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Abstract—The routing and spectrum assignment (RSA)
problem has emerged as the key design and control prob-
lem in elastic optical networks. Distance-adaptive spec-
trum allocation exploits the tradeoff between spectrum
width and reach to improve resource utilization by tailor-
ing themodulation format to the level of impairments along
the path. In this paper, we consider the distance-adaptive
RSA (DA-RSA) problem with fixed alternate routing. We
first show that the DA-RSA problem in networks of general
topology is a special case of a well-studied multiprocessor
scheduling problem. We then leverage insights from the
scheduling theory to 1) present new results regarding
the complexity of the DA-RSA problem and 2) build upon
the list of scheduling concepts to develop a computation-
ally efficient solution approach that is effective in utilizing
the available spectrum resources.

Index Terms—Distance-adaptive routing and spectrum
assignment; Elastic optical networks; Multiprocessor
scheduling; Network design; Spectrum assignment.

I. INTRODUCTION

O ptical networking technologies underlie the delivery
and availability of reliable and survivable Internet

services. As optical transmission speeds approach 1 Tbps,
new technologies, including flexible spectrum switches
and bandwidth-variable transceivers [1], continue to drive
novel capabilities at the optical layer. Elastic optical net-
works [2,3] offer the promise of harnessing the properties
of individual optical devices to deliver novel features and
capabilities at the network scale. Furthermore, using a finer
spectrum granularity than conventional fixed-grid WDM
technology, elastic networks have the potential to efficiently
accommodate the ever-increasing traffic demands by tailor-
ing both the modulation format and spectrum resources to
the data rate and path impairments [2,4].

Elastic optical network technology is in the early stages
of development and/or deployment, yet relevant network
design techniques have been the subject of considerable
research and development activities in recent years.
The routing and spectrum assignment (RSA) problem [5]

addresses the network-wide allocation and management
of spectral resources and is fundamental to the design
and control of elastic optical networks. The objective of
RSA is to assign a spectrum and a physical path to each
demand, so as to optimize spectrum utilization. Several
aspects of the problem have been studied in the literature,
including offline RSA [6,7], online RSA [8,9], distance-
adaptive RSA (DA-RSA) [10,11], fragmentation-aware
RSA (FA-RSA) [12], RSA and traffic grooming [13], and
RSA with restoration [14]; for a recent survey of the litera-
ture, we refer the reader to [5]. Most existing studies
approach the problem using classical network design tech-
niques. Network design problems are notoriously hard, and
optimal methods (e.g., integer programming formulations)
do not scale to the topologies encountered in practice.
This issue is even more pronounced in elastic optical net-
works, as the network designer has to take into account ad-
ditional dimensions, including variable bandwidth demands
(rather than single-wavelength ones, as in fixed-grid WDM)
and tradeoffs in reach versus spectral efficiency.

In this paper, we provide new insights into the structure
of the offline DA-RSA problem by relating it to a well-known
problem of scheduling multiprocessor tasks on dedicated
processors. We also present a computationally efficient sol-
ution approach for mesh (i.e., general topology) networks,
based on list scheduling, that is effective in utilizing the
available spectrum resources. Specifically, the remainder
of the paper is organized as follows. In Section II, we define
DA-RSA with fixed alternate routing and show that this
problem is a special case of a multiprocessor scheduling
problem in which a task may be executed by alternate sets
of processors. Accordingly, we leverage the scheduling theory
to investigate the complexity of the DA-RSA problem (in
Section III) and to develop a list-scheduling algorithm to
solve it (in Section IV). In Section V, we present the results
of an experimental study to evaluate the list-scheduling
algorithm on various network topologies and traffic distribu-
tions, and we conclude the paper in Section VI.

II. DA-RSA IN GENERAL GRAPHS AS A SPECIAL CASE OF

MULTIPROCESSOR SCHEDULING

The concept of distance-adaptive (DA) spectrum alloca-
tion was introduced in [15] to exploit the tradeoff between
reach and spectrum width by tailoring the modulationhttps://doi.org/10.1364/JOCN.9.000456
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format to the level of impairments along the path so as to
improve spectrum utilization. Specifically, for the same data
rate, a high-level modulation format with a low SNR toler-
ance and narrow spectrum may be selected for a short path,
whereas a low-level modulation with a high SNR tolerance
and a wider spectrum may be used for a longer path [11].

