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Abstract—We consider the traffic grooming problem, a
fundamental network design problem in optical networks.
We review a typical integer linear program formulation
considered in the literature, andwe identify two challenges
related to this formulation in terms of scalability and
wavelength fragmentation. We then propose a new (to our
knowledge) solution approach that decomposes the traffic
grooming problem into two subproblems that are solved
sequentially: 1) the virtual topology and traffic routing
(VTTR) subproblem, which does not take into account
physical topology constraints, and 2) the routing and
wavelength assignment subproblem, which reconciles the
virtual topology determined by VTTR with the physical
topology. The decomposition is exact when the network
is not wavelength limited. We also propose an algorithm
that uses a partial linear programming relaxation tech-
nique driven by lightpath utilization information to solve
the VTTR subproblem efficiently. Our approach delivers
a desirable tradeoff between running time and quality of
the final solution.

Index Terms—Linear programming; Optimization;
Traffic grooming.

I. INTRODUCTION

I n the modern world, communication services delivered
via the Internet touch all of society and affect all aspects

of human life. To accommodate the exponential growth of
demand in communications, an infrastructure that can
support ever-increasing amounts of traffic is highly needed.
Optical networks have been commonly used as the backbone
infrastructure of Internet services, since they deliver high
performance in terms of both throughput and quality of
service (QoS). The physical structure of an optical network
consists of a set of nodes and optical fibers that interconnect
them. With the help of wavelength division multiplexing
(WDM) technology, it is possible to transmit traffic on differ-
ent wavelengths within the same optical fiber simultane-
ously. The data rate of a single wavelength can be up to
40 Gbps, while higher rates are becoming commercially
available. Therefore, the capacity of each wavelength can

be significantly higher than the magnitude of individual
traffic demands.

Theconcept of traffic groomingwas introduced in themid-
1990s to address the gap between the channel capacity and
individual traffic demands in optical networks. Thekey idea
is to aggregate individual traffic requests onto wavelengths
so as to improve bandwidth utilization across the network
and minimize the use of network resources. Many variants
of traffic grooming have been studied in the literature.
Online versions of the problem target network environ-
ments in which traffic demands arrive in real time. Since
future demands are not known in advance, the main objec-
tive of onlineproblems is tominimizeblockingprobability or
maximize throughput. Heuristics for solving online traffic
grooming problems have been proposed in [1–4].

Offline traffic grooming is a fundamental network design
problem that has been shown to be NP-hard [5]. Network
design problems are typically formulated as integer linear
programs (ILPs) and assume the existence of a traffic
matrix representing the demands between node pairs.
Basic ILP formulations of the problem are available in [6]
and [7]. Typically, the objective is to minimize the total net-
work cost while satisfying all demands (e.g., as in [8,9]) or
to maximize the total revenue by satisfying as many traffic
demands as possible given certain capacity (wavelength)
constraints (e.g., as in [7]). Since electronic equipment that
terminates lightpaths represents a large fraction of the
overall network cost, the number of lightpaths established
to carry the traffic demands is usually taken as the metric
to minimize [9]. Other cost functions have also been consid-
ered, including the electronic switching cost of grooming
traffic between lightpaths at intermediate switches [10]
and power consumption in optical networks [11].

One essential concern about the ILP formulations is
that they are solvable only for small network topologies
[11]. For larger topologies representative of deployed net-
works, the ILP formulation cannot be solved to optimality
within a reasonable amount of time (e.g., a few hours).
Therefore, the offline problem has been addressed either
using heuristic algorithms [12,13] or by manipulating the
ILP formulation using decomposition or column generation
techniques. In [2], the original ILP is decomposed into two
simpler ILPs: one that addresses only the traffic routing
and lightpath routing subproblems and is solved first,
and another that addresses the wavelength assignmenthttp://dx.doi.org/10.1364/JOCN.5.000825
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problem only and takes as input the solution of the first
ILP. In [14], a multi-level decomposition method is intro-
duced to address the multi-layered routing and multi-rate
connection characteristics of traffic grooming. In [15], the
objective is to design a ring network that is able to satisfy
any request graph with the maximum degree at most δ.
The cases of δ � 2 and δ � 3 were solved by graph decom-
position.

Column generation techniques were developed in
[16,17]. Given that the main difficulty in solving the prob-
lem has to do with selecting from among an exponential
number of possible paths to route the traffic demands, a
heuristic algorithm using column generation for a path-
based formulation of the problem was developed in [16].
The key idea was to generate an optimal subset of paths
efficiently. A hierarchical optimization method was pro-
posed in [17]. The method first deals with the grooming
and routing decisions using column generation to find
the dual bounds and a rounding heuristic to find an inte-
gral solution; wavelength assignment was then carried out
in a second step.

Existing approaches to obtaining optimal solutions
to the traffic grooming problem face serious scalability
challenges as well as wavelength fragmentation issues;
we discuss these challenges in Subsections II.A and II.B,
respectively. The lack of scalability of optimal methods
makes it difficult to characterize the performance of heu-
ristic algorithms in realistic topologies and severely limits
the application of “what-if” analysis to explore the sensitiv-
ity of network design decisions to forecast traffic demands,
capital and operational cost assumptions, and service price
structures.

