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Our symmetry-free model for spectrum allocation (SA) in networks of general topology leverages two proper-
ties: (1) SA is equivalent to a connection permutation problem, and (2) in assigning spectrum, it is sufficient to
consider the allocation made by the first-fit (FF) algorithm. This model opens up algorithmic approaches that
altogether sidestep spectrum symmetry, i.e., eliminate from consideration the exponential number of equivalent
solutions resulting from spectrum slot permutations. Recursive FF (RFF) is such an algorithm; it applies FF
recursively to search the connection permutation space and solve the SA problem optimally. Moreover, paral-
lelism is inherent in the spectrum symmetry-free model, as the connection permutation space may be naturally
decomposed into non-overlapping subsets that can be searched independently. Accordingly, RFF admits multi-
threaded implementations that may be tailored to the computing environment at hand. In this work, we present
two strategies for parallelizing the execution of RFF, and we evaluate them experimentally using a comprehensive
set of metrics. Our experiments indicate that RFF explores a vast number of symmetry-free solutions, and for
moderate-sized networks, it takes mere seconds to yield solutions that are either optimal or very close to the lower
bound. © 2023 Optica Publishing Group

https://doi.org/10.1364/JOCN.487181

1. INTRODUCTION

Spectrum allocation (SA) is integral to optical network design
and has been studied extensively for decades, usually coupled
to other objectives including routing [1–3], traffic grooming
[4], network survivability [5], and virtual topology design
[6,7]. In the context of elastic optical networks (EONs), the
routing and SA (RSA) [8] and the routing, modulation, and
SA (RMSA) [9] problems have received considerable attention.
Both problems are NP-hard, and a suite of integer linear pro-
gramming (ILP) formulations have been developed over the
years to tackle a wide range of problem variants [2,10–12].

The SA problem is known to be intractable even when
considered in isolation, i.e., separately from other aspects of
network design [13]. Yet spectrum symmetry, an aspect unique
to SA, makes the problem especially challenging to optimal
algorithms, including ILP solvers. Spectrum symmetry arises
from the fact that slices of optical spectrum are interchangeable
[14]. Hence, by simply permuting the spectrum slots, every
solution (optimal or not) to the SA problem yields an expo-
nential number of equivalent solutions [15]. Conventional ILP
formulations cannot account for spectrum symmetry and nec-
essarily encompass this vast number of distinct yet equivalent
solutions. Consequently, ILP formulations do not scale [15],
and heuristic algorithms have to be employed for networks
encountered in practice [16].

A few years ago we developed, an ILP formulation based
on maximal independent sets (MISs) [17] for the offline
routing and wavelength allocation (RWA) problem in ring
networks. The formulation does not suffer from the symmetry
problem and obtains optimal solutions to RWA problem
instances on maximum size (16-node) SONET rings in sec-
onds. Unfortunately, the number of variables in MIS-based
formulations increases exponentially with the network size,
and they cannot be applied practically to mesh networks. Thus,
a general optimal solution approach to the RWA and RSA
problems that avoids spectrum symmetry has so far eluded the
research community.

Our recent results regarding the SA problem in isolation
(i.e., without the routing dimension) represent a first step
towards a general approach to optical network design that
sidesteps spectrum symmetry. Our work considered the first-fit
(FF) algorithm, a well-known and simple heuristic for the
SA problem that has been shown to be effective across a wide
range of network topologies and traffic demands [16,18,19].
Our main result was to prove an optimality property of the FF
heuristic [20] that allows for the design of symmetry-free algo-
rithms. Specifically, we showed that there exists a permutation
of the traffic connections such that applying the FF heuristic
to the connections in the order implied by this permutation
yields an optimal solution to the SA problem. This optimality
property implies that to find an optimal solution, it is sufficient
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to consider only the connection permutations, and it is not
necessary to account for any allocation of spectrum slots other
the one determined by the FF heuristic.

Following up on this insight, we also developed recursive
FF (RFF), an optimal branch-and-bound algorithm [20]. RFF
searches the space of connection permutations and applies the
FF heuristic as it incrementally builds each permutation during
the search. While the connection permutation space is itself
exponential in size, RFF represents a significant improvement
over existing approaches as it completely eliminates spectrum
symmetry.

The connection permutation (solution) space can be nat-
urally partitioned into non-overlapping regions that may be
explored independently and in parallel. Therefore, in this
paper we present two strategies for parallelizing the execution
of the RFF algorithm. Given a limit on the amount of time that
RFF is allowed to run, the two strategies represent a trade-off
between (1) the coverage of the solution space, i.e., the number
of distinct regions of the space explored, and (2) the amount of
time that the algorithm spends exploring a particular region.
We also evaluate the two strategies experimentally using a
comprehensive set of metrics that provides insight into the
algorithm’s operation.

Following the introduction, we define the SA problem
we consider in this work and explain spectrum symmetry
in Section 2, we discuss the FF spectrum-free property in
Section 3, and we review the RFF algorithm in Section 4. We
introduce two parallel implementations of RFF in Section 5,
and we discuss our experimental setup and evaluation results in
Section 6. We conclude the paper in Section 7.

