J. Parallel Distrib. Comput. 71 (2011) 963-973

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Online algorithms for advance resource reservations”

C. Castillo®*, G.N. Rouskas®, K. HarfoushP

2 IBM T,J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, United States
b Department of Computer Science, North Carolina State University, Engineering Building 2, 890 Oval Drive, Raleigh, NC 27695, United States

ARTICLE INFO

ABSTRACT

Article history:

Received 1 July 2010

Received in revised form

24 October 2010

Accepted 12 January 2011
Available online 27 January 2011

Keywords:

Grid computing
Advance reservations
Scheduling

Resource allocation

We consider the problem of providing QoS guarantees to Grid users through advance reservation of
resources. Advance reservation mechanisms provide the ability to allocate resources to users based
on agreed-upon QoS requirements and increase the predictability of a Grid system, yet incorporating
such mechanisms into current Grid environments has proven to be a challenging task due to the
resulting resource fragmentation. We use concepts from computational geometry to present a framework
for tackling the resource fragmentation, and for formulating a suite of scheduling strategies. We also
develop efficient implementations of the scheduling algorithms that scale to large Grids. We conduct
a comprehensive performance evaluation study using simulation, and we present numerical results to
demonstrate that our strategies perform well across several metrics that reflect both user- and system-
specific goals. Our main contribution is a timely, practical, and efficient solution to the problem of
scheduling resources in emerging on-demand computing environments.

Resource management

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Grids have emerged as an essential infrastructure for resource-
intensive scientific and commercial applications [13,23] and evo-
lved to become a cornerstone of Cloud computing [14]. Grid
technology enables the sharing and dynamic allocation of dis-
tributed, high-performance computational resources while min-
imizing the associated ownership and operating costs; it also
facilitates access to such resources and promotes flexibility and
collaboration among diverse organizations. More recently, the
concept of on-demand computing [22,6] (Cloud Computing) has
emerged as a viable model in which a wide range of finer grain
commercial, business, and scientific applications would tap into
the Grid resources on an as-needed basis, extending the reach and
utility of Grid computing far beyond its current user base to society
as a whole; for instance, Amazon has launched with great success
Amazon EC2, a web service that provides resizable compute capac-
ity [2] and more such service offerings are expected in the near fu-
ture. This vision of computing as a utility is expected to change not
only the way scientists and businesses work, but also the way they
think about computing resources. However, its realization depends
on the development of sophisticated resource management sys-
tems capable of allocating resources to users based on agreed upon

* This work was done while the first author was a Ph.D. student at North Carolina
State University.
* Corresponding author.
E-mail addresses: claris@us.ibm.com (C. Castillo), rouskas@ncsu.edu
(G.N. Rouskas), harfoush@csc.ncsu.edu (K. Harfoush).

0743-7315/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2011.01.003

quality of service (QoS) requirements [1], while satisfying certain
system level objectives (e.g., high utilization, economic constraints,
etc.) [4,5].

Scheduling and management of Grid resources is an area of
ongoing research and development. Several open source or pro-
prietary schedulers have been developed for clusters of servers,
including Maui [20,21], portable batch system (PBS) [3], and load
sharing facility (LSF) [26]; they typically run in batch mode, can
be customized to specific policies, and attempt to balance the load
among the various servers. However, the primary objective of most
existing approaches is to improve overall system performance (e.g.,
utilization), while the QoS experienced by Grid users is at best of
secondary consideration [23]. For instance, batch systems typically
allocate resources to jobs as they become available, without con-
sideration of applications that need to obtain results within a strict
deadline [1]. In general, the schedulers process jobs in order of pri-
ority, which is determined based on job attributes such as job class
and time in queue [20,21], but also employ backfilling operations,
i.e., run jobs out of order, to make better use of the available re-
sources. Unfortunately, backfilling often hinders the ability of the
system to provide QoS guarantees. This is due to the fact that in or-
der to optimize for utilization schedulers that support backfilling
may have to bypass job priorities set by the system administra-
tor [21].

Advance reservation of resources is one mechanism that Grid
providers may employ in order to offer specific QoS guarantees to
application users. Advance reservation, i.e., the ability of the sched-
uler to guarantee the availability of resources at a particular time in
the future, increases the predictability of the system and it has been



964 C. Castillo et al. /. Parallel Distrib. Comput. 71 (2011) 963-973

an area of interest [12,1,23,31,13,25,33] in the Grid community.
Although some schedulers, including Maui [20], provide some sort
of advance reservation mechanisms, existing approaches to mak-
ing reservations in the future lack sophistication, are expensive,
and do not scale well. This lack of scalability is due primarily to two
factors. First, as the number of resources in the Grid increases, the
overhead of maintaining and updating the set of advance reserva-
tions can be significant, especially if appropriate attention is not
paid to the design of the relevant data structures. For instance,
common data structures used in practice consist of tables, there-
fore, basic update operations take time that is linear with the num-
ber of reservations. Second, making advance reservations tends to
fragment the available resources. If this fragmentation is not taken
into account by the scheduling algorithm, the result will be poor
utilization and high job rejection rate; on the other hand, algo-
rithms which attempt to utilize the fragmented capacity but are
not properly designed will suffer from unacceptably high running
times as the number of resources increases. For these reasons, in-
corporating QoS mechanisms into current Grid environments has
proven to be a challenging task [1,13]. In practice, most systems
tackle the complexity by limiting both the pool of resources avail-
able for advance reservation and the number of users with per-
mission to request reservations. Recently, a 3-layered negotiation
protocol for advance reservations for Grids was introduced in [30].

We believe that the ability to offer and guarantee QoS to users is
of utmost importance to Grid providers. Without QoS guarantees,
users may be reluctant to pay for Grid services or contribute re-
sources to Grids, hindering further development of the Grid model
and limiting its economic significance. Mechanisms for support of
QoS also enable service providers to differentiate themselves by of-
fering an optimized menu of services. Therefore, in this paper we
present a framework for designing effective and efficient schedul-
ing algorithms that employ advance reservations to guarantee QoS
to users. Specifically, we consider an environment where users
submit jobs dynamically, and these jobs may start at a future time
and must be completed within a certain deadline. Using concepts
from computational geometry [10], we show how to manage effi-
ciently the fragmentation of resources due to advance reservations
by maintaining an appropriate set of balanced search trees. We also
present a set of scheduling strategies for making advance reserva-
tions. Each strategy corresponds to a different optimization objec-
tive, and requires that the information on the advance reservations
be organized and maintained in a slightly different variant of the
search tree structure. Our algorithms scale to large Grid systems,
and simulation results demonstrate that they perform well across
several performance metrics that reflect both user- and system-
specific goals.

The rest of the paper is organized as follows. In Section 2 we
describe the online scheduling problem we study in this work, and
in Section 3 we present a framework for reasoning about advance
reservations that borrows ideas from computational geometry; we
also describe a suite of scheduling strategies that arise naturally
within the framework. In Section 4 we provide additional details on
the implementation of the scheduling algorithms and of the data
structures related to managing the fragmentation of resources. In
Section 5 we present simulation results to evaluate the various
strategies in terms of several performance metrics, and we con-
clude the paper in Section 6.

2. Problem description

Consider a scheduler $ for a Grid with n servers which may be
geographically distributed in a network. We make the assumption
that all servers are identical in terms of their processing capacity
C. A user with job j requiring service submits a request to the
scheduler. The request is characterized by a three-parameter tuple
(rj, lj, d;), where:

1. rjisthe ready time of the job, i.e., the earliest the job can be made
available to the Grid for processing;

2. I; is the length of the job, i.e., the amount of work the job
requires; and

3. dj(> rj + lj) is the deadline of the job, i.e., the latest time by
which the job can be completed.

The deadline is a measure of the quality of service required by the
user. We assume that deadlines are hard, in that a user receives
utility only if the job completes service by its deadline. Therefore if
4 determines that the deadline cannot be met, it drops the job and
notifies its user accordingly.

We consider the online scheduling problem whereby users
submit service requests to 4§ at random instants. We assume that
4 maintains a schedule which records, for each server i, the time
periods in the future during which the server is reserved for jobs
that have already been accepted to the system. In essence, this
schedule represents the set of advance reservations that have been
made, and it guarantees that server resources will be available
to the accepted jobs at specific future times. Fig. 1(a) shows an
example schedule for a 2-server system. The schedule shows that
at the current time (i.e., time t = 0 in the figure), there are three
jobs scheduled for server 1: the job currently in service which will
end at time ty, job A which has reserved the server from time t;
to t5, and job D which has reserved the server from time tq to ti1;
similarly, three jobs have been scheduled for server 2. The figure
also shows a service request for scheduling a new job j with ready
time r; = tg and length |; = tg — ts.