In this paper, we develop a new decomposition algorithm
and partial linear programming (LP) relaxation technique
for the traffic grooming problem. Unlike existing decompo-
sition techniques (e.g., the one in [2]), our approach
achieves a significant speed-up because 1) it decouples the
virtual topology and traffic routing (VTTR) aspects of
grooming from the underlying network topology, and 2)
by virtue of this decoupling, the key integer variables
are not binary, and hence, effective LP relaxation methods
may be applied. Also, in contrast to column generation
[16,17], a general method for solving ILPs that has been
adapted to traffic grooming problems, our approach is
specific to traffic grooming and capitalizes on the structure
of the problem. At the same time, our technique is comple-
mentary to column generation such that the two might be
employed in combination to further improve the running
time; however, combining the two techniques is outside
the scope of this paper. Finally, unlike in earlier decompo-
sition methods, we prove that our approach is optimal in
most practical scenarios of interest, not only in terms of
the primary objective of number of lightpaths but also in
terms of the number of wavelengths needed to color these
lightpaths.

The rest of the paper is organized as follows. In
Section II, we present the basic but general ILP formu-
lation for the traffic grooming problem that is the starting
point of our work, and we discuss its complexity and

limitations. In Section III, we introduce a new decomposi-
tion of the problem into a VTTR subproblem and a routing
and wavelength assignment (RWA) subproblem. Then,
in Section IV, we present an algorithm that uses lightpath
utilization information to formulate a partial LP relaxation
so as to solve the VTTR subproblem. We present numerical
results in Section V, and we conclude the paper in
Section VI.

II. BASIC ILP FORMULATION AND CHALLENGES

Consider a connected graph G � �N ;L�, where N de-
notes the set of nodes andL denotes the set of directed links
(arcs) in the network. We defineN � jN j and L � jLj as the
number of nodes and links, respectively. Each directed link
l consists of an optical fiber that may support W distinct
wavelengths indexed as 1; 2; 3;…;W. Let T � �tsd� denote
the traffic demand matrix, where tsd is a nonnegative inte-
ger representing the traffic demand units to be established
from source node s to destination node d. In general, traffic
demands may be asymmetric, i.e., tsd ≠ tds. We also make
the assumption that tss � 0, ∀ s. Finally, we denoteC as the
capacity of a single wavelength channel in terms of traffic
demand units.

We are interested in minimizing the total number of
lightpaths used in the network; such an objective mini-
mizes the use of critical resources and provides ample
flexibility for future expansion of the network. Hence, we
consider the following minimization problem that we refer
to as traffic grooming (TG).

Problem 2.1 (TG): Given graph G, number of wave-
lengths W, wavelength capacity C, and traffic demand
matrix T, establish the minimum number of lightpaths
to carry all traffic demands.

Let us define the following sets of decision variables:

• tsdij : integer variable that indicates the amount of traffic,
as a multiple of unit demand, from node s to node d
carried on lightpaths from node i to node j;

• bij: integer variable that indicates the number of light-
paths from node i to node j;

• blij: integer variable that indicates the number of light-
paths from node i to node j that traverse link l; and

• cl;wij : binary variable that indicates whether a lightpath
from node i to node j uses wavelength w on link l.

Let us further denote the set of links going out of and
coming into node n as L�

n and L−
n, respectively. With these

notations, the TG problem can be formulated as the follow-
ing ILP, adapted from [6]:

minimize∶
X

i; j∈N

bij; (1)

subject to the VTTR constraints

X

s;d

tsdij ≤ bijC; i; j ∈ N ; (2)
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X

j

tsdij −
X

j

tsdji � 0; i ∈ N nfs; dg; s; d ∈ N ; (3)

X

j

tsdsj � tsd; s; d ∈ N ; (4)

X

j

tsdjs � 0; s; d ∈ N ; (5)

X

j

tsddj � 0; s; d ∈ N ; (6)

X

j

tsdjd � tsd; s; d ∈ N ; (7)

the lightpath routing constraints

X

l∈L�
n

blij −
X

l∈L−
n

blij � 0; n ∈ N nfi; jg; i; j ∈ N ; (8)

X

l∈L�
i

blij � bij; i; j ∈ N ; (9)

X

l∈L−

i

blij � 0; i; j ∈ N ; (10)

X

l∈L�
j

blij � 0; i; j ∈ N ; (11)

X

l∈L−

j

blij � bij; i; j ∈ N ; (12)

the wavelength assignment constraints

X

w

cw;l
ij � blij; i; j ∈ N ; l ∈ L; (13)

X

i;j

cw;l
ij ≤ 1; ∀ w; l ∈ L; (14)

X

l∈L�
n

cw;l
ij �

X

l∈L−
n

cw;l
ij ; n ∈ N nfi; jg; i; j ∈ N ; ∀ w; (15)

X

l∈L�
i

cw;l
ij ≤ bij; i; j ∈ N ; ∀ w; (16)

X

l∈L−

i

cw;l
ij � 0; i; j ∈ N ; ∀ w; (17)

X

l∈L�
j

cw;l
ij � 0; i; j ∈ N ; ∀ w; (18)

X

l∈L−

j

cw;l
ij ≤ bij; i; j ∈ N ; ∀ w; (19)

and the integrality constraints

tsdij ; bij; b
l
ij∶integer; cl;wij ∶0;1; w � 1; 2;…;W: (20)

The VTTR constraints [Eqs. (2)–(7)] determine the light-
paths to be established (i.e., the virtual topology of the net-
work) and the routing of traffic demands on the virtual
topology. The capacity constraint [Eq. (2)] ensures that a
sufficient number of lightpaths is established between each
node pair. Equations (3)–(7) are multi-commodity flow
equations that find the route on the virtual topology of
lightpaths for each traffic demand.