2. SA PROBLEM AND SPECTRUM SYMMETRY

We consider a network with topology graph G = (V , A),
where V is the set of nodes, and A is the set of directed fiber
links in the network. Let N = |V | denote the number of nodes
and L = |A| the number of directed links. Each link supports
F spectrum slots, numbered 1, 2, . . . , F . The traffic offered
to the network consists of a set C = {Ci } of K connection
requests. Each connection is a tuple Ci = (s i , di , pi , fi ),
where s i is the source and di the destination node of the
connection; pi is the path between nodes s i and di that the
connection must follow; and fi is the number of spectrum
slots required to carry the traffic from s i to di .

In this work, we study the offline SA problem shown in
Fig. 1. Specifically, the objective is to allocate spectrum slots to
connections so as to minimize the index of the highest slot used
on any link, while satisfying the three spectrum constraints
listed in Fig. 1. This objective seeks to pack the spectrum slots
assigned to the carried traffic as tightly as possible, and hence,
it attempts to indirectly minimize spectrum fragmentation and
allow for growth in demand; consequently, it is one that has
been adopted widely in the literature. Also, we assume that the
path pi of each connection Ci is fixed and pre-determined,
i.e., any routing decision has been made before the allocation
of spectrum. Therefore, any algorithm that solves this SA prob-
lem, including the one we present in this paper, may be applied
as part of a multi-step, iterative approach to the RSA problem
[16].

Fig. 1. Offline SA problem.

We have shown [13] that the SA problem is NP-hard even
for chain networks with four or more links. But in addition
to its theoretical computational intractability, a major prac-
tical challenge in tackling the SA problem of Fig. 1, or any
of its variants that have been studied in the literature, relates
to spectrum symmetry. Spectrum symmetry refers to the fact
that blocks of contiguous spectrum slots of a certain size are
interchangeable. Therefore, for any optimal solution to the SA
problem, one can derive a large number of equivalent solutions
simply by permuting the spectrum blocks.

Figure 2 illustrates how spectrum symmetry leads to multi-
ple equivalent solutions. Figure 2(a) shows a solution to the
SA problem on a four-link chain network with K = 9 connec-
tions. Each connection is represented by a different color along
the links of its path. For instance, the bottommost (light blue)
connection spans all four links of the network, indicating that
the connection has been allocated this contiguous block of two
spectrum slots along each of these links. Note that the solution
shown in Fig. 2(a) is optimal: the highest assigned slot on link 3
is equal to the lower bound for this problem instance, i.e., the
number of slots required to carry the connections whose path
includes link 3.

To illustrate how spectrum symmetry affects the SA prob-
lem, consider two blocks of spectrum slots in Fig. 2(a): the
three-slot block consisting of spectrum slots 3–5, and the
five-slot block consisting of spectrum slots 6–10. Figure 2(b)
shows the equivalent solution that we obtain by permuting
these two blocks of slots. In the new solution, the two connec-
tions that were allocated slots in the range of 3–5 in Fig. 2(a)
are now shifted up and are allocated the corresponding slots
in the range of 8–10, while the four connections that were
allocated slots in the range of 6–10 are now shifted down
accordingly. Otherwise, the two solutions in Figs. 2(a) and
2(b) are identical; they are also equivalent in that they yield the
same objective function value. Furthermore, note that (1) it
is possible to obtain many more solutions equivalent to the
two shown in Fig. 2 by permuting different blocks of spectrum
slots, and (2) spectrum symmetry also applies to non-optimal
solutions.
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Fig. 2. (a) Optimal solution to an SA problem instance constructed by the FF algorithm. (b) Equivalent solution due to spectrum symmetry;
this solution is derived by the FF solution in (a) by permuting certain spectrum slots as explained in the text.

Based on the above discussion it is clear that, due to spec-
trum symmetry, conventional ILP formulations may yield
an exponentially large number of equivalent (optimal or sub-
optimal) solutions. Consequently, ILP solvers are forced to
explore a solution space whose size is essentially the product of
the request permutation space and the spectrum permutation
space. However, as we explain next, the SA problem can be
recast in a way that eliminates equivalent solutions due to sym-
metry and hence significantly reduces the size of the solution
space that needs to be explored.

3. FIRST-FIT SYMMETRY-FREE PROPERTY

Let us return to the offline SA problem shown in Fig. 1 on
graph G and request set C = {Ci , i = 1, . . . , K }. Let P be a
permutation (i.e., an ordering) of the traffic connections Ci .
Let SOL(P ) denote the solution to the SA problem obtained
by the FF algorithm when it considers each connection in the
order implied by permutation P . Let OPT denote the objec-
tive value of an optimal solution to the SA problem. Clearly,
for any permutation P of the connections, it must be that
OPT≤ SOL(P ).

We have shown that there exists a permutation P ?
FF of

the traffic requests such that applying the FF algorithm
to the connections in the order in which they appear in
P ?

FF yields an optimal solution to the SA problem [20],
i.e., SOL(P ?

FF)=OPT. We refer to this result as the optimality
property of the FF algorithm. For instance, it is not difficult
to see that the solution shown in Fig. 2(a) is the product of
the FF algorithm on an appropriate permutation (ordering)
of the K = 9 connections. However, the equivalent solution
in Fig. 2(b) would not be produced by the FF algorithm;
rather, FF would have allocated slots 5 and 6 to the (dark blue)
connection spanning just link 1, not slots 8 and 9. This FF
optimality property helps explain why many studies of the SA
(and WA) problem have confirmed that the FF heuristic yields
good solutions across diverse problem instances.