When a service request (rj, ;, d;) for a new job j arrives, 4§
immediately runs an algorithm to determine whether it is feasible
to schedule the job so as to meet its deadline. If so, then § uses a set
of criteria to select one of the (possibly multiple) servers who can
handle this job, updates its schedule, and returns a reference to this
server to the user; otherwise, the job is dropped. The scheduling
decision impacts the performance perceived by users as reflected
by the fraction of jobs meeting (or missing) their deadlines and the
turnaround times of the jobs. It also impacts the overall system
performance as reflected by the system utilization, which is a
measure of how well the overall service capacity of the system
is used. The challenge, therefore, is to develop efficient online
scheduling algorithms that minimize the fraction of dropped jobs
while maximizing utilization.

2.1. Online scheduling of real-time tasks

In real-time systems, the Deadline Scheduling Problem consists
of scheduling a set of m independent tasks with release or ready
times and deadlines on n identical processors. A task cannot start
until its release time and it must be completed by its deadline [15].
Thus, the scheduler’s task is to decide if there is a schedule such
that each task can be completely executed within the interval of
its release time and deadline. Much of the earlier work has been
assuming that tasks are periodic, i.e., infinite sequence of identi-
cal activities, called instances, that are invoked within regular time
periods. There have also been studies that consider tasks with dy-
namic arrivals, which can be further classified into aperiodic tasks
and sporadic tasks. Aperiodic tasks arise from asynchronous events
outside the system and follow specific random distributions; and
sporadic tasks have random arrival times and hard deadlines. The
problem being considered in our work is equivalent to the deadline
scheduling problem for sporadic tasks and therefore we feel com-
pelled to make a comparative analysis of the work done in both
contexts—Grid and real-time scheduling. Real-time scheduling is a
field that has been studied extensively in the past. In the following
we provide a brief survey of this field; for a more comprehensive
review, we refer to [32].



C. Castillo et al. / . Parallel Distrib. Comput. 71 (2011) 963-973 965

X zZ
server 2 - - -» joh'B |¢

w Ly
server 1 »IjobA |¢}~~~f}>| job D

0ttt Ll & gl

b ending time

4 ‘8 l‘)
1 1 11

Y new job

starting time

Fig. 1. (a) Advance reservations in a 2-server system: jobs scheduled and idle periods, (b) equivalent geometric representation of the schedule: idle periods as points in the

plane.

Scheduling algorithms in real time systems can be categorized
into a set of paradigmatic approaches [27]. This categorization is
based on three aspects: (a) whether a system performs schedu-
lability analysis, (b) if it does, whether it is done statically or dy-
namically, and (c) whether the result of the analysis itself produces
a schedule or a plan according to which tasks are dispatched at
run-time. Based on the categorization resulting from this work, the
scheduling problem being considered here falls into the paradigm
of Dynamic Planning-based Scheduling. This means that the feasibil-
ity of a given taskis checked at run-time, i.e., a dynamically arriving
task is accepted for execution only if it is found feasible. Such a task
is said to be guaranteed to meet its time constraints. However, it has
been shown that dynamic algorithms that do not a priori know the
arrival times of tasks cannot guarantee optimal performance [11].

Real-time scheduling algorithms can also be classified into of-
fline and online algorithms based on the knowledge they have
about incoming tasks. In offline scheduling, the scheduler has com-
plete knowledge of the task set and its constraints, such as dead-
lines and computation times. Scheduling decisions are based on
fixed parameters assigned to tasks before their activation. Online
scheduling algorithms, on the other hand, make their scheduling
decisions at runtime. Online schedulers are flexible and adaptive,
but they can incur significant overheads because of runtime pro-
cessing [19]. A scheduler (offline or online) is said to be optimal for
n processors if it constructs a feasible schedule for every task sys-
tem that is feasible on n processors [ 16]. In the case of the Deadline
Scheduling Problem, however, it has been shown that in general
an optimal online scheduler does not exist if one or more task pa-
rameters are unknown [ 11]. Nevertheless, due to the unpredictable
nature of the arrival time of tasks, online scheduling has been pro-
posed as a viable mechanism to deal with the time constraints im-
posed by the tasks [16].

Real-time scheduling algorithms can also be classified into pre-
emptive or non-preemptive algorithms. Non-preemptive schedul-
ing disciplines assume that tasks must run till completion once
they start execution, i.e., not be preempted in favor of another task.
For non-preemptive disciplines, the Deadline Scheduling Problem
appears to be difficult to solve even for very restricted cases. For
example, when n > 1, where n is the number of processors, the
problem is readily seen to be NP-complete even when all tasks have
the same release time and deadline [15]. In view of all the afore-
mentioned observations, most schedulers found in the literature
assume tasks can be preempted and function in offline mode. For
instance, the well known EDF algorithm achieves optimality by us-
ing preemption and by assigning priorities to tasks. Furthermore,
task preemption has been often assumed in order to support online
scheduling.

Let us now review the computational complexity of some im-
portant offline algorithms for the Deadline Scheduling Problem.
In [17] the authors gave an optimal offline scheduler for any num-
ber of processors reducing the scheduling problem to a network-
flow problem. This scheduler implementation runs in O(m?) time,

where m is the number of unfinished tasks. Faster optimal of-
fline schedulers for special task systems have also been devel-
oped. An online algorithm is described in [29] which runs in
O(n*m + mnlogm) time and preemptively schedules m indepen-
dent tasks in n homogeneous processors. The same author also
gave an O(m log mn) time offline scheduling algorithm for task sys-
tems with either one distinct release time or one distinct dead-
line [28]. An algorithm that also considers the Deadline Scheduling
Problem is presented in [36]. One major assumption in this work is
that tasks can be preempted, may require additional resources and
have the same release time. The heuristics proposed have a run-
ning time of O(nm?) and fall into the dynamic-planning scheduling
paradigm. A preemptive offline scheduling algorithm is also pre-
sented in [15] with a running time of O(mlogm 4+ mn), creating
at most O(m) and O(mn) preemptions for nested systems and non-
overlapping task systems, respectively. Seeking to leverage the low
complexity of offline algorithms and the high flexibility of online
algorithms, a hybrid preemptive scheduling algorithm is proposed
in [19,18] for periodic and dynamic tasks.

From the results of the vast body of research addressing numer-
ous variants of the Deadline Scheduling Problem in real-time sys-
tems, we can make the following general observations:

e Optimal offline scheduling algorithms exist. However, they re-
quire a priori knowledge of the characteristics of the workload.

e Online and dynamic scheduling algorithms offer great advan-
tages in terms of adaptability and flexibility, two desired char-
acteristics in Grid environments. However, in general, they do
not offer optimal scheduling and hence we are left with heuris-
tics to tackle the scheduling problem. Furthermore, they have
high processing overheads.

e Non-preemptive scheduling problems are more difficult to
tackle than their preemptive counterpart problems.

e To develop offline scheduling algorithms that are efficient on
scheduling jobs, one must know specific characteristics of the
workload, such as the tasks being non-overlapping or self-
contained.

Our work differs from the existing literature in that to tackle
the lack of efficiency in online scheduling algorithms for the
Deadline Scheduling Problems we focus on two aspects that we
believe have not been adequately addressed. Firstly, the design of
data structures that enable the organization of resources so that
they can be searched and updated in a computationally efficient
manner that scales to large Grid systems. Secondly, the design
and development of algorithms that provide the scheduler with
the ability to allocate resources based on system and application
criteria. Furthermore, we make the assumption that jobs may not
be preempted, thereby increasing the difficulty of the problem
space. Nevertheless, we believe that the algorithms we present
here can be adapted handle preemption; however, such extensions
are outside the scope of this article.



966 C. Castillo et al. /. Parallel Distrib. Comput. 71 (2011) 963-973

Several variants of this scheduling problem with advanced
reservations and/or deadlines have been studied in Grid sys-
tems [31,25,34,7,8]. However, most of the heuristics are linear in
the number of resources in the system and hence may not scale
well to utilize the available system capacity efficiently [1,13]. In
the next section, we present a new framework for developing ef-
ficient algorithms for this problem taking into account a range of
optimization criteria.