The routing constraints [Eqs. (8)–(12)] are multi-
commodity flow equations that determine the physical
route for each lightpath, where each lightpath corresponds
to a single commodity. Equation (8) ensures that the num-
ber of incoming lightpaths is equal to the number of out-
going lightpaths at any intermediate node. Equations (9),
(10) and (11), (12) are the lightpath constraints at the ori-
gin node and sink node, respectively, of each lightpath.

The wavelength assignment constraints [Eqs. (13)–(19)]
enforce the two wavelength constraints: 1) Eq. (14) repre-
sents the distinct wavelength constraint that guarantees
that each wavelength may only be used once on any link,
i.e., no two lightpaths sharing a common link may use the
same wavelength, and 2) multi-commodity flow equations
[Eqs. (15)–(19)] represent the wavelength continuity con-
straint by ensuring that each link on the same lightpath
is assigned the same wavelength. Finally, Eq. (13) ensures
that each lightpath will only use one wavelength.

The above formulation and most formulations studied in
the literature that use link-related variables suffer from
two main challenges: scalability and wavelength fragmen-
tation. We discuss each of these challenges in the next two
subsections, respectively.

A. Challenge: Scalability

The scalability of the formulation depends directly on
its size, which, in turn, is determined by the number of
variables and constraints. The above formulation consists
of N2�N − 1�2 integer variables ftsdij g, N�N − 1� integer
variables fbijg, N�N − 1�L integer variables fblijg, and
N�N − 1�LW binary variables fcl;wij g, for a total of
O�N4 �N2LW� variables. Also, there are O�N3� routing
constraints, O�N3W� wavelength constraints, and O�N3�
grooming constraints, for a total of O�N3W� constraints
in the formulation. Given that current technology may sup-
port up to W � 100 wavelengths per link, it becomes clear
that the ILP formulation can be applied directly only to
very small networks. In our experience [11], this ILP for-
mulation may take tens of hours to solve, using commodity
hardware, on networks with as few as a dozen nodes.

B. Challenge: Wavelength Fragmentation

Now let us turn our attention to a second issue with the
basic formulation. Note that the objective of the ILP is a
function that depends only on the number of lightpaths
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and is independent of the number of wavelengths used to
color the lightpaths. Specifically, the number of available
wavelengths W is part of the input to the problem, and the
only constraint is to color the lightpaths using no more
than W distinct colors. Consequently, the ILP solver will
not make any attempt to minimize the number of wave-
lengths as long as the wavelength constraints are satisfied.
In other words, the ILP solver will stop as soon as it has
determined a solution with the minimum number of
lightpaths, without checking whether there exists another
solution with the same objective value that uses fewer
wavelengths. Therefore, the number of wavelengths in the
final solution may be higher than necessary, and as a result,
a critical network resource may be severely fragmented.

To illustrate how serious this issue can be, we used the
above ILP formulation to solve five problem instances on a
six-node ring network, each with a different traffic matrix.
We solved each instance three times, each time providing
as input a different value for the number W of available
wavelengths, namely, W � 5, 10, 30. All instances can be
solved with fewer thanW � 5wavelengths (as we will show
later), and hence all three solutions we obtained for a given
instance used the same number of lightpaths.

Figure 1 plots the number of wavelengths used by each
of the three optimal solutions to the five problem instances.
It is clear that the number of wavelengths used in the sol-
ution is an increasing function of the numberW of available
wavelengths input to the formulation. In particular, the
optimal solution obtained with a high input value of W
may use more than three times as many wavelengths as
the optimal solution obtained with a low input value of W.
Given that the minimum number of wavelengths required
for a feasible solution is not known a priori, the designer
may be tempted to use a high input value for W (as long
as that many wavelengths are indeed available) to ensure
that the ILP solver will find a solution. Such an approach
will result in severe fragmentation of wavelengths, one of
the critical resources in optical networks, increasing the
cost of deployment and limiting future expansion of the
network. We emphasize that all ILP formulations in which

the number W of wavelengths is taken as a constraint face
similar fragmentation challenges.

We note that it is possible to take into account the wave-
length use in the objective function. This can be achieved
in two ways, both of which have certain disadvantages
compared to the decomposition approach that we will de-
scribe in the next section. First, it is possible to minimize
the weighted sum of the number of lightpaths and the num-
ber of wavelengths. However, because of wavelength reuse,
the number of lightpaths in a medium-to-large network is
likely to be much larger (an order of magnitude or more)
than the number of wavelengths, and furthermore, the
relative numbers depend on the traffic demands. (Consider,
for instance, a unidirectional 10-node ring network. If the
traffic matrix consists of demands between adjacent nodes
only, then a single wavelength would be sufficient to estab-
lish the 10 lightpaths. On the other hand, if all demands
are from each node to the node diametrically opposite
in the ring, then five wavelengths would be necessary to
establish the 10 lightpaths. While this is certainly an ex-
treme case, it illustrates the two points we mention above.)
Therefore, it would be difficult for the network designer to
select appropriate weights in advance and independently
of the traffic demands. Second, it would be possible to
attempt to minimize both the number of lightpaths and
the number of wavelengths simultaneously. However, such
multiobjective optimization would lead to a set of Pareto
optimal solutions, it is difficult to carry out, and to the best
of our knowledge, it has not been carried out in the context
of traffic grooming.

III. NEW DECOMPOSITION OF TRAFFIC GROOMING

We decompose the TG problem defined earlier into two
subproblems, the VTTR subproblem, and the RWA sub-
problem.