The proof of the FF optimality property, which we pre-
sented in [20], is by construction. Specifically, starting with an
optimal solution of value equal to OPT, our proof shows how

to construct a permutation P ?
FF such that SOL(P ?

FF)=OPT.
We now observe that the construction process of the proof in
[20] may be applied to any solution to the SA problem, not just
an optimal solution. Therefore, we have the following more
general result.

Lemma 3.1 (FF Symmetry-Free Property). Consider any
solution S to an instance of the SA problem that achieves an objec-
tive value VS ≥OPT, where OPT is the objective value of an
optimal solution to this SA instance. There exists a permutation
PFF of the connections such that applying the FF algorithm to the
connections in the order implied by PFF yields a solution to the SA
instance with objective value SOL(PFF)= VS .

Proof. Applying the construction process of the proof of
([20], Lemma 3.1) to the given solution S will produce the
required permutation PFF. �

Essentially, the FF symmetry-free property reduces the SA
problem to a permutation problem where the objective is to find
the (unknown) permutation P ?

FF. Since there is no need to
consider an SA for any of the various connection permutations
other than the one produced by the FF algorithm, any permu-
tation for which the FF algorithm yields the smallest objective
value is an optimal solution to the SA problem instance at
hand. We note, however, that in a network with N nodes and
traffic between all node pairs, the size K of connection set C
is O(N2). Therefore, any algorithm that considers all possible
permutations of connections to determine the optimal SA
must take time that is exponential in the size of the network,
O(N2

!).
Since the number of connection permutations is expo-

nential, the theoretical complexity of the SA problem is not
affected by its transformation into a permutation problem.
Nevertheless, the FF symmetry-free property allows us to
design algorithms that ignore the exponential number of
symmetric solutions derived from spectrum permutations,
e.g., solutions such as the one in Fig. 2(b). Doing so drastically
reduces the size of the solution space that needs to be explored
in practice. We discuss such an algorithm, RFF, in the next
section.



Research Article Vol. 15, No. 10 / October 2023 / Journal of Optical Communications and Networking E43

4. SYMMETRY-FREE RFF ALGORITHM

The RFF algorithm is described in detail in [20]. For the sake
of completeness, in this section, we first explain the basic oper-
ation of RFF; we introduce two approaches to executing the
algorithm in parallel in the following section.

Due to the FF optimality and symmetry-free properties we
discussed earlier, an optimal solution to the SA problem can
be obtained by applying the FF algorithm to all permutations
of the K connections and selecting the best one. RFF [20]
is a recursive branch-and-bound algorithm that searches the
space of K ! connection permutations efficiently. RFF starts
with an initial permutation, P , that is provided as input. The
algorithm applies the FF heuristic on P to obtain an initial
solution to the SA problem, and records this solution as the
best one it has found so far. Then, RFF calls itself recursively
and modifies the initial permutation to create additional ones.
Each call incrementally builds a new permutation one connec-
tion at a time. A recursive call also applies the FF algorithm
to the partial permutation built so far. Once RFF has built a
complete permutation (i.e., one consisting of some ordering
of all K connections), if the solution of this permutation is
better than the best one it has found so far, it records it as the
new best solution. If at any point during the recursion RFF
determines that the solution to the current partial permutation
is not better than the best known solution, it abandons further
exploration along the current path and backtracks.

Figure 3 shows the tree of recursive calls that RFF makes
on an instance with four connections, starting with the initial
permutation P = [A, B, C , D], shown as “tentative” in the
figure. Starting with the initial call at the root of the tree, RFF
proceeds in a depth-first manner along the leftmost path of the
tree. The call representing the leftmost child of the root fixes
(finalizes) the first connection (A) in the permutation, and pro-
ceeds recursively to finalize the remaining three connections.
The leaves of the tree represent the distinct permutations, and
hence, there are K ! leaves. In the example of Fig. 3, the left-
most subtree of the root has 3! = 6 leaves corresponding to the
six permutations in which connection A is in the first position
(as in the root of this subtree). The other three subtrees also

have six leaves (not shown in the figure), for a total of 4! = 24
permutations.

We say that RFF directly explores a permutation if it reaches
the leaf of the tree representing this permutation. In this case,
RFF computes the FF solution on the permutation and com-
pares it to the current best solution to determine whether it is
better. However, branch-and-bound algorithms such as RFF
do not need to visit all leaves and explore directly all possible
solutions. As we mentioned earlier, while traversing a path
to a leaf, RFF may determine that the partial permutation it
has constructed cannot improve on the current best solution.
Then, RFF abandons further direct exploration of the current
subtree and backtracks to start on a different permutation.
In this case, we say that RFF has indirectly explored all the
leaves (permutations) of the abandoned subtree, as it has made
a determination that they do not represent better solutions
than the one it has recorded. The number of permutations
(i.e., leaves of the subtree) indirectly explored at the time RFF
backtracks can be calculated by keeping track of the height of
the node where the backtracking occurred.