2.2. Resource scheduling with immediate deadlines

Before we proceed to address the general scheduling problem,
let us consider a restricted version in which jobs must be scheduled
as soon as they are ready. In this case, deadlines are immediate
(ie, dj = r1; + I;), and we refer to this problem as resource
scheduling with immediate deadlines. One straightforward approach
for tackling this problem is for the scheduler $ to keep track of
the completion time of each server, defined as the latest time at
which the server becomes free based on the existing advanced
reservations. The scheduler then assigns an arriving job to the
server with the latest completion time that is earlier than the
ready time of the new job. This latest available completion time
(LACT) algorithm takes time O(log n) to schedule a job. However,
it can be inefficient in terms of both capacity utilization and job
drop rate, as it does not consider the idle periods created at each
server between the times reserved for jobs whose requests were
submitted earlier. For instance, in the scenario shown in Fig. 1(a)
for a 2-server system, the completion time for server 1 is t1; (the
service completion time of job D), while the completion time for
server 2 is t1o. Therefore, the LACT algorithm will reject the service
request for the new job with arrival time tg < t19 < t1, although
the job can be accommodated on server 1 within the idle period
Y created between jobs A and D. In [37] the authors consider
this same task model, i.e., the immediate deadline. The proposed
scheduler, however, keeps track of the earliest available time (EAT)
of each compute node in the system rather than the latest available
time, i.e., denoted by LACT in our work. Note that this difference is
well justified given that the scheduling problem considered in [37]
does not support advance reservations. Due to the simplicity and
low complexity of the LACT algorithm we use it as a baseline to
perform a performance analysis of our algorithms.

An algorithm that considers the idle periods when making
decisions was developed in [35] in the context of scheduling bursts
in optical burst switched networks. The algorithm uses concepts
from computational geometry [10] to represent the time intervals
corresponding to idle periods as points in a plane, as illustrated in
Fig. 1(b). Since the ending time of an idle period must be greater
than its starting time, all points will always be above the diagonal
in Fig. 1(b). Then, the problem of finding a feasible idle period for
scheduling a new job (also represented as a point P in the plane)
is equivalent to finding a point that completely contains'point P.
In Fig. 1(b), it is seen that point Y completely contains the point
corresponding to the new job, thus the latter can be scheduled
within idle period Y on server 1. By maintaining a balanced priority
search tree data structure [24] containing all the idle periods on all
servers, finding an idle period for a new job, or determining that
one does not exist, takes time O(log K), where K is the number of
idle periods. Updating the data structure to add new idle periods
(created when a new job is scheduled) or remove ones in the data
structure (as time advances), also takes time O(logK). The value
of K, however, can be significantly larger than the number n of
servers, and we have found that its value increases rapidly with the
offered load of jobs; in other words, in moderately to highly loaded
systems, in which it is important to make scheduling decisions
quickly, the running time of the algorithm is longer.

T we say that point x = (x1,x;) completely contains point y = (yq,y,) iff
x1 < yiandx; > ys.

3. Scheduling with general job deadlines

We now present a general framework that provides new insight
into the problem of online scheduling with advance reservations in
Grid environments. Our approach extends previous work in three
directions: (1) it allows for general job deadlines (i.e., the deadline
of a job j may take any value d; > r; + I;, Vj); (2) it provides
the foundation for formulating a range of scheduling strategies
based on a variety of optimization criteria; and (3) it leads to highly
efficient algorithms for these strategies.

Let us return to the representation of idle periods as points
in the plane that we illustrated in Fig. 1. Assuming that the cur-
rent time t = 0, Fig. 2(a) shows the current schedule of advance
reservations for a 3-server system, along with a request to sched-
ule a new job j with the tuple (r; = t5,[j = tg — t5,d; = t12).
Fig. 2(b) is the geometric representation of this schedule. The fact
that job j has a general deadline is represented in Fig. 2(b) by the
line segment between points P and P/, where point P = (rj, rj + ;)
(respectively, P’ = (d; —1;, d;)) corresponds to the earliest (respec-
tively, latest) possible pair of starting and ending times for this job.
Consequently, the scheduler may select any point on this line seg-
ment as the starting/ending times of the job, as long as there is an
idle period completely containing this point.

Consider the new job j and its geometric representation in the
plane, as shown in Fig. 2(b). The feasible region of job j refers to
the part of the plane where all idle periods that can accommodate
this job may lie. The feasible region is the part of the plane above
and to the right of the line segment between P and P/, since only
any idle periods in that region will fully contain some point of
the line segment. The feasible region can be partitioned into two
subregions, Ry and Ry, as in Fig. 2(b). Any idle period lying in R; (e.g.,
idle periods Y an V in the figure) starts at or before the new job’s
ready time r; (= t in the figure), and ends after the earliest time the
job can be completed (= tg in the figure). Therefore, any idle period
in this region can accommodate the new job without delaying its
execution, i.e., the job can start execution at its ready time r;. Any
idle period lying in R,, on the other hand (e.g., idle period Z in
Fig. 2(b)), starts later than the job’s ready time but is large enough
for it. Hence, the job may be assigned to any idle period in R, at the
cost of delaying its execution beyond its ready time.

3.1. Partitioning of the idle periods

Our objective is to obtain efficient algorithms for the online
scheduling problem with general deadlines. We note that the work
in [35] was developed for the special case of immediate deadlines.
Recall also that the algorithm developed in [35] maintains a single
priority search tree that contains all K points in the plane, i.e., all
K idle periods on all servers. A single tree structure is appropriate
forimmediate deadlines, in which case each job is represented by a
single point in the plane. However, it cannot be directly applied to
the more general problem we are considering, in which jobs are
represented by a line segment, such as the one between points
P and P’ in Fig. 2(b). With a single tree structure, the only way
to handle a job with a general deadline is to perform multiple
searches for multiple points along the line segment representing
this job. Such an approach is inefficient if the points on the line
segment are selected close to each other, since each search takes
O(log K) time; whereas it may fail to find feasible idle periods if
the points are selected far from each other to lower the worst-case
running time.

In order to obtain efficient scheduling algorithms for the prob-
lem at hand, we partition the area of the plane above the diago-
nal into strips of width equal to twice the minimum job size ly;y.
Fig. 2(b) shows the partitioning of the plane into horizontal strips.
Alternatively, one might partition the plane into vertical strips of



C. Castillo et al. / . Parallel Distrib. Comput. 71 (2011) 963-973 967

ready time r.

i deadline dj

server 2

server 1

Time
04t Ll b Ll Gy fyly

b ending time
ooy 5l Lo it
1 1 11 1 1l
4 oW
LT N\ oX .
21 .
o s
= N
o ts oY !
S [ N R, i
£t Pe- eV T [—{—'1
b 2
Dot NN o
to 1 new job \-----@—---

Fig. 2. (a)Jobs scheduled and idle periods in a 3-server system, (b) idle periods as points in the plane, plane partitioned into strips of width 2 x Iy,, and feasible regions

Ry, R, for the new job.

width 2 x Iyin; the choice of direction depends on the optimiza-
tion strategy selected, as we discuss shortly. Doing so in effect par-
titions the set of K idle periods into a number H of subsets, where
subseth, h =1, ..., H, contains the idle periods falling within the
h-th strip.

Rather than maintaining a single tree data structure as in [35],
we maintain H priority search trees, one for each strip. We also
ignore (i.e., do not keep any information about) any idle period
of length less than l;,, as it cannot be used for scheduling any
job. Maintaining one tree structure for each strip is based on the
observation that a given strip may contain at most one idle period
from each server. To see that this is true, note that two consecutive
idle periods on the same server must be separated by a job of
length at least Iy, and that the length of each idle period is at least
Imin (otherwise the idle period is discarded); therefore, the starting
(and ending) times of two idle periods on any given server are at
least 2 x Inin time units apart from each other. In other words, the
number of idle periods in a strip is bounded above by the number
n of servers. Consequently, updating the schedule (i.e., adding or
removing idle periods) takes time O(logn), rather than O(logK),
where typically n < K.

Since each priority search tree structure contains only a subset
of the set of idle periods, it may be necessary to search several trees
to find a feasible idle period for a new job request.>Consider point
P in Fig. 2(b), representing the earliest time the new job may start
execution. In this example, the new job can be scheduled either in
the idle period represented by point V or the one represented by Y.
Point V can be found by searching the tree structure corresponding
to the strip in which point P lies; however, if point V (i.e., the cor-
responding idle period) did not exist, one would have to continue
searching strips above the one in which P lies (i.e., those with start-
ing times earlier than the new job) in order to find an idle period
(in this case, point Y) that would not delay the start of the job. On
the other hand, if neither V or Y existed, the search would have
to continue in strips below the one in which P lies, to identify idle
periods (e.g., Z) that could accommodate this job at some starting
time along the line segment from P to P’.