A. Virtual Topology and Traffic Routing

The VTTR subproblem is defined as follows:

Definition 3.1 (VTTR): Given the number N of nodes in
the graph G of TG, the wavelength capacity C, and traffic
demand matrix T, establish the minimum number of light-
paths to carry all trafic demands.

The VTTR subproblem can be expressed as minimizing
the objective function [Eq. (1)] under the VTTR constraints
[Eqs. (2)–(7)]. The output of the problem is a set of light-
paths fbijg, as well as the routing ftsdij g of the traffic
demands ftsdg over these lightpaths. Since the traffic rout-
ing subproblem of VTTR, i.e., routing of demands on a
given set of lightpaths, is NP-hard [5], VTTR itself is
NP-hard.

Note that the VTTR problem does not take as input the
network graph G, only the traffic demand matrix T (and,
hence, the number of nodes, N). Consequently, the output
of the problem is simply the set of lightpaths to be estab-
lished, but not the (physical) paths that these lightpaths
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Fig. 1. Wavelength usage comparison for five traffic instances,
ring network with N � 6 nodes.
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take in the network. Therefore, the VTTR subproblem is
very different from theGR subproblem in the traffic groom-
ing decomposition studied in [2]: the GR subproblem takes
as input the network graph G and determines not only the
set of lightpaths but also their (physical) paths (but not
wavelengths) in the network.

The VTTR subproblem is similar in concept to the vir-
tual topology problem studied in the context of multihop
broadcast-and-select (BAS) networks [18]. In multihop
BAS networks it is not possible to establish direct connec-
tions between every pair of nodes, and hence some traffic
demands may need to be routed via intermediate nodes—
just as traffic demands need to be routed over multiple
lightpaths in our problem. Furthermore, just as BAS net-
works do not impose any physical topology constraints on
the formation of direct connections due to their all-to-all
broadcast nature, the VTTR subproblem does not impose
any physical topology constraints on the formation of the
virtual topology of lightpaths. The virtual topology deter-
mined by VTTR will be reconciled with the physical topol-
ogy using the second subproblem, as we discuss shortly.

Ignoring the physical topology constraints in the defini-
tion, the VTTR subproblem has two major benefits. First,
the running time for finding an optimal solution depends
only on the size (i.e., number N of nodes) of the network,
not its topology. Hence, the running time of a problem in-
stance with a given demandmatrix T would be identical for
a sparse ring network and a dense mesh network of
the same size. Second, the problem formulation includes
the integer variables fbijg and ftsdij g, but it does not include
any binary variables. Therefore, it is possible to employ
partial LP relaxation techniques so as to reduce the time
required to find solutions that are close to the optimal one;
we describe an algorithm that uses such techniques in the
following subsection.

B. Routing and Wavelength Assignment

The RWA problem is one of selecting a path and wave-
length for each lightpath, subject to capacity and wave-
length constraints.

Definition 3.2 (RWA): Given the graph G of TG and the
set of lightpath demands fbijg determined by the solution to
VTTR, route the lightpaths on the physical topology of G
and assign a wavelength to each lightpath so as to mini-
mize the number of distinct wavelengths required.

The RWA problem is a fundamental problem in optical
network design and has been studied extensively. In [19]
we developed an exact ILP formulation based on maximal
independent sets that solves the RWA problem in rings of
size up to N � 16 nodes (the maximum size supported by
SONET technology and hence the de factomaximum size of
deployed ring networks) in just a few seconds, several or-
ders of magnitude faster than earlier known solutions. We
have also developed new formulations that solve the RWA
problem in mesh networks up to two orders of magnitude
faster than existing techniques [20,21]. Therefore, we solve
the RWA subproblem using the techniques in [19–21]

rather than using the corresponding part of the formu-
lation of the TG problem in Eqs. (8)–(19).

C. Sequential Solution to the VTTR and RWA
Problems

We propose to solve the TG problem by sequentially
solving its two subproblems:

1) Solve the VTTR subproblem to obtain the set fbijg of
lightpaths to be established, and the routing of traffic
demands ftsdg over these lightpaths.

2) Solve the RWA subproblem to find a path and wave-
length for each lightpath in the set fbijg so as to mini-
mize the number of distinct wavelengths used in the
solution.

Recall that the first step of the solution produces a set
fbijg of lightpaths that are determined only by the traffic
demands and are not tied to the physical topology of the
network. However, the second step routes the lightpaths
over the physical links of the network, hence ensuring that
the final solution is consistent with the network topology.

The following two lemmas state the properties of this
sequential solution:

Lemma 3.1: Let P⋆

TG and P⋆
VTTR denote the number of

lightpaths returned by the optimal solutions to the TG
and VTTR problems, respectively. Then

P⋆
VTTR ≤ P⋆

TG: (21)

Proof. The VTTR subproblem is a relaxed version of the
original TG problem with constraints [Eqs. (8)–(19)] re-
moved. Hence, the objective value of an optimal solution
to VTTR cannot be greater than that of an optimal solution
to TG. ▪

Lemma 3.2: Let W⋆

RWA be the number of wavelengths re-
turned as the optimal solution to the RWA subproblem that
takes as input the optimal solution S⋆

VTTR of the VTTR sub-
problem. IfW⋆

RWA ≤ W, whereW is the number of available
wavelengths given as input to the original TG problem,
then S⋆

VTTR, together with the lightpath RWA determined
by the RWA subproblem, is an optimal solution to TG.

