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Clustering Methods for Hierarchical
Traffic Grooming in Large-
Scale Mesh WDM Networks
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Abstract—We consider a hierarchical approach for
traffic grooming in large multiwavelength networks
of a general topology. Inspired by similar concepts in
the airline industry, we decompose the network into
clusters, and select a hub node in each cluster to
groom traffic originating and terminating locally. At
the second level of the hierarchy, the hub nodes form
a virtual cluster for the purpose of grooming intra-
cluster traffic. Clustering and hierarchical grooming
enables us to cope with large network sizes and facili-
tates the control and management of traffic and net-
work resources. Yet, determining the size and compo-
sition of clusters so as to yield good grooming
solutions is a challenging task. We identify the
grooming-specific factors affecting the selection of
clusters, and we develop a parameterized clustering
algorithm that can achieve a desired trade-off among
various goals. We also obtain lower bounds on two im-
portant objectives in traffic grooming: the number of
lightpaths and wavelengths needed to carry the sub-
wavelength traffic. We demonstrate the effectiveness
of clustering and hierarchical grooming by present-
ing the results of experiments on two network topolo-
gies that are substantially larger than those consid-
ered in previous traffic grooming studies.

Index Terms—Optical networking; Traffic
grooming; Network design; Resource provisioning;
Hierarchical grooming; Routing; Control plane
algorithms; Large networks.

I. INTRODUCTION

O ngoing advances in optical network and commu-
nication technologies continue to expand the ca-

pacity of individual wavelengths and increase the
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vailability of wavelength channels for direct optical
onnections. Traffic grooming, the area of research
oncerned with efficient and cost-effective transport of
ubwavelength traffic over multigranular networks,
as emerged as an important field of study in recent
ears. In static grooming [1], the objective is to provi-
ion the network to carry a set of long-term traffic de-
ands while minimizing the overall network cost; the

atter is typically taken as the number of electronic
orts needed to originate and terminate the set of
ightpaths in the logical topology. In dynamic groom-
ng [2], on the other hand, the goal is to develop online
lgorithms for efficiently grooming and routing of con-
ections that arrive in real time. The reader is re-

erred to [3] for a comprehensive survey and classifi-
ation of research on traffic grooming.

Early work on traffic grooming focused on the ring
opology [1,4,5], reflecting the technological push in
esponse to the industry’s effort to upgrade the de-
loyed SONET infrastructure to WDM technology.
ore recently, several studies have begun to address

rooming issues in networks with a general topology
6–10]. Nevertheless, most studies regard the network
s a flat entity for the purposes of lightpath routing,
avelength assignment, and traffic grooming. In gen-
ral, such approaches do not scale well to networks of
ealistic size for two reasons: first, the running-time
omplexity of traffic grooming algorithms increases
apidly with the size of the network, and second, the
peration, management, and control of multigranular
etworks becomes a challenging issue in large, un-
tructured topologies.

We have recently proposed a scalable hierarchical
ramework for traffic grooming that can be applied to
etworks of practical size covering a national or inter-
ational geographical area [11]. In our model, the net-
ork is organized in a hierarchical manner to facili-

ate the control and management of resources (e.g.,
rooming ports and wavelengths) and to ensure the
calability of grooming algorithms and functionality.
he model borrows ideas from the hub-and-spoke
aradigm used within the airline industry. The net-
ork is partitioned into clusters, and one node within
2010 Optical Society of America
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each cluster is selected as the hub. Nonhub nodes
route all their traffic to the hub, where it is groomed
before it is forwarded to the destination cluster; as a
result, the hub is the only node in a cluster respon-
sible for grooming traffic not originating or terminat-
ing locally. At the second level of the hierarchy, the
first-level hubs form another cluster for grooming and
routing intercluster traffic. This hierarchical ap-
proach is quite scalable, can be used directly for net-
works with tens or even hundreds of nodes, and is ap-
plicable to both static and dynamic grooming contexts.

One important yet challenging issue in the hierar-
chical grooming approach is the selection of clusters
and hub nodes. Although clustering techniques are
used in a wide range of network design problems,
there is little work related to traffic grooming; we
present a survey in Section IV. Therefore, we develop
a new parameterized clustering algorithm appropri-
ate for traffic grooming. The algorithm is flexible and
allows the network designer to achieve a desired bal-
ance among a number of conflicting goals. We also de-
velop lower bounds on two metrics of importance, the
number of lightpaths and wavelengths needed for the
static grooming problem. To demonstrate the effec-
tiveness of the clustering and hierarchical grooming
algorithms, we apply them to two large networks, in-
cluding a 128-node, 321-link topology corresponding
to a worldwide backbone network; the latter is ap-
proximately an order of magnitude larger than net-
works that have been considered in previous grooming
studies.

Following the introduction, we describe the hierar-
chical grooming approach in Sections II and III. In
Section IV we discuss clustering methods in general,
and in Section V we present and analyze our cluster-
ing algorithm for hierarchical grooming in general to-
pologies. We obtain lower bounds in Section VI, and
present numerical results on various network topolo-
gies and traffic patterns in Section VII. We conclude
the paper in Section VIII.

II. HIERARCHICAL GROOMING IN MESH NETWORKS

We consider a network of general topology with N
nodes. Physical links are bidirectional and support W
wavelengths per direction. The capacity C of each
wavelength channel is an integer multiple of a basic
transmission unit (e.g., OC-3); C is also known as the
grooming factor. The demands placed on the network
are provided in a traffic demand matrix, T= �t�sd��,
where integer t�sd� denotes the amount of (forecast)
long-term traffic to be carried from node s to node d.
Although the traffic demands may change over time,
we assume that such changes take place over longer
time scales; hence, for the rest of the paper we assume
hat the traffic matrix is fixed. We also allow the traf-
c demand between any pair of nodes to exceed the ca-
acity of a wavelength.

