
Spectrum Assignment in Optical
Networks: A Multiprocessor

Scheduling Perspective
Sahar Talebi, Evripidis Bampis, Giorgio Lucarelli, Iyad Katib, and George N. Rouskas

Abstract—The routing and spectrum assignment prob-
lem has emerged as the key design and control problem in
elastic optical networks. In this work, we show that the
spectrumassignment (SA) problem inmesh networks trans-
forms to the problem of scheduling multiprocessor tasks on
dedicated processors. Based on this new perspective, we
show that the SA problem in chain (linear) networks is
NP-hard for four ormore links, but is solvable in polynomial
time for three links. We also develop new constant-ratio
approximation algorithms for the SA problem in chains
when the number of links is fixed. Finally, we present sev-
eral list scheduling algorithms that are computationally
efficient and simple to implement, yet produce solutions
that, on average, are within 1%–5% of the lower bound.

Index Terms—Approximation algorithms; Elastic optical
networks; Multiprocessor scheduling; Network design;
Routing and spectrum assignment; Spectrum assignment.

I. INTRODUCTION

O rthogonal frequency division multiplexing (OFDM)
technology is the foundation of the elastic optical net-

work (EON) concept [1], also referred to as the “spectrum-
sliced elastic optical path network” (SLICE) [2]. The main
driver of the EON architecture is the ability to allocate
bandwidth at the granularity of an OFDMsubcarrier rather
than at the coarse unit of a wavelength in a fixed-
grid network, using bandwidth-variable and format-agile
transponders that may be reconfigured dynamically via
software [3]. Optical signals are routed along the path to
the destination by multigranular optical switches that
adapt to the data rate and center frequency of incoming
channels via software control [4,5]. Bandwidth-variable
transponders and switches make it possible to support
efficiently a range of traffic demands, from sub- to super-
wavelength, by slicing off just a sufficient amount of spec-
tral resources along end-to-end paths to satisfy the client
requirements. OFDM-based EONs have several advantages

relative to existing WDM networks, including [1,6] resil-
iency to physical impairments, elastic data rates that can
be adjusted to demand granularity, path distance, the
time-varying nature of demands, and spectral efficiency.

The routing and spectrum assignment (RSA) problem
[7,8] has emerged as the key network design and control
problem in EONs. In offline RSA, the input typically con-
sists of a set of forecast traffic demands, and the objective is
to assign a physical path and contiguous spectrum to each
demand so as to minimize the total amount of allocated
spectrum (either over the whole network or on any link).
Offline RSA arises whenever the traffic patterns in the net-
work are reasonably well known in advance and any traffic
variations take place over long time scales. For instance,
offline RSA is an effective technique for provisioning a
set of semipermanent connections. Since these connections
are assumed to remain in place for relatively long periods
of time, it is worthwhile to attempt to optimize the way in
which network resources (e.g., physical links and spec-
trum) are assigned to each connection, even though optimi-
zation may require considerable computational effort.

Several variants of the RSA problem have been studied
in the literature that take into account various design as-
pects including the reach versus modulation level (spectral
efficiency) trade-off [9], traffic grooming [10], and restora-
tion [11]. These problem variants are NP-hard, as RSA is a
generalization of the well-known routing and wavelength
assignment (RWA) problem [12]. Therefore, while most
studies provide integer linear program (ILP) formulations
for the RSA variant they address, they propose heuristic
algorithms for solving medium to large problem instances.
Such ad hoc solution approaches have two drawbacks.
First, they do not provide insight into the structure of
the optimal solution and hence cannot be easily adapted
to other problem variants. Second, it is quite difficult to
characterize the performance of heuristic algorithms, and
our recent work has demonstrated that heuristics for the
related RWA problem produce solutions that are far away
from optimal even for problem instances of moderate size
[13]. For a survey of spectrum management techniques in
EONs, including a review of solution approaches to RSA
problem variants, we refer the reader to [14].

A recent study [15] considered the complexity of the RSA
problem in chain (linear) networks. In chain networks, the
routing aspect of the problem is completely determined,http://dx.doi.org/10.1364/JOCN.6.000754

Manuscript received April 10, 2014; revised June 18, 2014; accepted
June 29, 2014; published July 31, 2014 (Doc. ID 209860).

S. Talebi and G. N. Rouskas (e-mail: rouskas@ncsu.edu) are with Oper-
ations Research and Department of Computer Science, North Carolina
State University, Raleigh, North Carolina 27695-8206, USA.

E. Bampis and G. Lucarelli are with LIP6, CNRS UMR 7606, Université
Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex, France.

I. Katib and G. N. Rouskas are with King Abdulaziz University, Jeddah,
Saudi Arabia.

754 J. OPT. COMMUN. NETW./VOL. 6, NO. 8/AUGUST 2014 Talebi et al.

1943-0620/14/080754-10$15.00/0 © 2014 Optical Society of America

http://dx.doi.org/10.1364/JOCN.6.000754

and it reduces to a spectrum allocation (SA) problem. Using
results from graph coloring theory, it was shown in [15]
that the SA problem in chains is NP-hard, and that a
�2� ϵ� approximation algorithm for computing the interval
chromatic number of an interval graph may be used for
solving the SA problem with the same performance bound.
The study also extends this algorithm to solve the SA prob-
lem in ring networks with a performance bound of �4� 2ϵ�.