Overall, the RFF algorithm represents both a substantial
departure from, and a meaningful improvement over, existing
methods and algorithms in searching for an optimal solution to
the SA problem because of several new and unique features:

• it is spectrum symmetry free, i.e., it does not consider any
equivalent solutions that are simply the result of spectrum slot
permutations;

• it applies the simple, well-understood, and widely
adopted FF algorithm;

• it uses indirect exploration to eliminate whole sub-
trees of the solution space without explicitly visiting all the
permutations they contain;

• it makes it possible to calculate precisely the size of the
solution (permutation) space it has explored at any point in
time; and

• it can be executed in parallel.

Next, we discuss in detail parallel implementation aspects of
the RFF algorithm.

Fig. 3. Tree of RFF calls on a set of four connections. The root of the tree represents the initial call with initial permutation P = [A, B, C , D].
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5. PARALLEL IMPLEMENTATIONS OF RFF

Observe from Fig. 3 that a recursive call starting at some node
X of the RFF tree simply proceeds along a path from X to
a leaf node by modifying the trailing “tentative” portion of
the permutation it is given as input. As a result, any pairs of
recursive calls that operate in non-overlapping subtrees do not
interact with each other, with one exception: calls that reach a
leaf node check, and possibly update, the value of the current
best solution. Therefore, RFF may be parallelized by (1) lock-
ing access to the variable holding the best known solution and
(2) assigning recursive calls in non-overlapping subtrees to
different threads. These threads will execute in parallel and
will interfere with each other only when they need to access
or update the locked variable. Importantly, when one thread
finds a better solution and updates the variable, it allows all
threads to eliminate subtrees of solutions earlier; in turn, this
property leads to faster than linear indirect exploration of the
permutation space as the number of threads increases.

Consider an instance of the SA problem with K requests to
be solved using RFF, and assume that we may deploy at most
M threads in parallel. The limit on the number of threads
may be imposed by the operating system or the computational
budget (i.e., the amount of computational resources available
for tackling the problem). We also assume that there is an
upper bound T on the amount of time that the algorithm is
allowed to run. Note that the number K of requests corre-
sponds to the number of node pairs in the network. Since K is
O(N2), where N is the number of network nodes, we assume
that M < K for network topologies encountered in practice.
Therefore, in designing parallel implementations for the RFF
algorithm, the objective should be to: determine how to deploy
theM threads so that the algorithm will return a solution of good
quality within T time units.

To this end, a parallelization strategy must ensure that

(1) the algorithm explores the largest possible subset of the
solution (permutation) space, and

(2) the subset explored is representative of the entire solution
space and is not limited to the neighborhood around the
initial permutation provided as input.

To gain insight into how to achieve the second goal above,
recall that a recursive call of RFF that starts at the root of a
subtree (refer to Fig. 3) will initially follow the leftmost path
to a leaf. After reaching a leaf or abandoning the current path
because it will not lead to a better solution, the algorithm
backtracks and follows the downward path immediately to the
right of the one it was previously on. Therefore, RFF visits the
leaves (or subtrees) of the current subtree in the order from left
to right. Consequently, if the time allotted is not sufficient for
RFF to visit the whole subtree, it will visit its leftmost subtrees
and leave the rightmost subtrees unexplored; the relative frac-
tion of visited and unexplored subtrees depends on the time the
algorithm is allowed to run. Furthermore, our initial findings
in [20], which we will confirm in the following section, indi-
cate that when exploring a particular part of the solution space,
RFF in general finds good solutions quickly and spends most
of the remaining time exploring subtrees that do not improve
on the early solutions.

As a second observation from Fig. 3, we note that the root
of the RFF tree has K subtrees, each subtree exploring the
permutation sub-space in which a specific connection is fixed
in the first position. Therefore, given that M < K (and often
that M� K as K is O(N2)), it is not possible to explore all
K subtrees in parallel simultaneously with just M threads.
More generally, it is difficult to divide the permutation space
in M roughly equal and non-overlapping subsets that can be
explored independently and in parallel.

Based on these observations, our approach is to deploy
multiple batches of M threads, each batch running for an
amount of time t < T, such that (1) collectively all the batches
cover many diverse areas of the solution space, and (2) the
total running time is equal to T. Specifically, we consider two
strategies to parallelizing RFF that differ in the depth of the
RFF recursion call tree, shown in Fig. 3, at which threads are
deployed to execute in parallel. The two strategies represent a
trade-off between (1) the amount of time the algorithm spends
exploring a particular part of the solution space and (2) the
number of distinct (non-overlapping) regions of the solution
space that the algorithm visits.

A. Depth-0 Parallelization Strategy

As we mentioned above, the subtrees of the root divide the
solution space into K (K = 4 in Fig. 3) mutually disjoint and
collectively exhaustive subsets of the solution space; hence, this
is a natural point to introduce parallelism. Since we assume
that M < K , we run RFF as follows:

(1) Let m = dK /Me be the number of batches of M parallel
threads needed to explore all K subtrees of the root (the
mth batch may have fewer than M threads).

(2) Let t = T/m be the running time for each batch of
threads.

(3) Start a batch of M threads that run in parallel, each thread
starting execution at one of the M leftmost subtrees (chil-
dren) of the root. Terminate this batch of threads after t
time units, and record the best solution found.