In addition to allowing the scheduler to handle jobs with gen-
eral deadlines efficiently, the partition of idle periods into subsets
also enables the natural implementation of a variety of strategies
for selecting one among multiple feasible idle periods. This unique

2 19 improve the scalability of the algorithm, in terms of both running time
and memory usage, we may partition the plane in strips of length M x 2 X Ipip,
where M is an integer greater than one. In this case, there will be no more than M
idle periods from each server within each strip, or no more than nM idle periods
in all. Consequently, the complexity of searching each tree becomes O(log(nM)),
or O(logM + logn), but the number of strips (and corresponding trees) to be
maintained decreases to H/M, where H is the number of strips for M = 1. Letting
M = n*, where k is a small integer, reduces the number of trees by a factor of n*
compared to the case M = 1, while the time to search each tree increases only by a
factor of k + 1, i.e., becomes O((k + 1) log n).

feature of our approach, due to its inherent flexibility in terms of
partitioning the plane either horizontally or vertically, and in terms
of the order in which the strips are searched, is discussed in detail
in the next subsection.

3.2. Scheduling strategies

We now describe a suite of scheduling strategies which make
use of the approach we outlined in the previous subsection. These
strategies are based on the observation that a job scheduled in an
idle period will create at most two new idle periods: one between
the start of the original idle period and the start of the job (the
leading idle period), and one between the end of the job and the end
of the original idle period (the trailing idle period). The creation of
these new, smaller idle periods results in further fragmentation of
the available capacity, and may prevent future job requests from
being accommodated. Therefore, it may be desirable to schedule
a new job within the idle period such that the size of either the
leading or trailing idle periods created is optimized, since doing so
is likely to increase the chances that future jobs will fit in these new
idle periods.

To illustrate how the partitioning of the plane into strips can fa-
cilitate the implementation of such scheduling strategies, consider
again the new job in Fig. 2. This job can be accommodated by three
idle periods, corresponding to points Y, V, and Z. Selecting either
point V or point Z will result in a leading idle period of zero length
(in fact, any point in the feasible region R, will have the same ef-
fect). On the other hand, selecting point Y in region R; will result in
aleading idle period of length (tg — t5); furthermore, the higher up
in region R; a point lies, the larger the leading period that will be
created if the job is assigned to it. Based on these observations, if
the objective is to minimize the leading idle period, the search must
start in strips within region R, first; if that fails, the search should
continue with the bottom strip within region Ry, and proceed up-
wards until a feasible idle period is found. If, however, the objective
is to maximize the leading idle period, then the search must start at
the topmost strip of region Ry, and proceed downwards. Note also
that while all points in region R, will result in a leading period of
zero length, the later the starting time of a point the longer the ex-
ecution of the new job will be delayed. This suggests that the strips
of region R, should be searched from top to bottom to minimize
the job turnaround time.

Similar observations can be made regarding the goal of opti-
mizing the length of the trailing idle period created when schedul-
ing a new job. This objective can be achieved by partitioning the
plane in vertical strips (as opposed to the horizontal ones shown
in Fig. 2(b)), and following a similar search strategy.

The following strategies for the scheduling problem with gen-
eral job deadlines arise naturally within this framework:

1. Min-LIP, which minimizes the leading idle period;
2. Min-TIP, which minimizes the trailing idle period;



968 C. Castillo et al. /. Parallel Distrib.

a ending times
e‘l e‘ze‘z “’4 ‘75
T

starting times

Comput. 71 (2011) 963-973

Fig. 3. (a) Schedule of advance reservations, (b) balanced tree structure storing the idle periods in the second strip from the top.

3. Best-fit, which minimizes the sum of the leading and trailing idle
periods;

4. First-fit, which returns the first (i.e., earliest) feasible idle period,
regardless of the sizes of the leading and trailing idle periods.

We discuss the implementation of these strategies in the next
section. We have also considered the maximization versions of the
first two strategies (i.e., max-LIP and max-TIP), but due to space
constraints we do not discuss them here.

4. Algorithm description and implementation

We now describe in detail the algorithms and related balanced
tree data structures for implementing the min-LIP and best-fit
scheduling strategies, and we analyze their worst-case running
time. At the end of the section, we discuss the modifications
required to implement the min-TIP and first-fit strategies.

4.1. Balanced tree structure for the Min-LIP strategy

Recall from Section 3.1 that we partition the set of idle periods
on all servers into H subsets, each subset corresponding to one
of the horizontal strips in the geometric representation of the
schedule of advance reservations (refer to Fig. 2(b)) and consisting
of the idle periods in this strip. Each subset is of size at most
n, where n is the number of servers. The number H of subsets
(equivalently, of horizontal strips) depends on how far in the
future users are allowed to make advance reservations. For a given
system, the value of H is fixed.

By construction, each subset h, h = 1, ..., H, contains all idle
periods with starting times in the interval [2(h — 1)lmin, 2hlmin)-
The idle periods in subset h are stored in a priority balanced search
tree Tp,; in our implementation, we use augmented red-black
trees [9]. Whenever the scheduling algorithm (described in the
next subsection) needs to search subset h to find an idle period for
a new job, tree Ty, is searched; as we explain shortly, the manner
in which the tree is searched depends on the part of the feasible
region (R; or R, in Fig. 2(b)) in which the corresponding strip lies.
The search of tree T, will be unsuccessful if and only if no feasible
idle period for the new job exists in this strip. Otherwise, the search
will return a feasible idle period that optimizes a given objective;
for the min-LIP strategy we are considering, it will return the idle
period that will result in the minimum leading idle period among
all feasible idle periods in the strip.

In tree Ty, the actual idle periods are in the leaf nodes, arranged
in ascending order of their starting time. For the min-LIP strategy,
a leaf node corresponding to idle period X stores the following
information:

e the starting time of X;
o the ending time of X; and

e other auxiliary data, such as the identity of the corresponding
server.

Internal tree nodes store information regarding the idle periods
in their subtree. This information is used to navigate the tree and
locate idle periods appropriate for the new job to be scheduled. In
the case of the min-LIP strategy, the information stored in internal
node v consists of:

e the median of the starting times of the idle periods stored in the
subtree of T, rooted at v;

e a pointer to the idle period in v’s subtree with the latest ending
time; and

e a pointer to the idle period in v’s subtree with the maximum
length.

Fig. 3(b) shows the balanced tree T, associated with the second
strip from the top of the schedule shown in Fig. 3(a). This strip
contains four idle periods with starting and ending times: X =
(s1,e1),Y = (53,€2),Z = (s3,e5),and V = (sg4, e4). Since 51 <
S3 < Sy, the idle periods are stored in this order as the leaves of
the tree in Fig. 3(b). Internal node B of the tree stores the median
s1 of the starting times of idle periods X and Y stored in its subtree,
along with pointers to the idle period with the latest ending time
(i.e., Y) and the largest one (i.e., X); similar information is stored in
node C and the root A of the tree.

Note that as time advances, idle periods expire (i.e., their ending
time passes) and must be discarded. Our approach of partitioning
the plane into strips and maintaining a separate tree structure for
the idle periods within each strip makes it easy to handle expired
idle periods. Let us assume that the system starts operation at time
t = 0, and that we maintain H strips, each of width 2[,;,. Since the
scheduling horizon (i.e., the time in the future during which a job
can be scheduled) is H x 2 X Iy, time units, then no idle period
canend attime t’ > t + H X 2 X Iy, Where t is the current time.
Consider the topmost strip with index h = 1. Initially, the latest
time at which an idle period in this strip may end (expire) is at
timet' = (H+ 1) x 2 x Inin — €, corresponding to the scheduling,
attimet = 2 X lyin — €, of a job with ready time H X 2 X Ly, time
units in the future. Therefore, at timet = (H + 1) X 2 X Iy,
the tree corresponding to strip with index h = 1 is discarded,
since all idle periods recorded in that tree have already expired.
At the same time, all strips (and corresponding trees) with indices
h,h = 2,...,H, are renumbered to h" = h — 1, and a new empty
tree is created to record idle periods falling in the new strip with
index h" = H. This discard operation is repeated every 2l;, time
units thereafter. All the operations involved in discarding a tree can
be performed in O(1) time with no extra memory cost by using
(1) a circular queue to record the tree indices, and (2) modulo-H
arithmetic. If a single tree structure were used instead to store all
idle periods, deleting expired idle times would require additional
information to be kept at internal nodes, as well as costly periodic
operations to locate all idle times with past ending times.