Our work makes two main contributions. We start by
showing that the spectrum assignment (SA) problem in
(mesh) networks of general topology is a special case of a
well-known scheduling problem, namely, that of scheduling
multiprocessor tasks on dedicated processors [16,17]. This
new insight opens the potential to develop new approaches
to the SA problem by leveraging results from the vast
scheduling literature. We then carry out an in-depth study
of the SA problem in chain (linear) networks and develop
constant-ratio approximation algorithms and heuristics
that are inspired by the new scheduling perspective. In
addition to advancing our understanding of SA as a sched-
uling problem, our new results are important in that 1) they
can be readily extended to ring networks that comprise
large parts of the existing optical network infrastructure,
as we have shown in more recent work [18]; 2) they may
be used to analyze approximately general-topology net-
works, e.g., by extending path-based decomposition tech-
niques that have been developed for the more special
case of wavelength assignment [19]; and 3) they may be
applied to solve large-scale multiprocessor scheduling
problems efficiently and effectively, as our numerical
results demonstrate.

Following this introduction, we present in Section II a
transformation of the SA problem to a scheduling problem.
Based on this new perspective, we show in Section III that
the SA problem in chains is NP-hard for four or more links,
but is solvable in polynomial time for three links. In
Section IV, we develop new constant-ratio approximation
algorithms for the SA problem in chains, we introduce a
suite of list scheduling algorithms in Section V, and in
Section VI we present numerical results to demonstrate
the effectiveness of the algorithms. We conclude the paper
in Section VII.

II. SPECTRUM ASSIGNMENT PROBLEM

We consider the following basic definition of the RSA
problem.

Definition 2.1 (RSA): Given a graph G � �V;A�, where V
is the set of nodes and A is the set of arcs (directed links),
and a spectrum demand matrix T � �tsd�, where tsd is the
amount of spectrum required to carry the traffic from
source node s to destination node d, assign a physical path
and contiguous spectrum to each demand so as to minimize
the total amount of spectrum used on any link in the net-
work, under three constraints: 1) each demand is assigned
contiguous spectrum (spectrum contiguity constraint),
2) each demand is assigned the same spectrum along all
links of its path (spectrum continuity constraint), and 3) de-
mands that share a link are assigned nonoverlapping parts

of the available spectrum (nonoverlapping spectrum
constraint).

If a single route for each source–destination pair is pro-
vided as part of the input, and each traffic demand is con-
strained to follow the given route, the RSA problem reduces
to the SA problem.

Definition 2.2 (SA): The RSA problem under the addi-
tional constraint that all traffic from source s to destination
d must follow the given physical path rsd.

We now show that the SA problem can be viewed as a
problem of scheduling tasks on multiprocessor systems
in which tasks may require more than one processor simul-
taneously. Consider the following scheduling problem that
has been studied extensively in the literature [16,17]:

Definition 2.3 (PjfixjjCmax): Given a set of n tasks and a
set of m identical processors, a processing time pj, and a
prespecified set fixj of processors for task j, j � 1;…; n,
schedule the tasks so as to minimize the makespan
Cmax � maxj Cj, where Cj denotes the completion time of
task j, under the following constraints: 1) preemptions
are not allowed, 2) each task must be processed simultane-
ously by all processors in fixj, and 3) each processor can
work on at most one task at a time.

We denote by PmjfixjjCmax the special case of PjfixjjCmax

in which the number of processors m is considered to be
fixed. It has been shown [17] that the three-processor prob-
lem P3jfixjjCmax is strongly NP-hard for general processing
times, but that if the number of processors m is fixed and
all tasks have unit times, i.e., Pmjfixj, pj � 1jCmax, then the
problem is solvable in polynomial time. Approximation al-
gorithms and/or polynomial time approximation schemes
(PTAS) have been developed for several versions of the
problem [20].

We have the following result.

Lemma 2.1: SA on general (mesh) networks transforms
to PjfixjjCmax.

Proof. Consider an instance of the SA problem on a net-
work of general topology represented by graph G � �V;A�,
demand matrix T � �tsd�, and path set frsdg. Construct an
instance of PjfixjjCmax as follows. For each arc ak ∈ A,
k � 1;…; jAj, there is a processor k. For each spectrum
demand tsd, there is a task j with pj � tsd and
fixj � fk∶ak ∈ rsdg. In other words, the amount of spectrum
of a demand transforms to the processing time of the cor-
responding task, and the links of its path to the processors
that the task requires. Due to the nonoverlapping spectrum
constraint, each processor may work on at most one task at
a time; due to the spectrum continuity constraint, each
task must be processed simultaneously by all its process-
ors; and due to the spectrum contiguity constraint, preemp-
tions are not allowed. By construction, the amount of
spectrum assigned to any arc of G in a solution of the
SA instance is equal to the completion time of the last task
scheduled on the corresponding processor; hence minimiz-
ing the spectrum on any link in the SA problem is equiv-
alent to minimizing the makespan of the schedule in the
corresponding problem PjfixjjCmax. ▪

Talebi et al. VOL. 6, NO. 8/AUGUST 2014/J. OPT. COMMUN. NETW. 755

The above lemma shows that any instance of the SA
problem can be transformed into an instance of the
PjfixjjCmax problem, and, hence, an algorithm for solving
the latter problem may be used for solving the former
one. However, the reverse of Lemma 2.1 is not true. In other
words, there exist instances of PjfixjjCmax for which there is
no corresponding instance of the SA problem, as we
now show.

Lemma 2.2: There exist instances of PjfixjjCmax for which
there is no corresponding instance of the SA problem.

Proof. By counterexample. Consider an instance of
P4jfixjjCmax with these five tasks whose processing times
can be arbitrary:

Task fixj

τ1 {1, 2}
τ2 {2, 3}
τ3 {3, 4}
τ4 {4, 1}
τ5 {2, 4}

Because of the first four tasks, the graph of the corre-
sponding SA instance would have to be the four-link
unidirectional ring network such that link 1 is adjacent
to 2, 2 is adjacent to 3, 3 to 4, and 4 to 1. But then, there
is no path rsd for the spectrum demand corresponding to
the last task; hence an instance of SA does not exist. ▪

The following lemma shows that the SA problem in uni-
directional rings with as few as three links is NP-hard.