(4) Repeat step (3) after passing the best solution to the next
batch of threads that start at the next leftmost M sub-
trees of the root, and so on, until the last batch of threads
starting at the rightmost subtrees of the root completes at
time T.

This Depth-0 parallelization strategy is a natural and
straightforward approach, it is easy to implement in practice,
and it will explore all K subtrees of the root that correspond to
non-overlapping subsets of the solution space. Nevertheless, a
disadvantage of the strategy is that the thread at each subtree
of the root will run for a relatively small time t , and for values
of K corresponding to typical networks, it will not be able
to explore the whole subtree that contains (K − 1)! leaves.
Specifically, each thread will explore only the leftmost part
of its subtree; hence, this strategy will miss the regions of the
solution space that lie in the rightmost parts of the subtrees of
the root.
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B. Depth-1 Parallelization Strategy

Our second strategy aims to explore the entire solution space
more uniformly by introducing parallelism at depth 1 of the
tree. Under this strategy, each thread explores a subtree of a
child of the root, and hence, it starts execution at a grandchild
node of the root. Since each thread starts at a lower level of
the tree, the subset of solutions explored will be more evenly
distributed across the entire space than with the Depth-0
strategy.

The root of the RFF tree has K children, each of which has
K − 1 subtrees, for a total of K (K − 1) subtrees at depth 1.
Assuming that the available total computational time T and/or
the number M of parallel threads are sufficiently large, we can
deploy m = dK (K − 1)/Me batches of threads, each batch
running for t = T/m time units. However, the number of
subtrees at depth 1 is O(N4) and can easily grow to millions
or beyond for medium- to large-sized networks; for a 40-node
network with traffic between every pair of nodes, the number
of subtrees at depth 1 exceeds 2 million. Therefore, unless
the total time T can be very long, the running time t for each
batch of threads will be too small to meaningfully explore
its subtree. In this case, it may be necessary to explore only a
subset of the subtrees at depth 1 to remain within the available
computational budget. Clearly, there are various approaches
for sampling the solution space at depth 1. For instance, the
subtrees to be explored may be selected randomly, or they
could be selected deterministically in a way that uniformly
spreads the subtrees across the solution space. Although an
in-depth evaluation of sampling strategies may provide further
insight, it is outside the scope of our work. In the next section,
we present a deterministic strategy that worked well for the
32-node GEANT2 topology we used in our experiments.

Finally, we note that it is possible to extend the two paral-
lelization strategies so as to introduce parallelism at lower levels
of the RFF tree, e.g., a Depth-2 or Depth-3 strategy. Since
the number of subtrees to be explored increases by a factor of
O(N2) for each lower level, a sampling strategy becomes even
more significant in this case. Exploring the benefits of intro-
ducing parallelism below depth 1 of the RFF tree is reserved for
future research.

C. Illustrative Example

Let us illustrate the operation of the Depth-0 and Depth-1
strategies by referring to the tree of RFF calls in Fig. 3, assum-
ing that M = 2 threads may be executed in parallel. With the
Depth-0 strategy, the original call to RFF starts at the root of
the tree and immediately spawns two threads: one to explore
the leftmost subtree of the root (i.e., the subtree in which A is
fixed as the first connection of the permutation), and one to
explore the subtree immediately to the right (i.e., the one in
which B is fixed as the first connection of the permutation).
The two threads proceed to explore their respective subtrees
independently and in parallel. A thread terminates when either
(1) it backtracks to the root of its subtree (in which case it has
completely explored its part of the permutation space), or
(2) a time limit for its execution is reached. As soon as a thread
terminates, the original call spawns a new thread to explore
the next subtree of the root, in this case the one in which C is

fixed as the first connection of the permutation. This process
continues until all subtrees of the root have been explored, with
the original call keeping track of the status of all threads and
making sure that M threads are executing in parallel at all times
to take maximum advantage of parallelism.

The operation of the Depth-1 strategy is similar except that
each thread explores a subtree of a child of the root. Specifically,
the original call to RFF starts at the root of the tree, and then
proceeds (as in a single-threaded implementation) in a depth-
first search (DFS) manner to explore the leftmost child of the
root. At that node, the original call spawns M = 2 threads:
one to explore the leftmost subtree of the node (i.e., the one
in which A and B are fixed as the first two connections of the
permutation), and one to explore the subtree immediately
to the right (i.e., with A and C fixed as the first two connec-
tions of the permutation). The two threads proceed to explore
their part of the permutation space until they terminate, as
explained above. When a thread terminates, the original call
spawns another to explore the next subtree to the right, in this
case, the one in which A and D are fixed as the first two con-
nections of the permutation. As threads complete, the original
call backtracks, visits the following children of the root, and
spawns threads to explore their subtrees. In this example, when
the second thread completes, the original call will backtrack
to the second child of the root from the left and assign a new
thread to the subtree (not shown in Fig. 3) with B and A fixed
as the two first connections of the permutation.

6. NUMERICAL RESULTS

A. Simulation Setup

We have performed simulation experiments to evaluate the
performance of the RFF algorithm under the two parallel
execution strategies we discussed in the previous section. We
run the experiments on the Henry2 Linux HPC cluster at NC
State University [21–25], which consists of more than 1000
compute nodes and over 10,000 cores.