C. Castillo et al. / . Parallel Distrib. Comput. 71 (2011) 963-973 969

4.2. Min-LIP algorithm

Consider a request to schedule a new job j with parameters
(1, l;, dj). Let P and P’ be the points in the geometric representation
of the schedule that correspond to the earliest and latest times,
respectively, at which the new job can be scheduled (refer also
to Fig. 3(a)). Let p, 1 < p < H, be the index of the horizontal
strip in which point P lies; let p’ > p be the index of the strip
where point P’ lies. Similar to our earlier discussion, we also let
R, (respectively, R,) denote the part of the feasible region for
the new job j containing idle periods with starting times earlier
(respectively, later) than the job’s ready time r;.

The min-LIP algorithm to find a feasible idle period for the new
job j that minimizes the length of the leading idle period created
consists of two steps: a search in region R,, followed by a search in
region Ry, if necessary. Next, we describe these two steps in detail.
Step 1: Search in region R,. The algorithm first searches for a feasible
idle period in region R,. Any such idle period has starting time
s > rj; hence, we schedule job j to start at time s, avoiding the
creation of a leading idle period. Although any feasible idle period
in this region is optimal in terms of the objective we consider,
assigning the new job to an idle period with starting time s will
delay the execution of the job by an amount of time equal to s — r;
units beyond its ready time. In order to minimize this delay, the
min-LIP algorithm explores the horizontal strips in this region in
top-to-bottom fashion, i.e., by examining the corresponding trees
in the order Ty, Ty, ..., Ty

The min-LIP algorithm exploits the observation that any
feasible idle period in region R, is optimal in order to examine each
tree T, h = p, ..., p/, in this region in O(1) time. Recall that the
root of T, maintains a pointer to the largest idle period in the tree
(refer to Fig. 3(b)). If this idle period is smaller than the new job,
then we know that no idle period in this tree can accommodate
this job, and the algorithm proceeds to examine the next tree in
the region; otherwise, the algorithm assigns the job to this largest
idle period. Consequently, each horizontal strip that contains no
feasible idle period is eliminated in O(1) time. At most one strip
with a feasible idle period (the first such strip in the sequence) is
examined, and the assignment of a job to the largest idle period
in this strip takes time O(1). In this case, the corresponding tree
T, must also be updated (to delete the largest idle period); this
operation takes O(log n) time, where n is the number of servers in
the system. If a trailing idle period that is larger than the minimum
job size Iy, is created, it has to be inserted in the appropriate
tree (which may be different than T,). Recall that we maintain a
circular queue storing the tree indices. Therefore, using modulo-H
arithmetic we are able to locate the appropriate tree for the trailing
idle period in constant time. The insert operation takes O(logn)
time. Since the number of strips that fall within region R, is at most

k = {mdﬁ—‘ where d; is the deadline of the new job, the worst-

case running time of this step is O(k + log n) if the region contains
a feasible idle period, and O(k) if it does not.
Step 2: Search in region R;. If Step 1 fails (i.e., no feasible idle period
for the new job exists in region R,), the algorithm proceeds to
explore region R;. If any feasible period in this region starting at
time s is selected, the job will start execution at its ready time
rj, creating a leading idle period of length r; — s. Since our goal
is to minimize this length, the algorithm examines the horizontal
strips in this region in bottom-to-top fashion, i.e., it searches the
corresponding trees in the order T,_1, T,—», . .., T;. Note also that
in this step of the algorithm we may safely ignore the line segment
representing the job (e.g., the segment from point P to point P’ in
Fig. 3(a)), and simply focus on the single point representing the job
starting at its ready time (i.e., point P).

Each tree T,,h = p — 1,...,1, in region R; is searched
using a standard algorithm for red-black trees [9] to find the idle

period (if any) with the latest starting time that is large enough
to accommodate the new job. This search takes time O(logn).
If a feasible idle period is found in some tree Ty, three update
operations must be performed: to delete the idle period from Ty,
and to insert the newly created leading and trailing idle periods
(as long as they are larger than ;) into the appropriate trees; all
these operations take O(logn) time [9,10]. The number of strips

within region Ry is at most m = , where r; is the ready

"
2lmin
time of job j. The worst-case running time of this step is O(m log n)
and occurs when either no feasible idle period exists, or one exists
in the topmost strip. Similarly, the worst-case running time of the
overall algorithm is O(k + mlogn).

Let us illustrate how the tree search algorithm operates by
considering the second strip from the top in Fig. 3(a), i.e., the one
containing the idle periods X, Y, Z, and V. It is clear from the figure
that only Y, Z, and V can accommodate the new job; of these, V is
optimal in terms of minimizing the leading idle period for the job
represented by point P, as it has the latest starting time.

The algorithm starts at the root A of the tree in Fig. 3(b) that
stores the idle periods in this strip. It compares the ready time
(r; = s5) of the new job j to the median (= s3) of the starting times
of the idle periods in this tree stored at the root. In this case, s3 < ss,
which implies that some idle periods in the left subtree of A, as
well as some idle periods in the right subtree, start before rj, hence
both subtrees may have to be examined further (if the reverse were
true, the algorithm would have eliminated the right subtree of A
immediately). The algorithm then compares the ending time of the
job (= e,) to the maximum ending time of the idle periods in the
left subtree of A; this value (= e,) can be obtained by following the
pointer to the idle period Y with the maximum ending time that
is stored in the root B of the left subtree. Since the two values are
equal, a feasible idle period may exist for this job in the subtree
rooted in B. Therefore, the algorithm marks node B for possible
consideration in the future, and proceeds to examine the right
subtree of A.

The search continues in a recursive manner until a leaf node
is reached. In this example, the ready time (r; = ss) of the job is
compared to the median starting time s; stored in node C. Since
s3 < ss, the algorithm compares the ending time (= es) of the left
child of C to the ending time e, of the job. Since es > e,, the idle
period Z in the left child of C is feasible, and the algorithm marks
the leaf node Z. It then similarly examines the right child of C, and
determines that it also represents a feasible idle period; since this
is the one with the latest starting time, it is optimal and is the one
returned by the algorithm. In general, once the algorithm reaches a
leaf node, all idle periods with starting time earlier than or equal to
rj are to its left. If the idle period represented by this leafis feasible,
then it is returned and the algorithm terminates. Otherwise, it is
sufficient to continue the search recursively from the last marked
node.

4.3. Tree structure and algorithm for the best-fit strategy

For the best-fit strategy, we use a 2-dimensional tree T} to
store the idle periods within each strip h, h = 1, ..., H. The tree
corresponding to Ty’s first dimension, t;, is an augmented version
of the min-LIP tree introduced earlier and the information stored
at each of its internal nodes u consists of:

e the median starting time of the idle periods stored in the sub-
tree of t; rooted at u;

e a pointer to a secondary priority search tree t;; and

e a pointer to a secondary regular binary search tree t,’r

Trees t¢ and t} store the idle periods in u’s subtree in descend-
ing order of their ending time and length, respectively. The infor-
mation stored at each internal node v of tree t; consists of:



970 C. Castillo et al. /. Parallel Distrib. Comput. 71 (2011) 963-973

o the median ending time of the idle periods stored in the subtree
of tf rooted at v; and;
e apointer to the idle period with minimum length in v’s subtree.

As we explain shortly, the manner in which the data structure
is searched depends on the part of the feasible region (R; or R;) in
which the corresponding strip lies.

The best-fit algorithm consists of two steps: a search for bg,, the
local best fit in region R, followed by a search for bg,, the best fit
in region R,. After exploring both regions, the algorithm returns
the overall best fit for the given job, if one exists. Since in this
strategy the algorithm searches for a local best fit in every strip
in order to obtain a global optimal, the order in which this search
proceeds is irrelevant. However, for the sake of simplicity in our
implementation we search both regions in a top-bottom fashion.
Step 1: Search in region R;. Since the best-fit among a set of
feasible idle periods is the idle period with the smallest length,
the algorithm first identifies the set of feasible idle periods in the
strip, and then retrieves the one with the smallest length. Recall
also that all idle periods in R; start before r; (see Fig. 2) and hence,
meet the feasibility requirement in terms of their starting time.
However, they may or may not be feasible depending on their
ending time. To identify the set of feasible idle periods for a given
job j in a strip in Ry, the algorithm searches the secondary tree
associated with the strip t; using a simplified version of the min-
TIP algorithm. Min-TIP is similar to the min-LIP algorithm we just
described with the difference being that the search performed is a
function of the ending time. More specifically, the algorithm visits
every internal node v in t; whose subtree contains exclusively idle
periods with ending time larger than the earliest time the job can
be completed; the algorithm stops as soon as it reaches a leaf.
In terms of complexity, the same arguments presented earlier for
min-LIP hold for min-TIP, therefore, the cost of visiting the O(log n)
internal nodes is O(log n) per strip.