Lemma 2.3: The SA problem in unidirectional rings is
NP-hard.

Proof. The P3jfixjjCmax problem can be transformed to
the SA problem on a unidirectional three-link ring, where
each processor corresponds to a link, and each task j cor-
responds to the traffic demand on the segment of the ring
defined by the links in fixj. Since P3jfixjjCmax is NP-
complete [17], the same is true for the SA problem on
the three-link ring. ▪

A. SA Problem in Chains

In chain (linear) networks, the route rsd of each traffic
demand is uniquely determined by its source and destina-
tion nodes. Let us define the following special case of
problem PjfixjjCmax:

Definition 2.4 (PjlinejjCmax): The PjfixjjCmax problem
under the additional constraint that the identical process-
ors are labeled 1, 2, 3,…, and the prespecified set linej of
processors for each task j consists of processors with
consecutive labels.

The following result states that the SA problem on a
chain with m links is equivalent to PjlinejjCmax; hence
an algorithm for solving PjlinejjCmax may be used to solve
SA, and vice versa.

Lemma 2.4: The SA problem on a graphG that is a chain
with m links is equivalent to PjlinejjCmax.

Proof. First consider an instance of the SA problem on a
chainGwithm� 1 nodes labeled 1;2;…;m� 1, andm arcs
a1 � h1;2i; a2 � h2; 3i;…; amhm;m� 1i, and spectrum de-
mand matrix T � �tsd� such that tsd � 0 if s ≥ d. Given this
SA instance, the steps of the proof of Lemma 2.1 will
construct a valid instance of PjlinejjCmax since the sets
fixj consist of processors with consecutive labels.

Given an instance of PjlinejjCmax, we construct an in-
stance of the SA problem on a chain graph G as follows.
The graph has m� 1 nodes labeled 1;2;…;m� 1, and m
arcs, such that for each processor k, k � 1;…;m, there
is an arc ak � hk; k� 1i. For each task j with
linej � fs;…; d − 1g, there is a traffic demand with tsd �
pj and route rsd � fhs; s� 1i;…; hd − 1; dig. It is not difficult
to verify that the three constraints of PjlinejjCmax ensure
that the three constraints of SA are satisfied, and that min-
imizing the makespan Cmax minimizes the maximum
amount of spectrum on any arc of G. ▪

In theory, algorithms developed for PjfixjjCmax may be
applied to schedule instances of PjlinejjCmax. Due to its dif-
ficulty, however, there are limited results for the former
problem, and even algorithms for a small number of
processors (e.g., m � 3, 4, 5) can be quite complex and
not practical for a network operator.

In the following section, we determine the complexity of
PmjlinejjCmax. Following that, we present approximation
algorithms for the most general version of the problem,
i.e., for any number of processors and any task sizes.

III. COMPLEXITY RESULTS FOR PmjlinejjCmax

We first show that there is a polynomial time algorithm
for P3jlinejjCmax. Recall that problem P3jfixjjCmax is
strongly NP-hard [17]; hence the additional constraint that
the set of processors in linej have consecutive labels makes
the problem tractable for three processors. Furthermore,
note that whereas it was stated in [15] that the SA problem
in chains is NP-hard, this result implies that the problem is
in fact polynomial on three-link chains.

Lemma 3.1: P3jlinejjCmax may be solved in polyno-
mial time.

Proof. The proof is by construction of the optimal sched-
ule. Tasks that require all three processors cannot be
executed in parallel with any other task, and hence they
may be simply added at the beginning or end of the sched-
ule without affecting optimality. Therefore, we focus our at-
tention on tasks requiring either one or two processors, i.e.,
tasks with linej � f1g, {2}, {3}, {1, 2}, or {2, 3}. Without loss of
generality, let processor 1 be the dominant processor, i.e.,
the one that requires the most processing time; the case
in which either processor 2 or processor 3 is dominant
can be handled in a very similar manner. Construct the fol-
lowing schedule. Tasks with linej � f1;2g are executed
back to back without any idle time, followed by tasks with
linej � f1g. Let t be the time when the last task with linej �
f1g completes. Schedule tasks with linej � f2; 3g, without
any idle time between them, at the end of the schedule
and in parallel with tasks with flinej � 1g, so that the last

756 J. OPT. COMMUN. NETW./VOL. 6, NO. 8/AUGUST 2014 Talebi et al.

one finishes at time t. Then, schedule tasks with linej � f2g
and linej � f3g before tasks with linej � f2; 3g. Clearly,
these tasks can fit in the schedule since processors 2
and 3 are not dominant. The schedule is optimal since
the dominant processor is never idle, and hence the make-
spanCmax � t, the time required to execute the tasks on the
dominant processor. ▪

As an example, consider the RSA problem instance on a
chain network with four nodes and three links, as shown in
Fig. 1(a). For this instance, the spectrum demand matrix is

T �

2
664
0 3 4 1
0 0 1 1
0 0 0 2
0 0 0 0

3
775:

The corresponding P3jlinejjCmax instance has six tasks:

Task pj linej

τ1 1 {1, 2, 3}
τ2 4 {1, 2}
τ3 3 {1}
τ4 1 {2, 3}
τ5 1 {2}
τ6 2 {3}

The optimal schedule constructed as described in the
proof of Lemma 3.1 is shown in Fig. 1(b). In this schedule,
tasks requiring all three processors are executed first.

The following theorem shows that the problem
PmjlinejjCmax is NP-complete for four or more processors.
The proof is based on a reduction from the PARTITION
problem [21], which is defined as follows.

Definition 3.1 (PARTITION): Given a set of k integers
A � fa1; a2;…; akg such that B � Pk

j�1 aj, does there exist
a partition of A into two sets, A1 and A2, such
that

P
aj∈A1

aj �
P

aj∈A2
aj � B∕2?