We consider the following general definition of the DA-RSA
problemwith fixed alternate routing in elastic optical networks:

• DA-RSA inputs: 1) a directed graph G � �V;A�, where V
is the set of nodes, andA is the set of arcs (directed links),
2) k alternate routes, r1sd;…; rksd, from node s to node d,
where k ≥ 1 is a small integer, 3) a spectrum demandma-
trix T � �tlsd�, such that i) tlsd is the number of spectrum
slots required to carry the traffic from source s to desti-
nation d along the lth route between the two nodes,
l � 1;…; k, and ii) spectrum demands may increase
(but not decrease) with the path length, i.e.,

jrlsdj ≤ jrhsdj ⇒ tlsd ≤ thsd; (1)

where jrlsdj denotes the physical distance of the lth path
between nodes s and d.

• DA-RSA objective: select one of the k possible routes for
each spectrum demand and assign spectrum slots along
all the arcs of this route such that the total amount of
spectra used on any arc in the network is minimized.

• DA-RSA constraints: 1) spectrum contiguity: each de-
mand is assigned contiguous spectrum slots; 2) spectrum
continuity: each demand uses the same spectrum slots
along all arcs of its route; and 3) non-overlapping spec-
trum: demands that share an arc are assigned non-
overlapping parts of the available spectrum.

Now, consider the following multiprocessor scheduling
problem PjsetjjCmax, defined as [16]:

• PjsetjjCmax inputs: a set ofm identical processors; a set of
n tasks; a set setj � fS1

j ;…; Sk
j g of k alternative processor

sets that may execute each task j, where k is an integer;
and the processing time pl

j of task j when it is to be
executed on processor set Sl

j, l � 1;…; k.
• PjsetjjCmax objective: assign one of the k sets of processors
to execute each task, and schedule the tasks so as to min-
imize the makespan Cmax � maxj Cj of the schedule,
where Cj denotes the finish time of task j.

• PjsetjjCmax constraints: 1) no preemption is allowed, 2) all
the processors in the selected set must work on task j
simultaneously, and 3) each processor may execute at
most one task at any given time.

The next two lemmas show that the DA-RSA problem
with fixed-alternate routing in networks of general topol-
ogy is a special case of the PjsetjjCmax scheduling problem.
Lemma 2.1 first shows that DA-RSA transforms to
PjsetjjCmax, and hence, any algorithm for the latter prob-
lem also solves the former. Lemma 2.2 shows by counter-
example that the reverse result is not true, i.e., that there
exist instances of PjsetjjCmax for which there is no corre-
sponding instance of DA-RSA.

Lemma 2.1: DA-RSA with fixed-alternate routing in
mesh networks transforms to PjsetjjCmax.

Proof. Consider an instance of the DA-RSA problem
with fixed-alternate routing on a general directed graph
G � �V;A�, a set of k routes fr1sd;…; rksdg for each source–
destination pair �s; d�, and demand matrix T � �tlsd�;
l � 1;…; k. It is possible to construct an instance of
PjsetjjCmax such that 1) there is a processor i for every
arc in ai ∈ A; 2) there is a task j for each source–
destination pair �s; d�; 3) there is a setj � fS1

j ;…; Sk
j g for

each task j with Sl
j � fi:ai ∈ frlsdgg, where �s; d� is the

source–destination pair corresponding to task j; and
4) the processing time of task j on processor set Sl

j is

pl
j � tlsd; l � 1;…; k. In this transformation, each arc in

the DA-RSA problemmaps to a processor in the scheduling
problem, each spectrum demand to a task, each alternate
route of a demand to one of the alternate processor sets of
the corresponding task, and the number of spectrum slots
along a route of a demand to the processing time of the task
on the corresponding set of processors. Note that, because
of Eq. (1), the processing times of each task j in the
PjsetjjCmax instance will obey this relationship:

jSl
jj ≤ jSh

j j ⇒ pl
j ≤ ph

j : (2)

With this transformation, the spectrum contiguity con-
straint in allocating slots to a demand implies that process-
ing the corresponding task in the constructed scheduling
problem will continue with no preemption. The spectrum
continuity constraint along the arcs of the route taken by
a demand guarantees that all the processors within the
set assigned to a task will execute this task simultaneously.
Also, the non-overlapping spectrum constraint ensures that
a processor works on one task at a time at most.