For each internal node v visited in tree t; the algorithm
computes the local best fit b, corresponding to the idle periods
in v’s subtree. Such an idle period is the smallest idle period in
v'subtree and can be retrieved by means of the pointer stored at v
ata cost of O(1). The algorithm then compares b, to the most up to
date bg, at that particular point in time; if b, has a smaller length it
updates bg, with b,, otherwise, it discards b,,. Recall that retrieving
b, from a given v’s subtree costs O(1); therefore, the overall cost
for searching bg, is O(mlogn) where m is the number of strips in

Ry andisatmostm:{ ul —I

2lmin
Step 2: Search in region R,. After the algorithm has searched for b,
it proceeds to search bg, in R,. Notice that as an idle period in R,
moves further up (down) from the line segment between P and P’
its length increases (decreases), until it reaches the line segment
itself where the length of the idle period is ;. It follows that the
best fit in a strip in R, is the closest idle period to the line segment
between P and P’. To find such idle period the algorithm performs
a simple binary search on tree t,’r More specifically, it searches for
the idle period with the minimum length larger than the length

of the job, I;. Since in R, there are at most k = {d—’—‘ strips, the

2lmin

overall complexity for searching b, in Step 2 is O(k logn).

4.4. Implementation of other scheduling strategies

The scheduling strategies we defined in Section 3.2 can be
implemented by appropriately modifying either the tree data
structure or the search algorithm we described above for the min-
LIP strategy. In order to optimize the trailing idle period, the plane
must be partitioned into vertical strips of length M x 2 X lpin, M >
1, and each tree must store the idle periods in the corresponding
strip in increasing order of their ending, rather than starting, times;

the search algorithm is similar to the corresponding algorithm
for min-TIP. Finally, the first fit strategy can be implemented by
exploring the horizontal strips in increasing order of index h, and
selecting from each tree the first feasible idle period found.

5. Performance evaluation

We use simulation to evaluate the performance of the various
scheduling strategies. We use the method of batch means to
estimate the performance parameters we consider (and which we
discuss shortly), with each batch consisting of thirty simulation
runs and each run lasting until 10°® jobs have been submitted to the
Grid scheduler. We have also obtained 95% confidence intervals for
all the results, which are shown in the figures.

In our simulation, we assume that job requests arrive as a
Poisson process with rate \. Job sizes are distributed according to
a bounded Pareto distribution. The minimum job size is set equal
to 1, and is taken as the unit of time. The maximum job size is set
to 50 time units, and we vary the mean job size x by changing the
value of the parameters of the Pareto distribution. We let L denote
the amount of time that the scheduler 4 can look “into the future”;
in other words, a job may request to be scheduled at most L units
of time in the future. We let the deadline d; of job j be uniformly
distributed in the interval (r; + I;, r; + [j + q(L — r; — [;)), where
q,0 < g < 1is a parameter that controls the “tightness” of the job
deadlines. In our simulations, we let L = 200.

We use three performance metrics in our study. The loss rate
is the fraction of jobs that are dropped due to the fact that their
deadline cannot be met. The system utilization is the fraction of time
the n servers are busy serving jobs. The average delay is the mean
amount of time that a job has to wait beyond its ready time until
it starts execution; note that dropped jobs do not contribute to the
average delay.

We compare five scheduling strategies: first-fit, min-LIP, min-
TIP, best-fit and LACT. The LACT algorithm, which we described
in Section 2, does not consider the idle periods created at each
server, and hence suffers the effects of capacity fragmentation. As
mentioned earlier, we consider this algorithm as a baseline case.
Although we do not show any results for the max-LIP and max-
TIP scheduling algorithms, their overall behavior is similar to that
of min-LIP and min-TIP in that they are efficient in utilizing the
available system capacity.

Fig. 4(a)-(c) plot the loss rate, average delay, and utilization
respectively, for the five scheduling strategies against the system
load p. The system load is calculated using the familiar from
queueing theory expression p = (AX)/n. For the results shown in
these figures, we let the number of servers n = 20, the mean job
size x = 3.28, and the tightness of the job deadlines ¢ = 0.1. Note
that the load values in the figures range from low (p = 0.1) to very
high (p = 1.1) at which the system is more than 100% loaded. Also,
the 95% confidence intervals are quite narrow for all curves shown.

From Fig. 4(a) we can see that the loss rate increases with
the system load for all five scheduling algorithms, as expected.
However, the LACT algorithm performs significantly worse than
the other four strategies at all but very low loads; this result is
not surprising given the fact that this algorithm does not consider
the idle periods in the servers. Under the other four strategies,
jobs experience low loss rates even for load values close to 1; in
fact, min-LIP and min-TIP have almost identical behavior with loss
rates close to zero for loads up to p = 0.8. The best-fit strategy
experiences low loss rate but performs slightly worse than min-LIP
and min-TIP. This can be explained by the fact that in the best-fit
strategy jobs are scheduled to start execution at the starting time
of the idle period whenever possible. This results in the creation
of small trailing idle periods, which may fail to accommodate
incoming jobs; hence increasing the loss rate in the system. The



C. Castillo et al. / . Parallel Distrib. Comput. 71 (2011) 963-973 971

Min-LIP
Min-TIP .
First-fit s

LAGT o
0.4 Best-it o

Loss Rate
o
w

0.2 0.4 0.6 0.8
System Load

b 3s __
Min-LIP
Min-TIP
8t First-fit s
LACT o
251 Best-fit
3 2
I
- .-
145" .j‘
r —
0.5 .
PR PR LI LA
ot : : ‘ ‘
02 04 06 08 1 12

System Load

c 1
09t
08 -
07+t
06
05¢
041 )
0o3f &
02 &
0.14
0

Utilization

Min-LIP
Min-TIP
First-fit «
LACT

) Best-fit :

0.2 0.4

0.8 1 1.2

System Load

Fig.4. (a)Loss rate vs. system load. (b) Average delay vs. system load. (c) Utilization vs. system load.

first-fit algorithm also experiences low loss, but it performs worse
than min-LIP or min-TIP for all load values less than 1. Therefore,
min-LIP and min-TIP are clearly the best algorithms for typical
operating regimes (i.e., at medium to medium-high loads). Note
also that the loss rate for two algorithms is less than 10% even at
a load of p = 1.1. This result can be explained by the fact that
when the system is overloaded, large jobs have higher probability
to be dropped than small jobs, under these two algorithms; hence
at p = 1.1, the dropped jobs account for more than 10% of the
offered load.

Let us now turn to Fig. 4(b) which plots the average job delay
against the system load. As we can see, jobs experience the lowest
delay under the first-fit strategy. This result agrees with intuition:
first-fit assigns a new job to the earliest feasible idle period, thus
minimizing delay. The best-fit strategy, on the other hand, results
in high delays for moderate to high loads. This is consistent with
the results obtained for the loss rate (see Fig. 4(a). We also observe
that the average delay for min-LIP is higher than for first-fit but
lower than under min-TIP. Recall that min-LIP first searches for
the earliest feasible idle period in region R, (i.e., for an idle period
starting after the job’s ready time). Once such an idle period is
found, the job is scheduled to start at the beginning of this period.
Consequently, the starting time of the job can be no earlier than
under first-fit, hence the longer delay. On the other hand, min-
TIP also searches first for the earliest idle period starting after a
job’s ready time. But unlike min-LIP, it schedules the job at the
end of this idle period; shifting the job so that its completion
time coincides with the end of the idle period causes higher delay
than min-LIP. The average delay curve for the LACT algorithm lies
between the corresponding curves for min-LIP and min-TIP for
most system load values of interest. Note that the average delay
for LACT increases up to p = 0.4, at which point LACT losses start
to accelerate (refer to Fig. 4(a)). Beyond that point, average delay
under LACT starts to decrease; however, this behavior is a side
effect of the high losses incurred, rather than an indication of an
inherent quality of the algorithm.