The experimental setup is similar to the one we used in [20].
Specifically, we consider two network topologies, the 14-node,
21-link NSFNET and the 32-node, 54-link GEANT2 shown
in Fig. 4, with all link lengths equal to 1. Each connection is
carried along the shortest (i.e., minimum hop) path between its
source and destination nodes. We create SA problem instances
by generating traffic demands between all node pairs in each
network. Specifically, we assume that data rates may take values
(in Gbps) from the set {10, 40, 100, 400, 1000}, and for each
problem instance, we generate a random value for the demand
between a pair of nodes based on one of three distributions:

• uniform: each of the five rates is selected with equal prob-
ability;

• skewed low: the rates above are selected with probability
0.30, 0.25, 0.20, 0.15, and 0.10, respectively; or

• skewed high: the five rates are selected with probability
0.10, 0.15, 0.20, 0.25, and 0.30, respectively.

Given the traffic rates between each node pair, we calculate
the corresponding spectrum slots by assuming that the slot
width is 12.5 GHz, and adopting the parameters of [25] to
determine the number of spectrum slots that each connection
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Fig. 4. Network topologies used in our study: (a) NSFNET,
(b) GEANT2; all link lengths are equal to 1.

requires based on its data rate and path length. For each traffic
distribution, we generate 100 random problem instances.

We consider the highest index of allocated spectrum slots
on any network link as the performance metric of interest. To
allow for a meaningful comparison between different problem
instances, we normalize the solutions with respect to the lower
bound; in other words, we divide the absolute value returned
by the algorithm with the lower bound for the corresponding
instance. We obtain a lower bound LB on the optimal objective
value by ignoring the spectrum contiguity and continuity
constraints and simply counting the spectrum slots required by
all connections on the most congested link.

In all experiments, we deployed M = 32 parallel threads,
the maximum number available to us on the Henry2 clus-
ter. NSFNET problem instances have K = 91 connections;
hence, the root of the RFF tree has 91 children (subtrees) and
91× 90= 8190 grandchildren. We set T = 270 min as the
bound on the running time. For the Depth-0 strategy, we
deployed m = d91/32e = 3 batches of parallel threads, each
batch running for t = 90 min. For the Depth-1 strategy, we
used m = d8190/32e = 256 batches of parallel threads; we let
each batch run for t = 1 min for a total of 256 min of running
time. With this arrangement, RFF runs for approximately the
same amount of time under both strategies.

In the case of GEANT2, we have K = 496. The Depth-0
strategy requires m = d496/32e = 16 batches of 32 threads;
therefore, we set T = 80 min as the bound on running time
and let each batch run for t = 5 min. [Although we set the
running time bound for the GEANT2 topology at a lower

Table 1. Values of the Parameters Used in the
Simulations

a

Depth-0 Depth-1

Topology M T m t m t

NSFNET 32 270 min 3 90 min 256 1 min
GEANT2 32 80 min 16 5 min 80 1 min

aM, number of parallel threads; m: number of BATCHES of parallel
threads; T, total running time; t , running time for each batch.

value (80 min) than for the NSFNET network (270 min),
using a longer running time is unlikely to have produced better
results for GEANT2. Specifically, as Fig. 10 shows below,
RFF typically finds the best solution within seconds, and in
the worst case, in 42 min, i.e., well before the time bound is
reached. Moreover, the GEANT2 solutions found are very
close to the lower bound, and hence, allowing for additional
running time would make a marginal difference at best.] The
Depth-1 strategy, on the other hand, would need to explore
495× 496= 245,520 subtrees and, hence, it would require
m = 7673 batches of 32 threads; each batch would then need
to run for less than 1 s for the total running time to be no
more than 80 min. Instead, we decided to modify the strategy
as follows. Rather than considering all children nodes of the
root, we consider only 80 children uniformly spaced apart,
i.e., children 1, 7, 13, . . . , 475. For each of these children, we
create a batch of 32 threads, each thread exploring a subtree of
the child node. Therefore, we deployed only m = 80 batches of
parallel threads in this case and explored only 80× 32= 2560
grandchildren of the root instead of 245,520. We let each batch
run for t = 1 min so that the total running time T is the same
for both strategies. Although this approach does not explore
the whole space at depth 1 of the tree, it allows us to compare
the two strategies without having to use a very long running
time.

Table 1 lists the values for the various parameters we used in
the simulations.

B. Results and Discussion

We evaluate the RFF algorithm using several performance
measures: (1) the solution quality relative to the FF algorithm
and the lower bound LB, (2) the number of permutations
(i.e., amount of solution space) it explores, and (3) the amount
of time it takes to reach the best solution.

1. Solution Quality

Figures 5 and 6 summarize the results we have obtained for
the NSFNET and GEANT2 topologies, respectively. The
figures show how far the solutions obtained by the FF, RFF
Depth-0, and RFF Depth-1 algorithms are from the lower
bound. Each value in the figures represents an average over 100
problem instances for the stated network, algorithm, and traffic
distribution; the plots also include 95% confidence intervals.
We first observe that, on average, the FF algorithm produces
solutions that are within 9%–12% (respectively, 3%–7%) of
the lower bound for the NSFNET (respectively, GEANT2)
topology. This is consistent with earlier research indicating that
FF finds solutions of good quality.
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Fig. 5. FF and RFF solution quality as % from LB, NSFNET.