Finally, the total amount of spectra required for all the
demands, using an arc of graph G in the DA-RSA problem,
is equivalent to the completion time of the last task executed
on the corresponding processor. Accordingly, minimizing the
spectrum use on any arc of the DA-RSA problem is equiva-
lent to minimizing the makespan of the schedule in the cor-
responding problem PjsetjjCmax. ▪

Lemma 2.2: There exist instances of PjsetjjCmax for
which there is no corresponding instance of the DA-RSA
problem with fixed-alternate routing.

Proof. By counter-example. Consider an instance of
PjsetjjCmax with m � 3 processors labeled P1, P2, and P3,
and n � 3 tasks τ1, τ2, and τ3. Each task τj must be executed
by a single set S1

j of processors (i.e., k � 1), as shown in the
following table; the processing time of each task can be
arbitrary:

Task S1
j

τ1 fP1; P2g
τ2 fP2; P3g
τ3 fP1; P3g

The graph of the corresponding DA-RSA instance
would have to consist of three directed links, L1, L2, and
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L3, corresponding to processors P1, P2, and P3, respectively.
Consider task τ1. Since this task must be executed simulta-
neously on processors P1 and P2, the corresponding demand
in the DA-RSA instance must be routed along the two arcs
L1 and L2. Suppose that the path of this demand is
the directed pair of arcs ⟨L1; L2⟩; if the path is the directed
pair of arcs ⟨L2; L1⟩, then similar arguments may be used to
reach the same conclusion. Now consider task τ2. Similarly,
the path of the corresponding demand can be either
a) ⟨L2; L3⟩ or b) ⟨L3; L2⟩. In case (a), the graph of the DA-
RSA instance would have to be the directed three-link chain
network ⟨L1; L2; L3⟩. In case (b), the graph of the DA-RSA
instance would have to be a three-link network in which
links L1 and L3 feed into link L2. Consequently, there is
no feasible path for the spectrum demand corresponding
to the third task τ3 in either graph, as it is not possible
for the traffic on link L1 to continue onto link L3, or vice
versa. Therefore, an instance of DA-RSA does not exist. ▪

III. COMPLEXITY RESULTS

The problemP2jsetjjCmax, in which the number of process-
ors is fixed to m � 2, is NP-hard [17]. Moreover, it has been
shown that, unless P � NP, no constant-ratio polynomial
time approximation algorithm exists for the general problem
PjsetjjCmax [18]. However, since the DA-RSA problem is a
special case of PjsetjjCmax, it is possible that polynomial or
approximation algorithms exist for special topologies or spec-
trum demand matrices. In this section, we present theoreti-
cal results on the complexity of the DA-RSA problem.

Before we proceed, we introduce two definitions. First,
we let KN denote a complete digraph with N nodes.
Since every pair of distinct nodes in KN is connected by
a pair of distinct arcs, one in each direction, the total num-
ber of arcs in the graph is equal toN�N − 1�. Second, in the
context of multiprocessor scheduling, we refer to tasks as
compatible if they can be executed simultaneously, i.e., if
the processor sets assigned to the tasks are pairwise dis-
jointed. We now have the following lemma.

Lemma 3.1: The DA-RSA problem on complete digraphs
KN;N ≥ 2 is solvable in polynomial time.

Proof. From Lemma 2.1, the multiprocessor scheduling
problem instance corresponding to a DA-RSA instance on
KN contains N�N − 1� processors, one for each arc of KN.
Let us select the shortest path (i.e., a direct arc) for each
spectrum demand in the DA-RSA instance. Then, each task
in the scheduling instance is to be executed on its own dis-
tinct processor. Therefore, the problem reduces to that of
scheduling a set of single-processor tasks that are pairwise
compatible. Since all tasks may be executed in parallel, the
makespan of the schedule is equal to the processing time of
the longest task. Recall that all instances of PjsetjjCmax con-
structed from an instance of the DA-RSA problem are such
that the processing times of the tasks satisfy Eq. (2).
Therefore, this makespan is optimal. ▪

Although DA-RSA may be solved in polynomial time on a
complete digraph using shortest-path routing, as the above
lemma implies, the next three results show that there exists

a computational cliff such that slightlymodifying the complete
digraph renders the problem intractable. Specifically, we
prove that the DA-RSA problem on general topologies derived
by deleting arcs from a complete digraph is NP-complete.

Theorem 3.1: DA-RSA on a digraph K 0
4 obtained by de-

leting the two arcs1 between any pair of nodes of K4 is
NP-complete.