Theorem 3.1: P4jlinejjCmax is NP-complete.

Proof. Given an instance of PARTITION, we create an
instance of P4jlinejjCmax as follows. For each aj ∈ A we cre-
ate a task τj with processing time pj � aj and linej � f3g.
Moreover, we create the following gadget tasks:

Task pj linej

Ta B∕2 {1, 2, 3}
Tb B∕2 {1, 2}
Tc B∕2 {2, 3}
Td 3B∕2 {3, 4}
Te B∕2 {2, 3, 4}
T1 3B {1}
T2 2B {2}
T3 2B {4}

If there is a partition of A into A1 and A2 such thatP
aj∈A1

� P
aj∈A2

� B∕2, then we can schedule the jobs as
shown in Fig. 2 and get a feasible schedule with Cmax � 4B.

Let us now assume that there exists a feasible schedule
S with Cmax ≤ 4B. Without loss of generality, assume that
Ta is executed before Te in S; otherwise, we can use similar
arguments and reach the same conclusion. Then, it must be
that T3 is executed before both Td and Te. Moreover, Td

must be executed before Te; otherwise it would not be pos-
sible to schedule task T2 for the schedule to have length at
most 4B. Hence, tasks Ta, T3, Td, and Te must be scheduled
in the order shown in Fig. 2. Moreover, tasks Ta and Tb

must be scheduled before T1, while task Tc must be sched-
uled before T2 for the schedule length to be at most 4B. If
Ta is scheduled before Tb (as shown in Fig. 2), then on proc-
essor 3, only the intervals �B∕2; B� and �3B∕2; 2B� are avail-
able for the execution of the PARTITION jobs. If Tb is
scheduled before Ta, then on processor 3, only the intervals

Fig. 1. (a) Instance of the offline RSA problem on a chain. (b) Optimal schedule for the corresponding P3jlinejjCmax problem.

3

1

2

3

4

T

A

a
Tb

1

Tc

2A Te

Td

0 B/2 B 3B/2 2B 5B/2 3B 7B/2 4B

T
1

T2

T

Fig. 2. Feasible schedule with Cmax � 4B.

Talebi et al. VOL. 6, NO. 8/AUGUST 2014/J. OPT. COMMUN. NETW. 757

[0, B∕2] and �3B∕2; 2B� are available for the PARTITION
jobs. In both cases, a partition exists. ▪

As stated in [15], the above result confirms that the SA
problem on chains with four or more links is harder than
the wavelength assignment problem, which can be solved
in polynomial time on chains.

IV. APPROXIMATION ALGORITHMS FOR PjlinejjCmax

We first show that there exist 1.5-approximation
algorithms for four and five processors.

Lemma 4.1: There exists a 1.5-approximation algorithm
for P4jlinejjCmax.

Proof. The 1.5-approximation algorithm for the
P4jfixjjCmax problem [22] can be used to solve P4jlinejjCmax

with the same performance bound. ▪

Lemma 4.2: There exists a 1.5-approximation algorithm
for P5jlinejjCmax.

The proof is by construction. Due to its length, the proof
is omitted but is available in the first author’s dissertation.

A. Two-Stage Approximation Algorithms

We now introduce a two-stage algorithm for PjlinejjCmax,
and show that it yields a constant approximation ratio for
any number of processors m ≥ 6. The algorithm, described
in Algorithm 1, considers three sets of processors based on
their labels: a set consisting of the k < m processors with
low index labels 1;…; k, a set of l processors, l� k < m,
with labels k� 1;…; k� l, and a set of m − k − l processors
with the high index labels k� l� 1;…;m. We partition the
set of tasks into three sets:

• set T mid consists of tasks that require at least one of the
l middle processors (and may also require processors
from one or both of the other sets);

• set T lo contains tasks requiring only processors in the set
of k low index processors (and no other processor); and

• set T hi is composed of tasks that require only processors
in the set ofm − k − l high index processors (and no other
processor).

The key idea is based on the observation that the set of
tasks T lo may be scheduled in parallel with the set of tasks
T hi. Therefore, we use an optimal or approximation algo-
rithm to schedule the tasks in each set separately, creating
three schedules, Smid, Slo, and Shi, respectively. The final
schedule for the original problem consists of two stages:
in the first stage, schedule Smid is executed individually,
while in the second stage, schedules Slo and Shi are
executed in parallel.

We have the following result.

Lemma 4.3: Let αmid, αlo, and αhi be the approximation
ratios of the algorithms used to schedule tasks in sets
T mid, T lo, and T hi, respectively (the approximation ratio
is 1 if an optimal algorithm exists). Then the two-stage

algorithm of Algorithm 1 is an approximation algorithm
for the original problem with ratio

α � αmid �maxfαlo; αhig: (1)

Proof: The proof follows from the fact that the makespan
of an optimal schedule for each of the three sets of tasks is
no longer than the makespan of an optimal schedule for the
original set of tasks. ▪

Algorithm 1 Two-Stage Approximation Algorithm for
PjlinejjCmax, m ≥ 6

Input: A set T of n tasks on m processors, each task j
having a processing time pj and a set linej⊆f1;2;…;mg
of required processors
Output: A two-stage schedule of tasks

begin
//Sets of low, mid, and high index processors

1. lo←f1;…; kg //k < m
2. mid←fk� 1;…; k� lg //k� l < m
3. hi←fk� l� 1;…;mg
//Set of tasks T for each subproblem