Proof. According to Lemma 3.1, the number of light-
paths in the solution S⋆

VTTR is such that P⋆
VTTR ≤ P⋆

TG. After
the RWA is solved, the RWA of the lightpaths in S⋆

VTTR sat-
isfy all the physical topology and wavelength assignment
constraints. Hence, the final result of sequentially solving
the two subproblems is also a feasible solution to the origi-
nal problem TG, i.e., P⋆

VTTR ≥ P⋆
TG, from which the result of

the lemma follows. ▪

The practical implication of Lemma 3.2 is that whenever
the network is not wavelength (bandwidth) limited,
sequentially solving the VTTR and RWA subproblems
will yield an optimal solution to the original TG problem
that also minimizes the number of wavelengths used
for the given set of lightpaths. Note also that the case of
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bandwidth-limited networks is not of interest in practice:
in the bandwidth-limited regime, customer traffic cannot
be accommodated, and hence it is unlikely that network
providers would operate their networks in this regime.
Instead, providers are likely to add capacity as demand
increases to ensure that their networks have sufficient
bandwidth to accommodate the offered traffic.

On the other hand, when the network is indeed band-
width limited, our approach may also be useful in that it
can be used by network providers to quickly determine that
their network has reached its capacity limits and it is
time to add capacity. Specifically, note that the VTTR
subproblem yields a solution (i.e., a virtual topology of
lightpaths) regardless of the number W of available wave-
lengths (since W is not part of the VTTR formulation).
However, if the RWA algorithm requires more than W
wavelengths to color these lightpaths, then it is clear that
our sequential decomposition of the traffic grooming prob-
lem cannot find a feasible solution. Note that this determi-
nation is reached quickly (as indicated by numerical
results we will present shortly), since only the VTTR
and RWA problems are solved, not the original grooming
problem. While it is possible that an optimal traffic groom-
ing algorithm might find a feasible (and hence optimal)
solution with no more than W wavelengths (e.g., by con-
structing a larger number of shorter lightpaths than the
solution to VTTR), the fact remains that the network is
likely close to its capacity limits. Instead of running an
optimal algorithm (which would take a long time and
would produce more lightpaths than the VTTR solution),
the provider might consider the fact that the sequential
decomposition approach did not produce a feasible solution
as a strong indication that new additional capacity is
necessary to accommodate the offered traffic.

IV. SOLUTION APPROACH FOR VTTR

As we mentioned earlier, we have developed fast algo-
rithms for solving the RWA subproblem in ring and mesh
networks. In this section we develop a solution technique
for the VTTR subproblem, an NP-hard problem for which
we are not aware of any scalable solutions.

A. Partial LP Relaxation of VTTR

LP relaxation of an ILP is the problem that arises by
relaxing the integrality constraints on the relevant deci-
sion variables of the original problem. Since the original
ILP formulation has stronger constraints than its LP relax-
ation, in the case of minimization problems such as the
one we consider in this work, the optimal value of the LP
relaxation provides a lower bound for the original ILP
formulation. Although LP relaxation sacrifices optimality,
the relaxed problem can be solved as a linear program in
time that may be orders of magnitude lower than the time
required to solve the original ILP.

Definition 4.1 (VTTR-rlx): Given the number N of nodes
in the graph G of TG, the wavelength capacity C, and

traffic demand matrix T, establish the minimum number
of lightpaths needed to carry all traffic demands while
allowing fractional lightpaths to exist between any pair
of nodes.

Let fbijg be integer variables denoting the number of
lightpaths from node i to node j in the virtual topology.
VTTR-rlx can be derived from VTTR by replacing the inte-
ger variables fbijg with nonnegative real variables fb̄ijg,
while maintaining the integrality constraints on all other
integer variables (i.e., the traffic routing variables ftsdij g) in
the formulation. Then, VTTR-rlx represents a partial LP
relaxation of VTTR and can be formulated as a mixed
integer linear program (MILP). Also, if fb̄ijg is a feasible
solution to VTTR-rlx, then f⌈b̄ij⌉g is a feasible solution
to VTTR.

We compared the VTTR and VTTR-rlx on problem
instances defined on a 16-node network.1 For the compari-
son, we generated traffic instances by setting each traffic
demand tsd as a random integer in the range �0; tmax�. We
let parameter tmax � 10, 20, 30, 40, 50, 60, and for each
value of tmax we generated 10 traffic matrices (i.e., problem
instances) that were used to solve both VTTR and
VTTR-rlx.

Table I presents the CPU time (in seconds), averaged
over the 10 random instances, that CPLEX needs to solve
the VTTR and VTTR-rlx problems for each value of tmax. We
imposed a 6 h limit on running time; if an instance did
not complete within this time limit, we recorded the best
available solution found up to that time and terminated
the CPLEX process. We observe that the CPU times do
not vary much across the values of tmax, but solving the
partial LP relaxation VTTR-rlx takes a fraction of a second,
whereas solving the VTTR ILP takes longer than the 6 h
limit we imposed.

Table II compares the best available solutions to VTTR
obtained within the 6 h limit to the optimal solutions to
VTTR-rlx, in terms of the objective value (i.e., number of
lightpaths). For each row of the table (i.e., a specific value
of tmax), the values shown are averages over the corre-
sponding ten traffic instances. However, the optimal solu-
tion to partial LP relaxation VTTR-rlx is a lower bound, but
not necessarily a feasible solution to VTTR. Therefore, in
the table we also present the objective value of the feasible
solution obtained by rounding up the real values fb̄⋆ij g of the
optimal solution to VTTR-rlx.