Proof. Consider the four-node digraph K 0
4 obtained from

K4 after removing the two arcs between nodes 1 and 3, as
shown in Fig. 1; note that, because of symmetry, the proof
holds if the arcs between any pair of nodes ofK4 are removed.
Let f1; 2; 3; 4; 5; 10;20;30; 40;50g represent the ten arcs of this
network, as labeled in the figure. Following the transforma-
tion described in Lemma 2.1, we transform an instance of
DA-RSA on digraph K 0

4 to an instance of PjsetjjCmax with
m � 10 processors, and we represent each processor using
the same label as the corresponding arc of K 0

4.

Let P4 represent the set of PjsetjjCmax instances corre-
sponding to DA-RSA instances defined on digraph K 0

4.
By construction, each DA-RSA instance on K 0

4 transforms
to a unique instance of P4 and, therefore, the reverse is also
true, i.e., each instance of P4 transforms back to a unique
instance of DA-RSA on K 0

4. We now show that the schedul-
ing problem P4 is NP-complete; since P4 transforms to DA-
RSA on K 0

4, the latter problem is NP-complete as well.

The proof is by reduction from the PARTITION problem
[19], which is defined as follows:

Definition 3.1 (PARTITION): Given a set of k integers
A � fa1; a2;…; akg, such that B � Pk

j�1 aj, does there exist
a partition of A into two sets, A1 and A2, such
that

P
aj∈A1

aj �
P

aj∈A2
aj � B

2 ?

Given an instance of PARTITION, we create an
instance of P4 with the ten processors labeled
f1;2;3;4;5;10;20; 30;40;50g, as shown in Fig. 2. Specifically,
for each aj ∈ A, we create a task τj with processing time
pj � aj and setj � ff2g; f5; 30g; f10;40;30gg. Furthermore, we
create the eleven tasks listed in Table I.

Each task created for the P4 instance corresponds to a de-
mand between a pair of nodes in theDA-RSAproblem onK 0

4.
For instance, consider task Ta in Table I. Referring to Fig. 1,
task Ta corresponds to a demand from node 1 to node 4
in K 0

4, and the three alternate sets of processors for the
task (i.e., the sets in the third column of the first row in
Table I) correspond to the three paths from 1 to 4 in K 0

4,
i.e., ⟨40⟩, ⟨1; 5⟩, and ⟨1; 2; 3⟩, respectively. Also, since the
processing time of each task is independent of the set of pro-
cessors on which the task is executed, Eq. (2) is satisfied.

If set A can be partitioned into A1 and A2 such thatP
aj∈A1

� P
aj∈A2

� B∕2, then there exists a feasible sched-
ule for the P4 problem, as shown in Fig. 2 with Cmax � 3B.
This schedule is also optimal since its makespan is equal to
the processing time of the longest task.

1In typical telecommunication networks, two nodes are directly connected
using two links, one in each direction. Hence, in this and the next theorem,
we only consider the case of removing both arcs between a pair of nodes.
Although it is possible to extend the results to the case of deleting one
arc at a time, we will consider this task in future works.
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Conversely, suppose that there exists a feasible schedule S
withCmax ≤ 3B. Since tasks T5, Te, and Tf have lengths equal
to 3B, they must be executed in parallel, i.e., they must be as-
signed to processor sets that are pairwise disjointed. Specifically,
assigning T5 on either of its two-processor sets would create a
schedule of length longer than 3B; hence, it must be executed
on processor 50, as shown in Fig. 2. As a result,Te andTf must

be scheduled on processor sets f20;10g and f40;30g, respectively.
Given this assignment, the five processors 10; 20;30;40, and 50

are busy in the interval �0; 3B�. Therefore, the remaining
tasks must be executed on processors 1, 2, 3, 4, and 5 to guar-
antee that the length of the schedule Cmax ≤ 3B.

We also note that the processing time of T4 is 5B∕2,
so this task must be executed on processor 5 to ensure that
the makespan does not exceed 3B. Consequently, Tb is the
only task that can be scheduled on processor set f4;5g to
keep Cmax ≤ 3B. In turn, this observation implies that task
Ta must be executed on set f1;2;3g.