Fig. 6. FF and RFF solution quality as % from LB, GEANT2.

Turning our attention to the RFF algorithm, we notice that
the Depth-0 strategy yields solutions that are noticeably better,
on average, than the FF solutions across all network topologies
and traffic distributions we used in our experiments. Again,
this result is in agreement with our findings in [20], despite the
fact that those results were obtained using a different imple-
mentation of the algorithm than the one we used here. The
improvement in solution quality is particularly impressive for
the GEANT2 network, as it was achieved even though the FF
solutions are very close to the lower bound.

Finally, we see that, on average, the Depth-1 strategy yields
a further improvement on solution quality, for both networks
and the three traffic distributions. In all our experiments, we
have observed that the Depth-1 strategy consistently outper-
forms the Depth-0 strategy; we discuss this result in more detail
at the end of the section.

Figures 7 and 8 present a different perspective regarding
the quality of the solutions obtained for the NSFNET and
GEANT2 topologies, respectively. Specifically, the two figures
plot the number of problem instances for which the Depth-0
and Depth-1 solutions are either (1) better than the corre-
sponding FF solution (denoted as “<FF” in the figures) or
(2) equal to the lower bound LB of the corresponding instance
(denoted as “= LB”). To interpret the results in the two figures,
we note that a solution equal to LB is an optimal one; fur-
thermore, the RFF algorithm starts with the FF solution, and
hence, for any instances that it cannot find a better solution, it
returns the FF solution.

Fig. 7. RFF solutions relative to FF and LB, NSFNET.

Fig. 8. RFF solutions relative to FF and LB, GEANT2.

Overall, we observe that RFF with the Depth-0 strategy
improves upon the FF solution in 58%–77% of the prob-
lem instances in the case of the NSFNET, and in 86%–93%
of the instances in the case of GEANT2, depending on the
traffic distribution. Furthermore, it finds an optimal solu-
tion in 28%–41% (respectively, 28%–62%) of the instances
for NSFNET (respectively, GEANT2), again depending on
the traffic distribution. The Depth-1 strategy achieves better
performance, and both the number of instances for which
an optimal solution is found and those with a solution better
than that of FF are higher than with the Depth-0 strategy.
There is only one exception: for the GEANT2 topology with
the skewed low distribution, the number of instances with a
solution better than that of FF is the same (86) under both
strategies; but even in this case, 22 of these instances show an
improvement as the Depth-1 strategy is able to find an optimal
solution for them.

As a final observation, the results in Figs. 6 and 8 indicate
that, for the GEANT2 problem instances we considered in
this study, the Depth-1 strategy is effective in finding solutions
that are very close to the lower bound (and hence, the optimal
value). Therefore, we expect that introducing parallelism at
a lower depth of the RFF tree (e.g., by deploying a Depth-2
strategy) would not have significant benefits. Instead, if addi-
tional computational time were available (i.e., beyond the
T = 80 min we used in our experiments), a better option
would be to deploy additional batches of parallel threads so
as to explore more subtrees at depth 1. For the NSFNET
topology, on the other hand, the results in Figs. 5 and 7 show
a larger gap between the solutions of the Depth-1 strategy
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and the lower bound. Recall also that due to the smaller num-
ber K of connections, the Depth-1 strategy for NSFNET
explores all subtrees at depth 1. Combined with our later
observations regarding the time to find the best solution, these
results suggest that, say, a Depth-2 parallelization strategy that
explores more regions of the permutation space might be able
to find better solutions. Investigating the benefits of a Depth-2
strategy will be the subject of future research.

2. Coverage of the Solution Space

One of the unique features of the RFF algorithm is that it is
possible to calculate precisely the number of permutations it
explores. Recall from our earlier discussion that RFF explores
(evaluates) a permutation in one of two ways: either directly,
when it visits the leaf of the tree representing the permuta-
tion, or indirectly, when it backtracks and abandons further
exploration of the subtree where the leaf representing this per-
mutation resides. In the latter case, all leaves of the abandoned
subtree represent solutions that are no better than the one the
algorithm has already found. The height of the node at which
the algorithm backtracks allows us to calculate the number
of leaves in the abandoned subtree, and hence the number of
permutations that are indirectly explored at that point.

Tables 2 and 3 list the number of permutations that the RFF
algorithm explores in the case of the NSFNET and GEANT2
networks, respectively. To put these figures in perspective,
note that the number of permutations is 91! ≈ 1.35E140 for
NSFNET and 496! ≈ 1.98E1123 for GEANT2. The values
shown are averages that are taken separately over the problem
instances for which the algorithm (1) reached the lower bound
or (2) did not reach the lower bound.