From the two tables we make two important observa-
tions. First, the integrality constraints on the lightpath
variables fbijg play an important role in increasing the com-
plexity of the branch-and-bound process of the ILP solver.
Second, rounding up the real lightpath values fb̄⋆ij g results
in a large optimality gap. Based on these observations, in
the next subsection we develop an iterative algorithm that
strikes a good balance between running time and quality of
solution.

1Recall that VTTR and VTTR-rlx do not take into account the physical top-
ology of the network, only the number of nodes and traffic demands. Hence,
the results we present in this section and later on are valid for any network
with the stated number N nodes regardless of the underlying topology.
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B. VTTR-rlx�Ul;Uh�: A Utilization-Driven Partial
LP Relaxation of VTTR

Consider the optimal solution fb̄⋆ij g to the VTTR-rlx prob-
lem and the corresponding feasible solution f⌈b̄⋆ij ⌉g to
VTTR, obtained by rounding up all the lightpath variables.
Let us define Uij:

Uij �
b̄⋆ij

⌈b̄⋆ij ⌉
; b̄⋆ij > 0: (22)

The quantity Uij represents the utilization of the light-
paths from node i to node j in the rounded-up feasible sol-
ution. When the utilization is high (i.e., Uij is close to 1.0),
the corresponding lightpath resources are used effectively
in the solution; furthermore, rounding up the correspond-
ing lightpath variable to obtain a feasible solution makes
only a small contribution to the optimality gap. The
opposite is true when the utilization of a set of lightpaths
is low.

We define Ul and Uh, 0 ≤ Ul ≤ Uh ≤ 1, as the low and
high thresholds, respectively, on lightpath utilization. Con-
sider a modified version of VTTR-rlx in which the following
two sets of equality constraints are activated on the light-
path variables b̄ij with a utilization Uij ≤ Ul or Uij ≥ Uh:

b̄ij � ⌈b̄⋆ij ⌉ ∀ i; j∶Uij ≥ Uh; (23)

b̄ij � ⌊b̄⋆ij ⌋ ∀ i; j∶Uij ≤ Ul: (24)

We let VTRL-rlx�Ul;Uh� denote the modified LP relax-
ation of VTTR in which the variables b̄ij are set to be equal
to the floor (respectively, ceiling) of the corresponding
optimal solution obtained from VTTR-rlx if Uij ≤ Ul

(respectively, Uij ≥ Uh).

The key idea behind the equality constraints [Eqs. (23)
and (24)] introduced in the formulation of VTRL-
rlx�Ul;Uh� can be explained by using an airline analogy
in which lightpaths correspond to scheduled flights. For
lightpaths with low utilization, Eq. (24) forces the frac-
tional lightpaths to zero; when solving the modified prob-
lem, the traffic carried by these fractional lightpaths will be
redirected to other lightpaths. In the airline analogy, this is
equivalent to canceling flights that are close to empty. Note
that the deletion of lightpaths (respectively, the canceling
of flights) may cause some traffic (respectively, passengers)
to take a longer route to their destination; however, from
the point of view of network design, this may be an accept-
able tradeoff if it leads to a smaller network cost. On the
other hand, when lightpaths have high utilization, the
constraint [Eq. (23)] forces the fractional lightpath to
become a full lightpath. As a result, the extra capacity of
this new full lightpath becomes available to carry traffic
that is potentially redirected by fractional lightpaths that
were deleted.

The question that arises is how to determine the pair of
thresholds �Ul;Uh�, i.e., the specific partial LP relaxation
of VTTR that provides a desired tradeoff between running
time and quality of solution. To this end, we propose an
iterative algorithm that uses a local search technique to
select the pair �Ul;Uh�. The iterative algorithm treats the
integer constraints on lightpath variables fb̄ijg as lazy
constraints, activating only a subset of them at each
iteration based on how they relate to the current pair of
utilization thresholds.

The iterative algorithm starts by solving the partial
LP relaxation VTTR-rlx in which none of the integrality
constraints on fb̄ijg are activated. If all lightpath variables
in the optimal solution are integers, then this is a feasible
(and optimal) solution to VTTR. Otherwise, the solution is
examined to identify all lightpath variables with a utiliza-
tionUij outside the interval �Ul;Uh�, and the corresponding
VTRL-rlx�Ul;Uh� variant is solved. This process is re-
peated, increasing the threshold value Ul and decreasing
Uh at each iteration, until one of the following stopping
criteria is satisfied:

1) all lightpath variables in the solution are integers, and
hence represent an optimal solution to VTTR;

2) the threshold pair �Ul;Uh� reaches a predetermined
value; or

3) the improvement in the value of the objective function
over the previous iteration is less than a predetermined
minimum value δ.

A combination of the above criteria may be used, e.g.,
stop whenever the thresholds have reached a predeter-
mined value or the improvement over the previous itera-
tion is less than δ, whichever is satisfied first.

TABLE I
CPU TIME COMPARISON OF VTTR AND

VTTR-RLX, N � 16

CPU Time (s)

tmax VTTR VTTR-rlx

10 >21;600 0.184
20 >21;600 0.199
30 >21;600 0.200
40 >21;600 0.242
50 >21;600 0.259
60 >21;600 0.188

TABLE II
OBJECTIVE VALUE COMPARISON OF VTTR AND VTTR-RLX,

N � 16

Objective Value (No. of Lightpaths)

VTTR
VTTR-rlx

tmax (Best Available) (Optimal) (Rounded Up)

10 101.7 74.1 217.9
20 173.2 150.0 274.2
30 250.6 226.6 340.1
40 327.1 302.6 423.6
50 389.3 366.4 480.1
60 468.2 443.5 558.5
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The iterative algorithm can be described by these steps:

1) Initialization: Ul←0.1; Uh←0.9.
2) Solve VTTR-rlx with no integer constraints on fb̄ijg

activated. Find the feasible solution by rounding up
all noninteger lightpath variables and caclulate Uij for
all lightpath pairs using Eq. (22).