Without loss of generality, suppose Ta is executed before
Td in schedule S; otherwise, similar arguments can be used
to reach the same conclusion. Among the remaining tasks
compatible with Ta, Tb is the only one thatmust be executed
in parallel with Ta to yield a makespan of no more than 3B.
Next, tasks T3 and T4 must be scheduled immediately after
the completion ofTb. As Ta completes at timeB, earlier than
T3, tasks T1 and T2 must be scheduled right after Ta;
otherwise, the schedule length would be greater than 3B.
Similarly, as soon as T1 and T3 complete at time 3B∕2,
Tc must be executed in parallel with T2 and T4. Finally,
we observe that Td must start at time 5B∕2 to ensure that
themakespan does not exceed 3B. The corresponding sched-
ule of tasks is shown in Fig. 2 and is such that only the in-
tervals �B;3B∕2� and �5∕2B;3B� can be used to execute the
PARTITION jobs. Thus, a partition of setA, i.e., a solution to
the PARTITION problem, exists. ▪

Theorem 3.1 shows that removing the two arcs between
any pair of nodes ofK4 renders the DA-RSA problem on the
resulting graph K 0

4 NP-complete. The following theorem
shows that removing two pairs of arcs from K5 yields
a problem that is also NP-complete.

Theorem 3.2: DA-RSA on a digraph K 0
5 obtained by

deleting the two arcs between any two pairs of nodes of
K5 is NP-complete.

Proof. The two pairs of nodes in K5 whose arcs are re-
moved may or may not have one node in common. We in-
vestigate each of these cases separately.

Figure 3(a) illustrates the digraph K 0
5 after removing the

two arcs between nodes 1 and 3 and nodes 2 and 4. Consider a
DA-RSA instance in which the spectrum demands to and

Fig. 2. Feasible schedule with Cmax � 3B for the P4 problem in-
stance of Theorem 3.1.

TABLE I
TASKS CREATED IN THE TRANSFORMATION OF PARTITION P4

Task j pj setj

Ta B ff40g; f1; 5g; f1;2; 3gg
Tb B∕2 ff10g; f5; 4g; f2;3; 4gg
Tc B ff30g; f50; 2g; f4; 1; 2gg
Td B∕2 ff20g; f3;50g; f3; 4; 1gg
Te 3B ff3;4g; f20;10g; f20; 5;4g; f3; 50; 10gg
Tf 3B ff1;2g; f40;30g; f1; 5; 30g; f40;50; 2gg
T1 B∕2 ff1g; f40; 50g; f40;30; 20gg
T2 3B∕2 ff3g; f20; 5g; f20;10; 40gg
T3 B ff4g; f50; 10g; f30;20; 10gg
T4 5B∕2 ff5g; f2; 3g; f10; 40gg
T5 3B ff50g; f4; 1g; f30; 20gg

Fig. 1. Digraph K 0
4 obtained after removing the two arcs between

nodes 1 and 3 from K4.

(a) (b)

5

4

2

3

1

5

2

3

1

4

Fig. 3. DigraphK 0
5 created fromK5 by removing two pairs of arcs:

(a) arcs between nodes 1 and 3 and nodes 2 and 4 (i.e., with no
common node) and (b) arcs between nodes 1 and 3 and nodes 1
and 5 (i.e., with one common node).
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from node 5 are very large, i.e., tl5j � tlj5 � M; j � 1;…; 4,
where M is a large number. In this case, an optimal solution
must be such that 1) all these large demands must be routed
across the corresponding direct arc and 2) the arcs that carry
the large demands are not used to carry any other traffic. The
DA-RSA problem for the remaining node pairs �i; j�; i; j �
1;…;4; i ≠ j, is equivalent to the DA-RSA on a four-node bidi-
rectional ring. In an earlier work [20], we showed that the
RSA problem on four-node bidirectional rings is NP-
complete; since RSA is a special case of DA-RSA, the latter
is also NP-complete on rings with four or more nodes.

Now consider the case where the two pairs of nodes inK5

whose arcs are removed have one node in common. Let
node 1 be the common node. If we remove the two arcs be-
tween nodes 1 and 5 and nodes 1 and 3, the result will be
the digraph K 0

5 shown in Fig. 3(b); due to symmetry, this
proof applies to any node as the common node and any
other two nodes for removing arcs. Let the spectrum de-
mands to and from node 5 in Fig. 3(b) be very large, i.e.,
tl5j � tlj5 � M; j � 2;…; 4. As we observed in the previous
case, these large demands must use the direct arcs to/from
node 5, and in turn, these direct arcs may not be used to
carry other traffic. DA-RSA for the remaining demands
is defined on a digraph identical to the one in Fig. 1, a prob-
lem we proved to be NP-complete in Theorem 3.1. ▪

We now provide the following complexity result for the
DA-RSA problem on general graphs.