Fig. 4(c), which plots the system utilization versus the load,
confirms our observations regarding the relative performance of
the five algorithms. As expected, utilization increases with the

system load initially, but at some point the curves level off. LACT
shows the lowest utilization, a result consistent with the high
loss rates we observed in Fig. 4(a). Min-LIP, best-fit and min-TIP
again have the best performance, followed by first-fit. Moreover,
followed closely by the best-fit curve, the behaviour of the min-LIP
and min-TIP curves is almost identical, with utilization increasing
almost linearly with the load values. This result indicates that all
three algorithms are capable of identifying and using idle periods
to schedule jobs, thus ensuring that fragmentation of system
capacity does not compromise overall performance. We also note
that the difference in utilization between first-fit, on the one hand,
and min-LIP, min-TIP and best-fit, on the other hand, is higher than
the difference in loss rates would suggest. The higher difference in
utilization can be explained by the fact that the first-fit strategy
tends to drop larger jobs with higher probability. This is due to the
fact that it is more unlikely that the scheduler can find feasible idle
periods for large jobs.

Overall, the average delay values in Fig. 5(a) are relatively low,
and correspond to a fraction of the mean job size x = 3.28 for all
algorithms. More importantly, average delay for the four strategies
of interest (i.e., first-fit, min-LIP, min-TIP and best-fit) does not vary
significantly with load, although it increases slightly at high loads.
One exception is the min-TIP strategy which shows a moderate
decrease in delay as p increases from low to moderate values. This
behavior can be explained as follows. At low loads, min-TIP can find
feasible idle periods starting after the jobs’ ready time, and shifts
the jobs to the end of these idle periods incurring a relatively high
delay. At higher loads, on the other hand, and due to the relatively
tight deadlines, it becomes more difficult to find such idle periods.
In case of failure, min-TIP (similar to min-LIP) then searches for
feasible idle periods that start before the jobs’ ready time. Since
these idle periods start earlier, the average delay under min-TIP
tends to decrease with the load.

In addition to providing insight into the relative behaviour of
the five strategies due to the different optimization objectives con-
sidered, Fig. 4(a)-(c) illustrate that properly designed schedul-
ing algorithms can effectively overcome the obstacles of capacity
fragmentation to deliver high performance in terms of metrics
that reflect the requirements of both users and service providers.



972 C. Castillo et al. /. Parallel Distrib. Comput. 71 (2011) 963-973
‘ ‘ ‘ 4 ‘ ‘
a 045 Min-LIP —— b o Min-LIP ——
0.4+ \ Min-TIP 1 041 Min-TIP 1
First-fit First-fit - .
0.35 LACT 0.35 LACT - :
03l Y Best-fit 0.3 Best-fit 1
Q . L} Q
= w 025 1
& o025t g
o s 02 E
o 02¢f 17
S 3 o015 1
015 ¢ “u., 0.1t ]
0.1+ S, . 0.054. i
0.05 - 0
J—
0 = -0.05 : : ‘ :
0 2 4 6 8 10 0 0.1 0.2 0.3 0.4 0.5
Mean Job Size Deadline Tightness (q)
¢ 05/ " Min-LIP ——
0451 Min-TIP 1
0.4 First-fit
| LACT
0.35 Best-it
o 03} %
& oosf "
® 02f
[}
- 015¢}
01}
0.05
Q P £ = a1l =
-0.05 :

10 20 30 40 50

60 70 80 90

N

Fig. 5. (a)Loss rate vs. mean job. (b) Loss rate vs. deadline. (c) Loss rate vs. number of servers.

Specifically, the min-LIP and min-TIP algorithms cater to the user
needs by ensuring that job deadlines are met while keeping both
loss rates and average delay low; at the same time, they deliver
high system utilization, an important goal for service providers.

The next three Fig. 5(a)-(c) illustrate the behavior of the loss
rate as we vary the values of three important system parameters,
namely, mean job size X, deadline tightness g, and number of
servers n, respectively; the other parameters in the experiments
take values as specified in the corresponding figure caption.

Fig. 5(a) plots the loss rate for the five scheduling algorithms
against the mean job size for n 20 servers and system load
p = 0.6. Min-LIP and min-TIP clearly outperform the other three
algorithms, and their loss rate remains well below 1% across the
range of mean job size values shown in the figure; the performance
of best-fit is also close. In fact, mean job size has little effect on the
loss rate for these algorithms. We have also found that utilization
remains close to 60% for these two algorithms. First-fit has a higher
loss rate, which increases with the mean job size. Finally, the loss
rate of LACT is the highest, but it decreases as x increases. While this
behavior may seem counter-intuitive, it can be explained by noting
that for constant load, increasing x implies a lower job arrival rate.
Fewer job arrivals result in fewer idle periods, hence a lower degree
of fragmentation of the available capacity. Since LACT performs
worse with increasing degree of fragmentation, its performance
improves as the mean job size increases.

In Fig. 5(b) we plot the loss rate against the deadline tightness
g. Recall that the larger the value of parameter g, the further in
the future the deadline of each job lies, and the more flexibility
an algorithm has in scheduling jobs. As we can see in the figure,
the loss rate of the min-LIP and min-TIP strategies decreases as the
value of q increases from O (the case of immediate deadlines) to
0.1; after that point, the loss rate remains at zero. The loss rate
of best-fit and first-fit also decreases initially, and then remains
low throughout the range of values of g. This behavior indicates
that these four policies, which consider the idle periods when
scheduling jobs, are effective throughout the range of deadlines
considered in our study; their performance is affected, although
not significantly, only when deadlines are very “tight”. On the other
hand, it is evident that the LACT algorithm is very sensitive to

the tightness of the deadlines: its performance is poor when q is
small, but it improves dramatically as the value of q increases, in
which case the algorithm can push the starting time of jobs further
in the future without missing their deadlines. Of course, this
improvement in performance comes at the expense of significantly
higher delay (not shown here due to space constraints).

Finally, Fig. 5(c) plots the loss rate against the number n of
servers in the Grid. The relative behavior of the various curves is
similar to the one observed earlier: min-LIP and min-TIP clearly
outperform the other four strategies and have loss rates close
to zero at larger values of n, while LACT has by far the worst
performance. In general, the loss rate decreases with the number
of servers for all strategies, but shows a significant improvement
for LACT. This behavior can be explained by noting that at
constant load, as the number of servers increases, the degree of
fragmentation tends to decrease, hence the performance of LACT
improves. We also emphasize that the loss rate for LACT is an order
of magnitude higher than the loss rates of all three; min-LIP, min-
TIP and best-fit throughout the values of n used in this experiment.

6. Concluding remarks

We have applied techniques from computational geometry to
develop a suite of scheduling strategies that allocate resources
in a Grid environment using a range of optimization criteria. We
also presented efficient implementation of the various algorithms
that scale to large Grid systems. We have presented results
from extensive simulation experiments to demonstrate that our
algorithms are simultaneously user- and system-centric: they are
able to schedule resources to meet the deadlines imposed by users
and maximize system utilization, while experiencing low job drop
rates and low delays. Our work provides a practical and efficient
solution to the problem of scheduling resources in the emerging
highly dynamic Grid environments.

References

[1] RJ. Al-Ali, K. Amin, G. Von Laszewski, F. Omer, D.W. Walker, M. Hategan,
N. Zaluzec, Analysis and provision of QoS for distributed Grid applications,
Journal of Grid Computing 2 (2) (2004) 163-182.



C. Castillo et al. / . Parallel Distrib. Comput. 71 (2011) 963-973 973

[2] Amazon EC cloud. http://www.amazon.com/gp/browse.html?node=3435361.

[3] B. Bode, D.M. Halstead, R. Kendall, Z. Lei, D. Jackson, The portable batch
scheduler and the Maui scheduler on Linux clusters, in: Proceedings of the
Usenix Conference, 2000.

[4] R. Buyya, D. Abramson, ]. Giddy, Nimrod/g: an architecture for a resource
management and scheduling system in a global computational Grid, in:
Proceedings of HPC'00-Asia, May 2000, pp. 283-289.

[5] R. Buyya, D. Abramson, S. Venugopal, The Grid economy, Proceedings of the
IEEE 93 (3) (2005) 698-714.

[6] E.-K. Byun, J.-W. Jang, W. Jung, J.-S. Kim, A dynamic Grid services deployment
mechanism for on-demand resource provisioning, in: Proceedings of Cluster
Computing and the Grid, 2005.