4. T mid← fj ∈ T ∶fk� 1;…; k� lg∩ linej ≠ ∅g
5. T lo←fj ∈ T nT mid∶f1;…; kg∩ linej ≠ ∅g
6. T hi←fj ∈ T nT lonT midg
7. Schedule tasks in T mid using an optimal or approxi-

mation algorithm for the corresponding PljlinejjCmax

problem
8. Schedule tasks in T lo using an optimal or approxi-

mation algorithm for the corresponding
PkjlinejjCmax problem

9. Schedule tasks in T hi using an optimal or approxi-
mation algorithm for the corresponding P�m − k −

l�jlinejjCmax problem
10. return a schedule of two stages: the first stage con-

sists of the schedule for tasks T mid; the second
stage consists of the schedule for tasks T lo and
T hi executed in parallel

end

Figure 3 shows a two-stage schedule for m � 9 process-
ors in which k � l � m − k − l � 3. Due to Lemma 3.1, the
P3jlinejjCmax problem can be solved optimally in polyno-
mial time; hence αmid � αlo � αhi � 1. Therefore, the two-
stage algorithm is a two-approximation algorithm for m �
9 processors (and also for problems with m � 6, 7, 8
processors).

Fig. 3. Two-approximation schedule for m � 9 processors.

758 J. OPT. COMMUN. NETW./VOL. 6, NO. 8/AUGUST 2014 Talebi et al.

For problems with m � 10–13 processors, we consider
the middle three processors to obtain task set T mid, and
apply the 1.5-approximation algorithm for four or five pro-
cessors to schedule the other two task sets, resulting in an
approximation ratio of 2.5. For problems with m � 14, 15
processors, we obtain an approximation ratio of 3 by con-
sidering task sets on four or five processors. Finally, we
note that form > 15, we may apply the two-stage algorithm
recursively to schedule each set of tasks. For instance, for
m � 19, we can schedule the tasks that require at least one
of the middle nine processors with a makespan that is no
more than twice the optimal, as in Fig. 3. Applying the 1.5-
approximation algorithm to schedule the tasks requiring at
least one of the five lower (respectively, higher) index
processors, the overall approximation ratio of the two-stage
algorithm is 3.5.

More generally, the approximation ratio α�m� for any
number m of processors can be computed using the recur-
rence relationship:

α�m� �

8>><
>>:

1 m � 1;2;3
1.5 m � 4;5

min
l�1;…;m−2

n
α�l� � α

�
⌈m−l

2 ⌉
�o

m ≥ 6
: (2)

The recursive expression can be explained by making two
observations. First, for a given number l of processors in
the set T mid, the approximation ratio in Eq. (1) is mini-
mized when the number of processors in the sets T lo

and T hi differs by at most one; in this case, the number
of processors in the larger of the two sets is ⌈m − l∕2⌉,
and determines the result of the maximum operation in ex-
pression (1). Second, all three sets of processors must be
nonempty, hence the range of values of l in the expression.
Therefore, the approximation ratio for a given value of l is
α�l� � α�⌈m − l∕2⌉�, and the best ratio can be obtained by
taking the minimum over all possible values of l.

V. LIST SCHEDULING ALGORITHMS FOR PmjlinejjCmax

In this section, we present a suite of list scheduling
algorithms for solving the PmjlinejjCmax problem; due to
Lemma 2.4, these algorithms may also be used to solve
the SA problem on chains. The algorithms attempt to min-
imize the makespan Cmax by identifying compatible tasks,
i.e., sets of tasks that may be executed simultaneously on
the multiprocessor system. More formally, we have the
following definition.

Definition 5.1: A set T of tasks for the PmjlinejjCmax

problem is said to be compatible if and only if their
prespecified sets of processors are pairwise disjoint,
i.e., linej ∩ linej � ∅; ∀ i; j ∈ T .

We present two broad classes of algorithms that differ in
the granularity at which they make scheduling decisions.
The first class of algorithms assembles compatible tasks
into blocks, and schedules a whole block of tasks at a time.
The second class of algorithms operates at finer granular-
ity and makes scheduling decisions at the level of individ-
ual tasks and at finer time scales.

A. Block-Based Scheduling Algorithms

These algorithms proceed by constructing blocks of com-
patible tasks. Specifically, blocks of compatible tasks are
scheduled such that

• all tasks in a block begin execution at the same time t, and
• there is no idle time between the completion of the lon-
gest task in a block and the beginning of the next block.

The input to the algorithm is a list of tasks. The algo-
rithm assembles a block by selecting the first task in the
list, and then scanning the remaining tasks (in the order
listed) to identify tasks compatible with the ones already
in the block. A block is considered complete if no additional
compatible tasks exist; the algorithm removes all the tasks
of the block from the list and continues to build the next
block, until all tasks have been scheduled.

A pseudocode description of a block-based scheduling al-
gorithm is presented in Algorithm 2. The running time
complexity of the algorithm is determined by the twowhile
loops. In the worst case, each loop is executed at most n
times, where n is the number of tasks. Hence, the overall
running time of the algorithm is O�n2�. This overall com-
plexity is not affected by accounting for the time it takes
to create the list of tasks given as input to the algorithm,
as creating this list would typically involve sorting the n
tasks according to some attribute.

Algorithm 2 Block-Based Scheduling Algorithm for
PmjlinejjCmax

Input: A list L of n tasks on m processors, each task j hav-
ing a processing time pj and a set linej⊆f1;2;…;mg of
required processors
Output: A schedule of task blocks, each block consisting of
compatible tasks, such that each block starts execution
immediately after the previous block completes

begin
1. b←1 //b is the block index
2. Sb←0 //The time that block b starts execution
3. Pb←∅ //The union of sets linej of tasks in block b
4. while list L ≠ ∅ do
5. Remove the first task j from list L
6. Add task j to block b
7. Pb←Pb∪ linej
8. while not at end of list L or Pb ≠ f1;2;…;mg do
9. k ← first task in list
10. if linek∩Pb � ∅ then
11. Remove the task k from list L
12. Add task k to block b
13. Pb←Pb∪ linek
14. end while //no more tasks may be added

to block b
15. b←b� 1
16. Sb←Sb−1 �maxj∈b−1pj

17. Pb←∅

18. end while
19. return tasks in each block, block starting times Sb

end

Talebi et al. VOL. 6, NO. 8/AUGUST 2014/J. OPT. COMMUN. NETW. 759

We identify two block-based scheduling algorithms
that differ in the order in which the tasks are sorted in
the initial list of tasks passed to the algorithm:

• Longest first block-based algorithm (LFB): tasks
are sorted in decreasing order of their processing
times pj.