Lemma 3.2: Let G be a digraph. If there exists a vertex-
induced subgraph of G that is a ring of four or more nodes,
then the DA-RSA problem on G is NP-complete.

Proof. Let R be a vertex-induced subgraph of G that is a
ring of four or more nodes. Consider an instance of DA-RSA
on G with the following spectrum demands: 1) arbitrary,
between nodes of subgraph R; 2) equal to a large number,
M, between adjacent nodes not in the subgraph R; and 3)
equal to zero, between non-adjacent nodes not in the sub-
graph R. Similar to the observations in the previous theo-
rem, in the optimal solution, each arc ofG that is not part of
the subgraph R only carries the traffic between directly
connected nodes. Hence, this instance reduces to a DA-
RSA subproblem on ring R with four or more nodes, which,
according to the results in [20], is NP-complete. ▪

Note that typical telecommunications networks are con-
nected; hence, they are highly likely to include subgraphs
that are rings and satisfy the condition of the above lemma.
For instance, all three topologies in Figs. 4–6 that we use
for our experimental study have this property.

IV. LIST-SCHEDULING ALGORITHM FOR PmjsetjjCmax

In this section, we propose a list-scheduling (LS) algo-
rithm for the PmjsetjjCmax problem. Since DA-RSA is a spe-
cial case of PmjsetjjCmax, this algorithm can be used to
solve the DA-RSA problem in networks of general topology.
This is accomplished in three steps: 1) the DA-RSA in-
stance at hand is first transformed to an instance of
PmjsetjjCmax following the process described in Lemma
2.1, 2) the LS algorithm is applied to construct a schedule
that solves the scheduling instance, and 3) the schedule is
transformed back to a solution of the DA-RSA instance.

The input to the LS algorithm is a list of tasks L, along
with their corresponding k alternate sets of processors.
Tasks in the list are sorted in decreasing order of the
processing time on their smallest processor set; ties are
broken by the size (i.e., the number of processors) of their
smallest processor set, and further ties are broken arbitrar-
ily. For each task, its alternate processor sets are sorted in
increasing order of their size.

0
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2

3

5

4

6

7

8

9

10

13

11

12

Fig. 4. NSFNet topology.
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Fig. 5. GEANT2 topology.

Fig. 6. 60-node network topology derived from the CORONET
CONUS.
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At each scheduling instant t, the algorithm scans the list
L to find the first task j and processor set Sl

j that is compat-
ible with the tasks already executing at this time t. This set
Sl
j of processors is selected to execute task j starting at time

t, and the algorithm removes the task from L. The algorithm
updates the set of free processors at time t and continues
scanning list L, repeating the above process until no other
compatible task is found. Then, the algorithm advances t to
the earliest time t0 > t at which one of the currently execut-
ing tasks will be completed, releases the set of processors
assigned to the just-completed task, and repeats the above
actions for time t0. The algorithm continues in this manner
until all tasks in list L have been scheduled.

A pseudocode description of the LS algorithm is provided
in Fig. 7. Both the outer and inner while loops of the algo-
rithm take at most O�n� time in the worst case, where n is
the number of tasks in the scheduling problem. Both for
loops take time O�k� in the worst case, where k is the num-
ber of alternate processor sets. Therefore, the running time
complexity of the LS algorithm isO�kn2�. Since the number
of tasks corresponds to the number of spectrum demands,

the complexity of the algorithm when applied to the DA-
RSA problem is O�kN4�, where N is the number of nodes
and k is the number of alternate paths.

V. NUMERICAL RESULTS

We have evaluated the performance of the LS algorithm
by carrying out simulation experiments with a large num-
ber of DA-RSA problem instances. Each problem instance
is characterized by three parameters: 1) the network top-
ology, 2) the number k of shortest paths for each source–
destination pair, and 3) a randomly generated spectrum
demand matrix.

A. Topology and Shortest Paths

In our evaluation study, we have used three general top-
ology networks of varying sizes and average nodal degrees:

• the 14-node, 42-arc (directed link) NSFNet shown
in Fig. 4;

• the 32-node, 108-arc GEANT2 topology depicted in
Fig. 5; and

• the 60-node, 154-arc network topology illustrated in
Fig. 6 and adapted from CORONET CONUS [21].