3) Solve VTTR-rlx�Ul;Uh�. If the problem is infeasible,
return the previous feasible solution and stop. Other-
wise, find the new optimal solution, and determine
the objective value of the corresponding feasible solu-
tion obtained by rounding up all noninteger lightpath
variables.

4) If the stopping criterion is satisfied, return the current
solution; otherwise set Ul←Ul � 0.1; Uh←Uh − 0.1 and
repeat from Step 3.

We note that at each iteration of the algorithm, a tighter
partial LP relaxation of VTTR with a larger number of
equality constraints is considered, generally requiring
more time to solve. On the other hand, the objective value
of the solution improves with each iteration. By selecting
an appropriate stopping criterion, especially in terms of the
threshold values on lightpath utilization, this algorithm
may be designed to deliver a desirable tradeoff between
running time and quality of the final solution.

V. NUMERICAL RESULTS

In this sectionwe investigate the VTTRproblem in terms
of scalability (i.e., running time) and quality of solution. The
VTTRproblemand its partial LP relaxationswere solved by
running the IBM ILOG CPLEX 12 optimization tool on a
cluster of identical compute nodes with dual Woodcrest
Xeon CPUs at 2.33 GHz with a 1333 MHz memory bus,
4 GB of memory, and a 4 MB L2 cache.

Our study involves a large set of problem instances de-
fined on several network sizes2 with various random traffic
loads. In particular, we consider networks with N � 8, 16,
24, and 32 nodes. In all the simulations, we set the wave-
length capacity C � 16. For each network topology, we
consider several problem instances. For each problem in-
stance, the traffic demand matrix T � �tsd� is generated
by drawing the (integer) traffic demands uniformly at ran-
dom in the interval �0; tmax�. The values of tmax we used in
the simulations are 20, 30, 40, and 50. Each data point in
the figures we present in this section represents the aver-
age of 10 random problem instances for the stated values of
the input parameters.

Unless otherwise stated, we set the relative optimality
gap to 2% for all CPLEX runs. Consequently, CPLEX ter-
minates when it finds a solution that is within 2% of the
optimal for the problem at hand, rather than continuing
until the problem is solved to optimality. Later in this sec-
tion we will investigate how the running time required to
solve the VTTR problem is affected by this optimality gap.

A. VTTR-rlx�Ul;Uh�: Solution Quality

Figure 2 plots the quality of the solution of
VTTR-rlx�Ul;Uh� as a function of the pair of thresholds
�Ul;Uh� and for various network sizes. The quality of
the solution is defined as

P
ij⌈b̄

⋆
ij ⌉P

ijb
⋆
ij

: �25�

The numerator in this expression is the value of the fea-
sible solution to VTTR obtained by rounding up the light-
path variables in the optimal solution to the modified
version of the VTTR-rlx�Ul;Uh� problem for the given
value of a pair of thresholds. The denominator is the value
of the objective function for the optimal solution to the
VTTR problem (obtained within a 2% relative optimality
gap, as we explained earlier). A low value of the above
expression denotes a higher quality solution.

As expected, the quality of the solution starts away
from optimal for VTTR-rlx [i.e., point (0,0) in Fig. 2], since
all integer lightpath variables are relaxed; the solution
quality then improves as Ul increases or Uh decreases.
The best result is achieved for the threshold pair
�Ul;Uh� � 0.5; 0.6. Importantly, for all network sizes
shown in Fig. 2, the solution is about 11% from the optimal
one as soon as �Ul;Uh� � �0.5; 0.6�; this worst case occurs
for N � 8, and the gap decreases as the network size N
increases. For the 32-node network, the gap is as small
as 3%. Note that this pair of values for �Ul;Uh� ensures
that no wavelength is underutilized (i.e., it is filled to
50% at minimum) while also leaving some room to accom-
modate future demands without necessarily setting up
additional lightpaths.

B. VTTR-rlx�Ul;Uh�: Scalability

Figure 3 plots the CPU time it takes to solve the
VTTR-rlx�Ul;Uh� problem as a function of the thresholds
Ul andUh; note that the pair (0,0) in the figure corresponds
to the solution of the relaxed problem VTTR-rlx. The figure
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Fig. 2. Solution quality as a function of �Ul;Uh�, tmax � 30.
2We remind the reader that the VTTR problem does not account for the
physical topology of the network.
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plots results for networks with N � 16 nodes and various
values of tmax. As expected, the running time generally
increases as Ul increases or Uh decreases, since in both
cases equality constraints are imposed on a larger number
of lightpath variables. We also see that the running time is
not significantly affected by the value of parameter tmax.
When tmax increases from 20 to 50, the running time only
increases by a few seconds. This shows that the algorithm
is effective across a range of traffic loads.

Based on the last observation, for the simulations in
the remainder of this section we have fixed the value of
tmax � 30; with this value of tmax, the average size of
demands between any source–destination pair is close to
the capacity C � 16 of a wavelength. Results for other val-
ues of tmax exhibit the same behavior and are omitted.