• Widest first block-based algorithm (WFB): tasks are
sorted in decreasing order of the number jlinejj of
processors they require.

B. Compact Scheduling Algorithms

Block-based schedules are simple to create and imple-
ment in that each task in a block starts execution at exactly
the same time. However, the fact that tasks within a
block have varying processing times may result in long idle
times for some processors. Consequently, the makespan of
the final schedule may be longer than necessary. We
now present a class of scheduling algorithms that attempt
to minimize the makespan by eliminating or reducing
such idle times. Rather than assembling blocks of tasks
and making scheduling decisions at the end of each
block, these algorithms select individual tasks for
execution at finer scheduling instants, resulting in more
compact schedules. The scheduling instants consist of
the following:

• the start time of the schedule (i.e., t � 0), and
• the instant each task completes execution.

The input to a compact algorithm is a list of tasks.
The algorithm maintains a list of idle processors. At each
scheduling instant t, the algorithm scans the list to identify
tasks that are compatible with the currently executing
ones, i.e., tasks with a set linej that is a subset of the
free processors. When such a task is identified, the algo-
rithm removes it from the list, updates the set of free pro-
cessors, and continues scanning the list until no other
compatible task is found. It then advances to the next
scheduling instant and repeats the process while the list
is not empty.

Algorithm 3 presents a pseudocode description of a com-
pact scheduling algorithm. The running time complexity of
the algorithm is O�n2�. Similar to block-based algorithms,
we distinguish two algorithms based on the order in which
tasks appear in the list:

• Longest first compact algorithm (LFC): tasks
are sorted in decreasing order of their processing
times pj.

• Widest first compact algorithm (WFC): tasks are
sorted in decreasing order of the number jlinejj of
processors they require.

Since compact scheduling algorithms make decisions at
finer time scales, we expect that they perform better than
block-based ones.

Algorithm 3 Compact Scheduling Algorithm for
PmjlinejjCmax

Input: A list L of n tasks on m processors, each task j
having a processing time pj and a set linej⊆f1;2;…;mg
of required processors
Output: A schedule of tasks, i.e., the time Sj when each
task j starts execution on the multiprocessor system
begin

1. t←0 //Scheduling instant
2. F←f1;…;mg //Set of currently idle processors
3. while list L ≠ ∅ do
4. j ← first task in list L
5. if linej⊆F then
6. Remove the task j from list L
7. Sj←t //Task j starts execution at time t
8. F←Fnlinej
9. while not at the end of list L or F ≠ ∅ do
10. k ← first task in list
11. if linek⊆F then
12. Remove the task k from list L
13. Sk←t Task k starts execution at

time t
14. F←Fnlinek
15. endwhile //nomore tasksmay start at time t
16. j ← the first task executing at time t to

complete
17. t←Sj � pj

18. P←P∪ linej
19. end while
20. return the task start times Sj

end

VI. NUMERICAL RESULTS

In the following two subsections, we discuss two sets of
experiments we carried out to evaluate the performance of
the list scheduling algorithms.

A. Spectrum Assignment in a Chain Network

In the first set of experiments, we consider instances of
the PmjlinejjCmax problem with a relatively small number
of processors, namely,m � 5, 10, 15, 20; such instances cor-
respond to instances of the SA problem on chains of length
typical of a commercial wide-area network. For each prob-
lem instance, we generated traffic demands between every
source and destination node on the chain. The size of the
traffic demands (i.e., task times) was generated using three
different distributions:

• Discrete uniform: traffic demands may take any of the
five discrete values in the set {10, 40, 100, 400, 1000} with
equal probability; these values correspond to data rates
(in Gbps) to be supported by EONs.

• Discrete high: traffic demands may take one of the five
discrete values above with probabilities 0.10, 0.15,
0.20, 0.25, and 0.30, respectively; in other words, higher
data rates have higher probability to be selected.

760 J. OPT. COMMUN. NETW./VOL. 6, NO. 8/AUGUST 2014 Talebi et al.

• Discrete low: traffic demands may take one of the five dis-
crete values above with probabilities 0.30, 0.25, 0.20,
0.15, and 0.10, respectively, such that lower data rates
have higher probability to be selected.

We considered various other probability distributions on
the same set of values, but the results are similar to the
ones we present below and hence are omitted.

We use a distance-adaptive SA strategy to allocate spec-
trum to each traffic demand based on its data rate (in Gbps)
and the length of its path (i.e., number of links, or process-
ors in the scheduling problem) [1,23]. We assume a
12.5 GHz slot width, and consider two modulation formats:
for paths with up to (respectively, more than) 10 links we
assume 16-QAM (respectively, QPSK), such that demands
of size 10, 40, 100, 400, and 1000 Gbps are assigned 1, 1, 2,
8, and 20 (respectively, 1, 2, 4, 16, and 40) slots,
consistent with the values used in [23, Table 1].