We used Yen’s algorithm [22] to compute the k loop-less
shortest paths, k � 1;…;7, between each pair of nodes in
each topology. Yen’s algorithm takes time O�N3�, where
N is the number of nodes. For the experiments we present
in this section, we assumed that all links have unit weight
for the purposes of computing the shortest paths.

B. Spectrum Demand Matrix

For each DA-RSA problem instance, we randomly gener-
ate a spectrum demandmatrix in two steps: traffic demand
generation and DA spectrum allocation.

1) Traffic Demand Generation:We assume that the elastic
optical network supports the following data rates (in
Gbps): 10, 40, 100, 400, and 1000. Therefore, in the first
step, the traffic rates between every pair of nodes are
drawn from one of three probability distributions:

• Distance-independent: each value in the set
f10; 40;100;400;1000g is selected with equal probability.

• Distance-increasing: the probability assigned to each
value in the set f10;40; 100; 400;1000g depends on the
length of the shortest path between the source and des-
tination nodes, such that the probability of higher values
in the set increases with the length of the shortest path.

• Distance-decreasing: the probability assigned to higher
values in the set f10;40; 100;400;1000g decreases with
the length of the shortest path between the source and
destination nodes.

2) Distance-Adaptive Spectrum Allocation: In the second
step, we determine the number tlsd of spectrum slots

Fig. 7. LS algorithm to select one set Sj and its corresponding
processing time pj to execute each task j of thePmjsetjjCmax problem.
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required for the traffic demand to be carried on the lth
alternate path, l � 1;…; k, from source s to destination
d. In DA spectrum allocation, the number of slots de-
pends on both the data rate and the length of the path
[2,15]. We adopt the parameters of the study in [15] and
assume a slot width of 12.5 GHz and three modulation
formats:

• Paths with up to 4 links: the 64-QAM modulation format
is used such that data rates of 10, 40, 100, 400, and
1000 Gbps require 1, 1, 2, 6, and 14 spectrum slots,
respectively.

• Paths with 5–9 links: the 16-QAMmodulation format ap-
plies, such that rates of 10, 40, 100, 400, and 1000 Gbps
are assigned 1, 1, 2, 8, and 20 slots, respectively.

• Paths with 10 or more links: the QPSK modulation for-
mat is utilized, and data rates of 10, 40, 100, 400, and
1000 Gbps are allocated 1, 2, 4, 16, and 40 spectrum slots,
respectively.

C. Evaluation Metrics

The first metric we consider is the maximum number of
spectrum slots on any link in the network required by the
solution to a DA-RSA problem instance obtained by the LS
algorithm. We denote this value as MaxSlotsLS; as the
reader may recall, this value is equivalent to the length
of the schedule constructed by the LS algorithm for the cor-
responding scheduling problem instance. This metric can
provide insight into the impact of the number k of alternate
paths or the traffic rate distribution on the use of spectrum
resources in the network.

In order to evaluate the quality of the LS algorithm, and
since the optimal solution cannot be obtained in polynomial
time, it is important to compute a lower bound (LB). LetDin

q

and Dout
q denote the in- and out-degrees of node q. A simple

LB for the DA-RSA problem can be calculated as follows:

LB � max
�
max

s

X
d

tsd∕Dout
s ;max

d

X
s

tsd∕Din
d

�
; (3)

where tsd in the above expression is the spectrum demand
for the traffic from s to d along the shortest path between
the two nodes. The metric we use to characterize the LS
algorithm is the ratio

R � MaxSlotsLS∕LB: (4)

Clearly, R ≥ 1.0; the closer R is to 1.0, the better the per-
formance of the algorithm. We note, however, that the LB
in Eq. (3) only considers the spectrum demands in and out
of each node and does not account for the interactions of
these demands along the links of the network; therefore,
we expect the bound to be loose.

The figures we present in the next section report the
average values for either MaxSlotsLS or R. Specifically,
each data point on these figures is the average of 10 rep-
lications of a random experiment; in turn, each replication
is the average of 30 random instances generated for the

stated parameters (i.e., topology, number k of paths, and
traffic rate distribution). The figures also report 95% con-
fidence intervals, which can be seen to be narrow.

D. Results and Discussion

The three Figs. 8–10 plot the maximum number of
spectrum slots, MaxSlotsLS, as a function of the number
k of alternate paths, for the NSFNet, GEANT2, and 60-
node topologies, respectively. Each figure includes three
curves, each representing results for problem instances
with spectrum demand matrices generated by the dis-
tance-independent, distance-increasing, and distance-
decreasing distributions, respectively.

