cost subject to delay and delay variation constraints should be
explored in future research.

REFERENCES

[1] D. Bertsekas and R. Gallager,Data Networks. Englewood Cliffs, NJ:
Prentice Hall, 1992.

[2] K. Bharath-Kumar and J. M. Jaffe, “Routing to multiple destinations in
computer networks,”IEEE Trans. Commun.,vol. COMM-31, no. 3, pp.
343–351, Mar. 1983.

[3] E. W. Dijkstra, “A note on two problems in connection with graphs,”
Numer. Math.,vol. 1, pp. 269–271, 1959.

[4] M. R. Garey, R. L. Graham, and D. S. Johnson, “The complexity of
computing steiner minimal trees,”SIAM J. Appl. Math.,vol. 32, no. 4,
pp. 835–859, June 1977.

[5] M. R. Garey and D. S. Johnson,Computers and Intractability. New
York: Freeman, 1979.

[6] E. N. Gilbert and H. O. Pollak, “Steiner minimal tree,”SIAM J. Appl.
Math., vol. 16, 1968.

[7] S. L. Hakimi, “Steiner’s problem in graphs and its implications,”
Networks,vol. 1, pp. 113–133, 1971.

[8] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos, “Multicast routing
for multimedia communication,”IEEE/ACM Trans. Networking,vol. 1,
no. 3, pp. 286–292, June 1993.

356 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 3, APRIL 1997

[9] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for Steiner
trees,”Acta Informatica,vol. 15, pp. 141–145, 1981.

[10] E. Lawler,Combinatorial Optimization: Networks and Matroids.New
York: Holt, Rinehart and Winston, 1976.

[11] R. C. Prim, “Shortest connection networks and some generalizations,”
Bell Syst. Tech. J.,vol. 36, pp. 1389–1401, Nov. 1957.

[12] H. Salama, D. Reeves, Y. Viniotis, and T. Sheu, “Comparison of
multicast routing algorithms for high-speed networks,” IBM, Tech. Rep.
IBM-TR29.1930, Sept. 1994.

[13] , “Evaluation of multicast routing algorithms for distributed real-
time applications in high-speed networks,” inProc. 6th IFIP Conf. High
Speed Networks,Sept. 1995, pp. 27–42.

[14] J. S. Turner, “New directions in communications (or which way to the
information age?),”IEEE Commun. Mag.,vol. 24, no. 10, pp. 8–15,
Oct. 1986.

[15] B. W. Waxman, “Routing of multipoint connections,”IEEE J. Select.
Areas Commun.,vol. 6, no. 9, pp. 1617–1622, Dec. 1988.

[16] Q. Zhu, M. Parsa, and J. J. Garcia-Luna-Aceves, “A source-based
algorithm for near-optimum delay-constrained multicasting,” inProc.
IEEE Infocom ’95,Mar. 1995, pp. 377–385.

George N. Rouskas (S’92–M’95) received the
Diploma in Electrical Engineering from the National
Technical University of Athens (NTUA), Athens,
Greece, in 1989, and the M.S. and Ph.D. degrees in
computer science from the College of Computing,
Georgia Institute of Technology, Atlanta, in 1991
and 1994, respectively.

He joined the Department of Computer Science,
North Carolina State University, Raleigh, in August
1994 as an Assistant Professor. His research
interests include lightwave network architectures,

multicast communication, high-speed networks, and performance evaluation.
Dr. Rouskas received the 1995 Outstanding New Teacher Award from

the Department of Computer Science, North Carolina State University. He
was also the recipient of the 1994 College of Computing Graduate Research
Assistant Award. He is a member of the ACM and of the Technical Chamber
of Greece.

Ilia Baldine was born in Dubna, Moscow Region,
Russia, in 1972. He received the B.S. degree
in computer science from the Illinois Institute
of Technology, Chicago, in 1993 and the M.S.
degree in computer science from North Carolina
State University, Raleigh, in 1995. He is currently
working on the Ph.D. degree in computer science
at North Carolina State University, Raleigh.

His research interests include all-optical net-
works, ATM networks, network protocols, and
security.