It is evident from the two tables that the RFF algorithm eval-
uates an immense number of permutations for either network,
the vast majority of which are explored indirectly. Nevertheless,
the absolute numbers are impressive given that the algorithm
runs for either 270 min (NSFNET) or 80 min (GEANT2).
There are also several trends that can be observed from the
tables. First, the algorithm explores a larger number of permu-
tations when it cannot reach an optimal solution, as in this case
it runs for the entire allotted time T, whereas it terminates as
soon as it finds an optimal solution (i.e., one equal to the lower

Table 2. Number of Permutations Explored, NSFNET

Reached LB Did Not Reach LB

Traffic Depth-0 Depth-1 Depth-0 Depth-1

Uniform 9.9E+ 109 7.4E+ 114 8.9E+ 116 3.0E+ 120
Skewed low 3.9E+ 124 2.4E+ 130 9.9E+ 126 2.6E+ 127
Skewed high 1.0E+ 93 5.7E+ 109 2.9E+ 108 2.0E+ 116

Table 3. Number of Permutations Explored, GEANT2

Reached LB Did Not Reach LB

Traffic Depth-0 Depth-1 Depth-0 Depth-1

Uniform 2.4E+ 289 1.9E+ 320 2.5E+ 363 9.2E+ 409
Skewed low 4.2E+ 305 9.0E+ 325 9.9E+ 518 5.7E+ 475
Skewed high 7.5E+ 286 6.6E+ 199 7.9E+ 384 2.2E+ 327

bound), usually well before time T. Second, the algorithm
also explores a larger number of solutions under the Depth-1
strategy compared to the Depth-0 strategy. Since the Depth-
1 strategy yields better solutions, the algorithm determines
earlier (i.e., closer to the root) that a subtree does not contain
better solutions, and hence, it eliminates larger subtrees with
a larger number of poor solutions. Finally, the algorithm eval-
uates a number of permutations in the GEANT2 topology
that is orders of magnitude greater compared to that for the
NSFNET topology, despite the fact that the running time for
the former is shorter. Again, this is due to the fact that the sub-
trees eliminated in the GEANT2 case are far larger than those
eliminated in the NSFNET case: the height of the GEANT2
tree is 496, whereas the height of the NSFNET tree is only 91.

3. Time to Best Solution

Figures 9 and 10 provide insight into the running time of
the algorithm for the two networks. Specifically, the figures
plot the minimum, median, average, and maximum time (in
seconds) that the algorithm takes to reach the best solution
it can find (i.e., the one that it returns upon termination) for
each of the two parallelization strategies; all values have been
rounded to the nearest integer. For the NSFNET, the algo-
rithm takes a median of 4 s or 5 s, depending on the strategy,
to find the best solution. For the Depth-0 strategy, it takes the
algorithm at most 77 s to find the best solution across all 300
instances; the rest of the time, the algorithm explores regions
of the permutation space that do not contain better solutions.
For the Depth-1 strategy that yields lower solutions, it takes
about 25 min in the worst case to find the best solution for a
handful of outlier instances. In the GEANT2 case, the median
is around 42 s for both strategies and all three traffic distribu-
tions, and the maximum is around 42 min. In other words, the
algorithm finds the best solution rather quickly even for the
larger GEANT2 network, and the parallel threads spend most
of their time exploring unfavorable permutations.

Recall that under the Depth-1 strategy, each batch of threads
runs only for a small amount of time, namely, 1 min, and
yet this strategy outperforms the Depth-0 strategy in which
each batch runs for a significantly longer amount of time.
The results shown in Figs. 9 and 10 offer a likely explanation
for this outcome. Specifically, given that the algorithm finds
good solutions within seconds regardless of the parallelization
strategy, it does not pay off to continue the search within the
same area of the solution space for a long time. Each thread in
the Depth-0 strategy spends a significant amount of time in the
same solution neighborhood, and is trapped at a local mini-
mum. Since the total number of threads at Depth-0 is relatively
small (i.e., equal to K ), the strategy cannot explore many
diverse parts of the solution space. With the Depth-1 strategy,
on the other hand, each thread spends a small amount of time
in its region of the space, just enough to find a good solution
if one exists. Since the number of threads is significantly larger
and they start lower in the tree, they cover many more parts of
the permutation space and, hence, the strategy is able to find
better solutions that the Depth-0 strategy cannot reach. These
findings indicate that, whenever either (1) a large degree of
parallelization is possible or (2) a large amount of total running
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Fig. 9. Time (sec) to reach the best solution, NSFNET.

Fig. 10. Time (sec) to reach the best solution, GEANT2.

time T can be afforded, a parallelization strategy that starts at a
higher depth and has each thread execute for a small amount of
time (1 min or even less) is likely to yield better results.

Overall, our experiments demonstrate that the RFF algo-
rithm explores a vast number of symmetry-free solutions
and yields optimal or near-optimal solutions in seconds for
networks of moderate size. The algorithm is amenable to par-
allelization, and since it simply applies the well-known and
widely adopted FF algorithm, it can be readily implemented in
production environments.

7. CONCLUDING REMARKS

We have presented and evaluated two strategies to parallelize
the execution of the RFF, a symmetry-free optimal algorithm
for the offline SA problem. Our experiments indicate that par-
allel implementations of RFF (1) explore vast amounts of the

solution space, (2) yield solutions at or near the lower bound,
and (3) are able to find good solutions within seconds. Our
current research aims to advance this work in two directions.
First, we plan to explore the potential of RFF in larger-sized
networks by extending the parallelization strategies we devel-
oped to depth 2 or lower of the RFF tree. Second, the RFF
algorithm is quite different from existing solutions to the SA
problem. Therefore, our goal is to use RFF as a starting point
to design new approaches for the more general RSA problem;
one option is to combine RFF with the routing algorithms
we developed in [26,27] so as to tackle large RSA problems
efficiently.
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