Figure 4 plots the CPU time to solve VTTR-rlx�Ul;Uh�
as a function of Ul. We plot results for a 24-node network,
as they are representative of the running time trends for
other network sizes. As shown in the figure, when Uh is
kept fixed, the running time does not change significantly
as a function of the lower threshold value Ul. However,
as Uh decreases, the running time increases significantly.
In other words, the value of the high threshold Uh has a

stronger influence on the performance of the algorithm
with respect to running time.

Figure 5 plots the running time as a function of the
network size N. For this simulation, we set �Ul;Uh� �
�0.5; 0.6�, the value that achieves the solution of highest
quality (i.e., the smallest number of lightpaths), as we
observed earlier. As we can see, it is possible to obtain a
feasible solution to the VTTR problem for network sizes
up to N � 32 within 1 h without sacrificing much in terms
of optimality (as Fig. 2 indicates). Such problem instances
are impossible to solve by directly using the original ILP
formulation for the VTTR problem.

Finally, Fig. 6 compares the running time as a function
of network size of three methods for solving the VTTR
problem:

1) solving VTTR to optimality;
2) solving VTTR with a 2% relative optimality gap; and
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Fig. 3. CPU time as a function of �Ul;Uh�, N � 16.
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3) solving VTTR-rlx�0.5;0.6� with a 2% relative optimal-
ity gap.

All simulations are allowed to run for as long as 24 h. As
we can see, the running time of the first method (i.e., di-
rectly solving the ILP formulation for the VTTR problem
to optimality) is extremely long: within the 24 h time limit,
this method can only solve network sizes up to 16 nodes.
Setting the optimality gap to 2% (i.e., using the second
method listed above) reduces the running time of finding
a solution significantly, but even in this case it is not pos-
sible to solve 32-node networks within the 24 h time limit.
Notice that with the second method, the running time for
the 8-node network is longer than the time it takes to solve
the 16-node network. This drop in running time when the
network size increases from 8 to 16 can be explained by
making the observation that with a fixed value of tmax
(� 30 for these results), as the network size grows, so does
the offered traffic and the optimal objective value (i.e.,
number of lightpaths). Hence, CPLEX may take a shorter
time to reach a solution that is 2% from the optimal solu-
tion as the network size increases, as the absolute differ-
ence from the optimal solution is larger. Of course, as
the network size increases further, the increase in the num-
ber of variables and constraints becomes once again the
factor determining the running time—hence the increase
as network size grows to 24 and beyond.

Finally, solving the modified VTTR-rlx�Ul;Uh� relaxed
problem is significantly faster over all network sizes and
reduces the running time by more than one order of mag-
nitude compared to solving VTTR directly within a 2% op-
timality gap. In particular, the VTTR-rlx�Ul;Uh� problem
can be solved on the 32-node network in about 3000 s (i.e.,
less than 1 h), while also obtaining a solution that is within
3% of the best solution (refer also to Fig. 2) that we were
able to obtain after running the second method for 24 h.
Note that in Fig. 6, we used �Ul;Uh� � �0.5;0.6� as the pair
of thresholds for the algorithm; however, depending on the
importance of solution quality relative to running time,
other pairs of thresholds may be applied to further reduce
the running time (as shown in Fig. 4).

Based on these results, we conclude that for small net-
works, e.g., of size between 8 and 10 nodes, the VTTR prob-
lem can be directly solved by using the MILP formulation
with or without imposing a 2% optimality gap. However, for
larger networks, solving the VTTR-rlx�Ul;Uh� problem we
presented in Section IV is more efficient and effective. The
particular pair of thresholds �Ul;Uh� to use may be fine
tuned using the iterative algorithm we described in the
previous section.

C. Wavelength Fragmentation

Let us now turn our attention to how sequentially
solving the VTTR and RWA subproblems addresses the
wavelength fragmentation challenge we discussed in
Subsection II.B. Figure 7 is nearly identical to Fig. 1 in that
it plots the number of wavelengths used by solutions to the
TG problem for five problem instances on a six-node ring

network; each solution is obtained by providing the stated
number W of wavelengths as input to the TG formulation.
In addition, Fig. 7 also includes the number of
wavelengths obtained by sequentially solving the VTTR
and RWA subproblems on each of the five instances. As
we can see, the sequential solution uses fewer wavelengths
than any of the solutions to the original TG problem. This
result confirms our earlier observations that if the network
is not wavelength limited, then not only is the sequential
solution optimal in terms of the number of lightpaths
(the objective of the TG problem), but it also minimizes
the number of wavelengths required to establish these
lightpaths.

VI. CONCLUDING REMARKS

We have presented a new (to our knowledge) decompo-
sition of the traffic grooming problem into two subproblems
that are solved sequentially, the VTTR problem and the
classical RWA problem. The decomposition is exact when
the network is not wavelength limited, and minimizes the
number of wavelengths used in the solution, avoiding the
wavelength fragmentation issues of typical ILP formula-
tions of the traffic grooming problem. We also developed
an algorithm based on partial LP relaxation to solve the
VTTR subproblem. The threshold parameters of the algo-
rithm may be tuned to achieve a desired tradeoff between
running time and quality of the final solution for VTTR.
This decomposition approach to traffic grooming scales
well to both ring and mesh network topologies and enables
operators to carry out extensive “what-if” analysis in opti-
mizing their network. We believe that the decomposition
can be extended to variants of the grooming problem that
take into consideration QoS constraints and survivability;
such extensions are the subject of ongoing research in
our group.
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