[7] E. Caronand, P.K. Chouhan, F. Desprez, Deadline scheduling with priority for
client-server systems on the Grid, in: IEEE/ACM International Workshop on
Grid Computing, 2004, pp. 410-414.

[8] H.-L. Chan, T.-W. Lam, K.-K. To, Nonmigratory online deadline scheduling on
multiprocessors, SIAM Journal on Computing 34 (3) (2005) 669-682.

[9] T. Cormen, C. Leiserson, R. River, C. Stein, Introduction to algorithms, second
ed., McGraw-Hill Book Company, 2001.

[10] M. de Berg, M. van Krefeld, M. Overmars, O. Schwarzkopf, Computational
Geometry: Algorithms and Applications, second ed., Springer-Verlag, 2000.

[11] M.L. Dertouzos, A. Ka-Lau Mok, Multiprocessor on-line scheduling of hard
real-time tasks, IEEE Transactions on Software Engineering 15 (12) (1989)
1497-1506.

[12] E. Elmroth, J. Tordsson, A Grid Resource Broker Supporting Advance
Reservations and Benchmark-Based Resource Selection, in: Lecture Notes in
Computer Science, vol. 3732, Springer-Verlag, 2005, pp. 1077-1085.

[13] I Foster, C. Kesselman (Eds.), The Grid 2: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 2003.

[14] L Foster, Y. Zhao, 1. Raicu, S. Lu, Cloud computing and Grid computing 360-
degree compared, in: IEEE Grid Computing Environments, GCE08, 2008, pp.
12-16.

[15] K.S. Hong, J.Y-T. Leung, Preemptive scheduling with release times and
deadlines, Journal of Real-Time Systems 1 (1989) 265-281.

[16] K.S. Hong, ].Y-T. Leung, On-Line scheduling of real-time tasks, I[EEE Transac-
tions on Computers, 4 (10) 1326-1331.

[17] W. Horn, Some simple scheduling algorithms, Naval Research Logistic
Quarterly 21 (1) (1974) 177-185.

[18] D. Isovic, G. Fohler, Efficient scheduling of sporadic, aperiodic, and periodic
tasks with complex constraints, in: Proceedings of the IEEE 21st Real-Time
Systems Symposium, November 23-27, 2000, Orlando, Florida.

[19] D. Isovie, Handling sporadic tasks in real-time systems: combined offline and
online approach, http://www.mrtc.mdh.se/publications/0308.pdf.

[20] D.Jackson, New issues and new capabilities in HPC scheduling with the Maui
scheduler, http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/
Archive/PDF01/Jackson_Utah.pdf.

[21] D.Jackson, Q. Snell, M. Clement, Core algorithms of the Maui scheduler, Lecture
Notes in Computer Science 2221 (2001) 87-102.

[22] W. Leinberger, V. Kumar, Information power Grid: the new frontier in parallel
computing? IEEE Concurrency 7 (4) (1999) 75-84.

[23] M. Maheswaran, K. Krauter, R. Buyya, A taxonomy and survey of Grid
resource management systems for distributed computing, Software: Practice
and Experience 32 (2) (2002) 135-164.

[24] E. McCreight, Priority search trees, SIAM Journal of Computing 14 (2) (1985)
257-276.

[25] R. Min, M. Maheswaran, Scheduling advance reservations with priorities in
Grid computing systems, in: Proceedings of PDCS'01, 2001, pp. 172-176.

[26] Platform Computing Corporation. http://www.platform.com.

[27] K. Ramamritham, ]. Stankovic, Scheduling algorithms and operating systems
support for real-time systems, IEEE Transactions on Software Engineering 82
(1) (1994) 56-67.

[28] S. Sahni, Preemptive scheduling with due dates, Operations Research 27 (5)
(1979) 925-934.

[29] S. Sahni, Y. Cho, Nearly online scheduling of a uniform system with release
times, SIAM Journal on Computing 8 (2) (1979) 275-285.

[30] M. Siddiqui, A. Villazon, T. Fahringe, Grid capacity planning with negotiation-
based advance reservation for optimized QoS, in: Proceedings of Conference
in Supercomputing, vol. 2006, 2006, pp. 103-118.

[31] W. Smith, I. Foster, V. Taylor, Scheduling with advanced reservations, in:
Proceedings of IPDPS’00, 2000, pp. 127-132.

[32] J.A. Stankovic, M. Spuri, K. Ramamritham, G.C. Buttazzo, Deadline Scheduling
for Real-Time Systems. EDF and Related Algorithms, in: Series: The Springer
International Series in Engineering and Computer Science, vol. 460, 1998,
Hardcover.

[33] A. Sulistio, R. Buyya, A Grid simulation infrastructure supporting advance
reservation, in: Proceedings of PDCS'04, November 2004, pp. 1-7.

[34] A.Takefusa, H. Casanova, S. Matsuoka, F. Berman, A study of deadline schedul-
ing for client-server systems on the computational Grid, in: Proceedings of
HPDC, 2001, pp. 406-415.

[35] J. Xu, C. Qiao, ]. Li, G. Xu, Efficient burst scheduling algorithms in optical burst-
switched networks using geometric techniques, IEEE Journal on Selected Areas
in Communications 22 (9) (2004) 1796-1811.

[36] W. Zhao, K. Ramamritham, J.A. Stankovic, Preemptive scheduling under time
and resource constraints, IEEE Transactions on Computers C-36 (8) (1987)
949-960.

[37] W. Zhao, K. Ramamritham, J.A. Stankovic, Scheduling tasks with resource
requirements in hard real-time systems, IEEE Transactions on Software
Engineering SE-13 (5) (1997).

C. Castillo is a Research Staff Member in IBM Research
since 2008.

Her research interest revolves around resource man-
agement in large scale distributed systems. She is par-
ticularly interested in middleware technologies for data
intensive applications.

Previously, she was a research assistant in the Depart-
ment of Computer Science at North Carolina State Uni-
versity where she obtained her Ph.D. Prior to that, she
obtained her Master Degree from the Department of Elec-
trical Engineering in the same institution. She received her
undergraduate degree in Electrical Engineering from the University of Panama,
Panama, where she also worked as a lecturer.

On the professional side, she has worked as a consultant contractor for Centauri
Technologies Corporation in Panama and interned at Intel Research, IBM Research
(T.J. Watson) and Cisco Systems Inc. in the United States. She is a member of IEEE
and ACM.

G.N. Rouskas is a Professor of Computer Science at North
Carolina State University.

He received his Diploma in Computer Engineering
from the National Technical University of Athens (NTUA),
Athens, Greece, in 1989, and his M.S. and Ph.D. degrees in
Computer Science from the College of Computing, Geor-
gia Institute of Technology, Atlanta, GA, in 1991 and 1994,
~ respectively.

. His research interests include network architectures
and protocols, optical networks, network design, and per-
formance evaluation. He is co-editor of the book “Next-
Generation Internet Architectures and Protocols” (Cambridge University Press,
2011), author of the book “Internet Tiered Services” (Springer, 2009), and co-editor
of the book “Traffic Grooming for Optical Networks” (Springer 2008).

He is founding co-editor-in-chief of the Optical Switching and Networking Jour-
nal, he is on the editorial board of the IEEE/OSA Journal of Optical Communications
and Networking, and he has served on the editorial boards of IEEE/ACM Transac-
tions on Networking, Computer Networks, and Optical Networks.

He is the TPC co-chair for ICCCN 2011, and he has served as TPC or general
chair for numerous conferences, including the IEEE GLOBEC 2010 ONS Symposium,
BROADNETS 2007, IEEE LANMAN 2004 and 2005, and IFIP NETWORKING 2004.

He is the recipient of several research and teaching awards, including a 1997
NSF CAREER Award. He is a Distinguished Lecturer for the IEEE Communications
Society in 2010-2011.

K. Harfoush obtained his Ph.D. in Computer Science
from Boston University in 2002. He is currently Associate
Professor in the Department of Computer Science at North
Carolina State University, which he joined in 2002. His
research interests are in the general areas of network
modeling and design, Internet Measurement, Peer-to-Peer
systems and network security. He is leading the Network
Design and Traffic Engineering group at North Carolina
State University.
o 4 Prof. Harfoush is a recipient of the prestigious NSF
‘ CAREER award, and serves on the program committees for
numerous conferences including IEEE INFOCOM and IEEE ICNP. He is a member of
ACM and IEEE since 2002.