We first observe that the amount of spectrum increases
with the size of the network, reflecting the corresponding
increase in traffic demands due to the larger number of
source–destination pairs. Nevertheless, the overall behav-
ior of the curves is consistent across the three traffic distri-
butions and network topologies. Specifically, the amount
of spectrum resources is high for shortest-path routing
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(k � 1) but drops sharply (between 20% and 50%, depend-
ing on the distribution and topology) when demands may
be routed along one of k � 2 alternate paths. As the num-
ber k of alternate paths increases further, the number of
spectrum slots decreases more slowly and eventually levels
off, indicating the diminishing returns of employing each
additional path.

A final observation from the three figures is that the
solution to the DA-RSA problem is highly sensitive to the
traffic demand distribution. Specifically, everything else
being equal, the distance-increasing distribution requires
more spectrum than the distance-independent distribution,
which, in turn, is more resource-intensive than the distance-
decreasing distribution. This result can be explained by the
fact that demands between nodes that are far away from
each other consume more spectral resources in the network
than the same demands between two nearby nodes due to
1) the larger number of links in the paths they travel and
2) the wider spectrum that is required to carry the demand
if the length of its path crosses the threshold into a lower-
level modulation with a high SNR tolerance.

Let us now turn our attention to the three Figs. 11–13,
which plot the average ratio R in Eq. (4) against the num-
ber k of paths for each of the three network topologies;
again, each figure includes three plots, one per demand dis-
tribution. Note that the LB in Eq. (3) is independent of the
number k of alternate paths for each demand. Since the
number of required slots, MaxSlotsLS, decreases with k,
as seen in the previous three figures, we expect R to de-
crease as well, and this is exactly what we observe in
Figs. 11–13.

Nevertheless, there is an important difference between
the three figures that plot the absolute value of spectrum
slots required and the ones that show the average ratio.
Specifically, we observe that there are significant gaps
between the various curves in each of Figs. 8–10 which,
as we explained above, are due to the combined effects
of the demand distribution and DA spectrum allocation.
On the other hand, the curves of the various distributions
in Figs. 11–13 are closer to each other, and the average ra-
tios of the three distributions converge to similar values.
Recall that the LB in Eq. (3) depends on the demands in
and out of each node in the network, and hence, it depends
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on the traffic distribution. Therefore, the behavior of the
curves in Figs. 11–13 is a strong indication that, for the
topologies and distributions we considered in this study,
the LS algorithm is capable of exploiting alternate paths
to construct solutions that move towards the LB, regard-
less of the absolute value of the spectrum slots required
in each problem instance.

Finally, we note that the average ratio of the LS algo-
rithm increases with the size of the network, from around
1.8 for the NSFNet to around 2.7 for GEANT2 and about 5
for the 60-node network (these ratio values are for the larg-
est number of alternate paths shown in the figures). This
increase is partly due to the heuristic nature of the LS al-
gorithm: as the size of the problem increases, the size of the
solution space increases exponentially, whereas the set of
solutions examined by the algorithm increases polyno-
mially; hence, the probability of finding good-quality solu-
tions decreases. However, we argue that a significant part
of the increase in the ratio is due to the increase in the gap
between the LB and optimal solution as the network size
increases. In particular, as the network size grows, the
spectrum allocation is affected by the interaction of an in-
creasing number of traffic demands over an increasing
number of paths and links. Since Eq. (3) for the LB does
not account for these interactions, we expect that LB be-
comes looser and further disconnected from the optimal.
Therefore, we conjecture that the LS algorithm performs
significantly better relative to the LB than Figs. 11–13 sug-
gest, especially for the GEANT2 and 60-node networks.

Overall, the results in this section indicate that the
LS algorithm is effective in using a small number of alter-
nate paths (i.e., k � 5; 6) to utilize spectrum resources
efficiently by balancing the traffic demands across the net-
work links.

VI. CONCLUDING REMARKS

We have shown that the distance-adaptive routing and
spectrum assignment (DA-RSA) problem with fixed alter-
nate routing in mesh networks transforms to a well-known
processor scheduling problem. We have also developed a
computationally efficient algorithm that builds upon list-
scheduling concepts to jointly tackle the RSA aspects of
DA-RSA. Our work explores the tradeoffs involved in
DA-RSA algorithm design and opens up new research di-
rections in leveraging the vast literature in scheduling
theory to address important and practical problems in net-
work design.
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