Figures 4–6plot theaverage ratio achievedby the four list
scheduling algorithms, LFB, LFC,WFB, andWFC, for each
of the three traffic distributions; specifically, eachdata point
in the figures represents the average over 30 randomly gen-
erated problem instances. The average ratio for a given al-
gorithm is defined as the ratio of the makespan value Cmax

(i.e.,maximumspectrumused onany link of the correspond-
ing chain) obtained by the algorithm for a given problem in-
stance over the lower bound (i.e., the total processing time
for the dominant processor) for the same instance. Recall
that the PmjlinejjCmax problem is NP-hard for the number
m ≥ 5 of processors considered in this experiment, and the
optimal value is not known. Since the optimal value is no
less than the lower bound, the average ratio shown in the
figures overestimates the average gap between the Cmax

values obtained by the algorithms and the optimal one.

From the figures, we can make several observations.
First, the compact algorithms (LFC andWFC) perform bet-
ter than the corresponding block-based algorithms (LFB
and WFB, respectively). Second, three of the algorithms
(LFC, LFB, and WFC) obtain solutions that are within
5% (and in many cases, within 2%–3%) of the lower bound.
Furthermore, the average ratio performance of these three

algorithms is not sensitive to the number of processors
(chain length) or demand distribution. The block-based
WFB algorithm has the worst performance over all prob-
lem instances considered in this study. This result indi-
cates that processing tasks in the order of decreasing
number of processors they require may pair short tasks
with long tasks, creating large idle times within blocks.
On the other hand, the WFC algorithm that processes
tasks in the same order is successful in reducing these idle
times, demonstrating the importance of taking into consid-
eration the idle times in the scheduling process. Overall,
these results indicate that, for problem instances represen-
tative of SA problems arising in chains typical of the
diameter of metropolitan or wide-area networks, the two
compact algorithms (LFC and WFC) may obtain solutions
very close to the optimal with low computational
requirements.

B. Scheduling on Large Multiprocessor Systems

In this set of experiments, we consider instances of
the PmjlinejjCmax problem applicable to large-scale

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 5 10 15 20

A
ve

ra
ge

 r
at

io

Number of processors (links)

 LFB
 WFB
 LFC

 WFC

Fig. 4. Average ratio versus number of processors, discrete
uniform distribution.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 5 10 15 20

A
ve

ra
ge

 r
at

io

Number of processors (links)

 LFB
 WFB
 LFC

 WFC

Fig. 5. Average ratio versus number of processors, discrete high
distribution.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 5 10 15 20

A
ve

ra
ge

 r
at

io

Number of processors (links)

 LFB
 WFB
 LFC

 WFC

Fig. 6. Average ratio versus number of processors, discrete low
distribution.

Talebi et al. VOL. 6, NO. 8/AUGUST 2014/J. OPT. COMMUN. NETW. 761

multiprocessor systems. Specifically, we let the number m
of processors vary from 1000 to 6000, in increments of 1000.
For each problem instance, we generated a number of tasks
equal to twice the number of processors (i.e., n � 2m), while
the task times were selected from three distributions:

• Uniform: task times may take any integer value in the
interval [10, 1000] with equal probability.

• Skewed high: task times may take values in the intervals
[10, 200], (200, 400], (400, 600], (600, 800], and (800,
1000] with probabilities 0.10, 0.15, 0.20, 0.25, and 0.30,
respectively. Once a task has been assigned to one of
these intervals, it is assigned any value in that interval
uniformly and randomly.

• Skewed low: this is similar to the skewed high distribu-
tion, with the only difference that the probabilities that a
task falls within one of the five intervals are 0.30, 0.25,
0.20, 0.15, and 0.10, respectively.

Figures 7–9 plot the average ratio achieved by the LFC,
LFB, andWFC algorithms as a function of the numberm of
processors; each of the figures corresponds to problem
instances generated by one of the three task length distri-
butions above. As in the earlier figures, each data point rep-
resents the average over 30 random problem instances.
Similar to the results presented in the previous subsection,
the WFB algorithm produces solutions with an average ra-
tio of 1.3–1.5, substantially higher than the ones achieved
by these three algorithms; hence, we omit the WFB algo-
rithm from these figures so as to focus on the behavior
of the best algorithms.We observe that all three algorithms
perform very close to the lower bound: their solutions are
around 1%–3% away from the lower bound, on average,
when m � 1000, and the average ratio improves (drops)
as the number of processors increases to m � 6000. This
behavior is consistent across all three distributions we con-
sidered for these experiments. Note that the absolute dif-
ference between the makespan of the solutions and the
lower bound actually increases slowly as the number of
processors increases, but the relative difference (i.e., the
ratio plotted in the figures) decreases because, for a given

distribution, the value of the lower bound increases with
the number of processors.

Overall, our experiments indicate that the three algo-
rithms, LFC, LFB, and WFC, perform very close to the
lower bound across a range of task length distributions
and number of processors, while being computationally
efficient and simple to implement.

VII. CONCLUDING REMARKS

We have studied the SA problem in EONs from a new
perspective, and we have shown that it transforms to
the problem of scheduling multiprocessor tasks on dedi-
cated processors. Using this new insight, we have devel-
oped simple two-stage approximation algorithms for
chain networks. We have also presented a suite of list
scheduling algorithms that are computationally efficient
and produce solutions that, on average, are very close to
the lower bound for problem instances defined on chain
networks. Our current research focuses on two directions:
developing new approximation algorithms with a better

1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 r
at

io

Number of processors

 LFB
 LFC

 WFC

Fig. 7. Average ratio versus number of processors, uniform
distribution.

1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 r
at

io

Number of processors

 LFB
 LFC

 WFC

Fig. 8. Average ratio versus number of processors, skewed high
distribution.

1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 r
at

io

Number of processors

 LFB
 LFC

 WFC

Fig. 9. Average ratio versus number of processors, skewed low
distribution.

762 J. OPT. COMMUN. NETW./VOL. 6, NO. 8/AUGUST 2014 Talebi et al.

performance bound, and building upon multiprocessor
scheduling theory to devise efficient algorithms with good
performance for ring and mesh networks.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation under grant CNS-1113191, and in part by
the Deanship of Scientific Research (DSR), King Abdulaziz
University, under grant 2-611-1434-HiCi. This is an ex-
tended version of a paper that appeared in ONDM 2014.

REFERENCES

[1] O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical
networking: A new dawn for the optical layer?” IEEE
Commun. Mag., vol. 50, no. 2, pp. s12–s20, 2012.

[2] M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and
S. Matsuoka, “Spectrum-efficient and scalable elastic optical
path network: Architecture, benefits, and enabling technolo-
gies,” IEEE Commun. Mag., vol. 47, no. 11, pp. 66–73, 2009.

[3] W. Shieh, “OFDM for flexible high-speed optical networks,” J.
Lightwave Technol., vol. 29, no. 10, pp. 1560–1577, May 2011.

[4] S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and
S. Poole, “Flexible and grid-less wavelength selective switch
using LCOS technology,” in Proc. OFC/NFOEC, 2011,
paper OTuM3.

[5] R. Ryf, Y. Su, L. Moller, S. Chandrasekhar, X. Liu, D. T.
Nelson, and C. R. Giles, “Wavelength blocking filter with flex-
ible data rates and channel spacing,” J. Lightwave Technol.,
vol. 23, no. 1, pp. 54–61, Jan. 2005.

[6] G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee,
“A survey on OFDM-based elastic core optical networking,”
IEEE Commun. Surv. Tutorials, vol. 15, no. 1, pp. 65–87,
2013.

[7] M. Klinkowski and K. Walkowiak, “Routing and spectrum as-
signment in spectrum sliced elastic optical path network,”
IEEE Commun. Lett., vol. 15, no. 8, pp. 884–886, 2011.

[8] Y. Wang, X. Cao, and Y. Pan, “A study of the routing and spec-
trum allocation in spectrum-sliced elastic optical path net-
works,” in Proc. IEEE INFOCOM, 2011, pp. 1503–1511.

[9] K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos, “Elas-
tic bandwidth allocation in flexible OFDM–based optical net-
works,” J. Lightwave Technol., vol. 29, no. 9, pp. 1354–1366,
2011.

[10] Y. Zhang, X. Zheng, Q. Li, N. Hua, Y. Li, andH. Zhang, “Traffic
grooming in spectrum-elastic optical path networks,” in Proc.
of Optical Fiber Communication Conf. and the National Fiber
Optic Engineers Conf. (OFC/NFOEC), Mar. 2011, paper
OTuI1.

[11] Y. Wei, G. Shen, and S. You, “Span restoration for CO-OFDM-
based elastic optical networks under spectrum conversion,” in
Proc. of Asia Communications and Photonics Conf. (ACP),
Nov. 2012, paper AF3E.7.

[12] G. N. Rouskas, “Routing and wavelength assignment in opti-
cal WDM networks,” in Wiley Encyclopedia of Telecommuni-
cations, J. Proakis, Ed. Wiley, 2001.

[13] Z. Liu and G. N. Rouskas, “A fast path-based ILP formulation
for offline RWA in mesh optical networks,” in Proc. IEEE
GLOBECOM, Anaheim, CA, Dec. 2012, pp. 2990–2995.

[14] S. Talebi, F. Alam, I. Katib, M. Khamis, R. Khalifah, and G. N.
Rouskas, “Spectrum management techniques for elastic
optical networks: A survey,” Opt. Switching Netw., vol. 13,
pp. 34–48, July 2014.

[15] S. Shirazipourazad, C. Zhou, Z. Derakhshandeh, and A. Sen,
“On routing and spectrum allocation in spectrum-sliced
optical networks,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 385–389.

[16] E. Bampis, M. Caramia, J. Fiala, A. Fishkin, and A. Iovanella,
“Scheduling of independent dedicated multiprocessor tasks,”
in Proc. of the 13th Annu. Int. Symp. on Algorithms and Com-
putation, vol. 2518, Lecture Notes in Computer Science, 2002,
pp. 391–402.

[17] J. A. Hoogeveen, S. L. Van de Velde, and B. Veltman, “Com-
plexity of scheduling multiprocessor tasks with prespecified
processor allocations,” Discrete Appl. Math., vol. 55,
pp. 259–272, 1994.

[18] S. Talebi, F. Alam, I. Katib, and G. N. Rouskas, “Spectrum as-
signment in rings with shortest path routing: Complexity and
approximation algorithms,” to be presented at Proc. ICNC,
Anaheim, CA.

[19] Y. Zhu, G. N. Rouskas, and H. G. Perros, “A path decomposi-
tion approach for computing blocking probabilities in wave-
length routing networks,” IEEE/ACM Trans. Netw., vol. 8,
pp. 747–762, Dec. 2000.

[20] E. Bampis and A. Kononov, “On the approximability of sched-
uling multiprocessor tasks with time dependent processing
and processor requirements,” in Proc. of the 15th Int. Parallel
and Distributed Processing Symp., San Francisco, CA,
2001.

[21] M. R. Garey and D. S. Johnson, Computers and Intractability.
New York: W. H. Freeman, 1979.

[22] J. Huang, J. Chen, S. Chen, and J.Wang, “A simple linear time
approximation algorithm for multi-processor job scheduling
on four processors,” J. Comb. Opt., vol. 13, pp. 33–45, 2007.

[23] M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T.
Tanaka, and A. Hirano, “Distance-adaptive spectrum re-
source allocation in spectrum-sliced elastic optical path
network,” IEEE Commun. Mag., vol. 48, no. 8, pp. 138–145,
2010.

Talebi et al. VOL. 6, NO. 8/AUGUST 2014/J. OPT. COMMUN. NETW. 763

	XML ID ack1