The objective of the traffic grooming problem is to
onfigure the network (i.e., determine the lightpaths
o be set up) to carry the entire traffic matrix T while
inimizing the total number of electronic ports re-

uired at the network nodes. Since each lightpath re-
uires exactly two electronic ports (one at the node at
ach end of the lightpath), this objective is equivalent
o minimizing the number of lightpaths in the result-
ng logical topology. For a more formal definition of
he problem and a general-purpose integer linear pro-
ramming (ILP) formulation, the reader is referred
o [3].

The traffic grooming problem in general topology
etworks has long been known to be NP-hard, since it
ontains as a subproblem, the lightpath routing and
avelength assignment (RWA) problem, which is it-

elf NP-hard [12]. Furthermore, our earlier work
13,14] has shown that traffic grooming remains in-
ractable even in simple network topologies, such as
aths and stars, for which the RWA subproblem can
e solved in polynomial time. Consequently, for WDM
etworks with more than a few nodes, it is important
o develop heuristic algorithms that are scalable and
an be used to obtain provably good solutions in poly-
omial time.

Our framework for hierarchical traffic grooming
as developed for large-scale mesh networks consist-

ng of several tens or even hundreds of nodes, for
hich existing grooming algorithms, especially those
ased on ILP formulations, are not practical. This
ramework was inspired by the hub-and-spoke para-
igm that is widely used by the airline industry. In
ur approach, a large network is partitioned into a
umber of clusters, each consisting of a contiguous
ubset of nodes. The clusters may correspond to inde-
endent administrative entities or may be created
olely for the purpose of simplifying resource manage-
ent and control functions.

In the traffic grooming context, we view each cluster
s a virtual star, and we designate one node as the
ub of the cluster. We refer to each cluster as a virtual
tar because, even though the physical topology of the
luster may take any form (and in fact may be quite
ifferent than a physical star topology), the hub is the
nly node responsible for grooming intracluster and
ntercluster traffic. Consequently, hub nodes are ex-
ected to be provisioned with more resources (e.g.,
arger number of electronic ports and higher switch-
ng capacity for grooming traffic) than nonhub nodes.
eturning to the airline analogy, a hub node is similar

n function to airports that serve as major hubs; these
irports are typically larger than nonhub airports, in
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terms of both the number of gates (“electronic ports”)
and physical space (for “switching” passengers be-
tween gates).

Our hierarchical framework consists of three
phases:

1) Clustering of network nodes. In this phase,
the network is partitioned into m clusters, and
one node in each cluster is designated as the
hub. The clustering phase is crucial to the qual-
ity of the grooming solution. In particular, we
have found that the selection of cluster size and
hub nodes, as well as the existence of critical cut-
ting edges in the network topology, has a pro-
found effect on the number of lightpaths and
wavelengths required for the final solution. We
discuss related work on clustering techniques in
Section IV, and we describe in detail our cluster-
ing algorithm for traffic grooming in Section V.

2) Hierarchical logical topology design and
traffic routing. The outcome of this phase is a
set R of lightpaths for carrying the traffic de-
mand matrix T, and a routing of individual traf-
fic components t�sd� over these lightpaths. This
phase is further subdivided into three parts:
a) setup of direct lightpaths for large traffic de-

mands,
b) intracluster traffic grooming, and
c) intercluster traffic grooming.
This hierarchical approach is discussed in Sec-
tion III.

3� Lightpath routing and wavelength assign-
ment (RWA). The goal of the RWA phase is to
route the lightpaths in R over the physical topol-
ogy and color them by using the minimum num-
ber of wavelengths. The RWA problem on arbi-
trary network topologies has been studied
extensively in the literature [8,9,12,15,16]. In
this work, we adopt the LFAP (longest first alter-
nate path) algorithm [15], which is fast, concep-
tually simple, and has been shown to use a num-
ber of wavelengths that is close to the lower
bound for a wide range of problem instances.

The outcome of the clustering phase is a partition of
the network nodes into some number m of clusters,
denoted B1 , . . . ,Bm, and the selection of one node, de-
noted hi, to serve as the hub for cluster Bi. Consider,
for instance, the 32-node network in Fig. 1. The figure
shows a partition of the network into eight clusters,
B1 , . . . ,B8, each cluster consisting of four nodes. These
clusters represent the first level of the hierarchy.
Within each cluster, one node is the hub; for instance,
node 2 is the hub for cluster B1. At the second level of
the hierarchy, we view the hub nodes of the eight first-
level clusters as forming another cluster, and we se-
lect one of these nodes as the hub node of this second-
level cluster. We emphasize that, while we view each
luster as a virtual star, the actual physical topology
f the cluster is determined by the physical topology of
he part of the original network where the cluster
odes lie; for example, the four nodes of cluster B8

orm a ring. Since the RWA algorithm is performed on
he underlying physical topology after the logical to-
ology has been determined, the lightpaths will follow
he most efficient paths in the network and are not
onstrained to go through the hub, as is the case for a
hysical star. Consider, for example, cluster B8 with
ode 32 as its hub. Suppose that the logical topology
n the corresponding virtual star with node 32 as the
ub includes the one-hop lightpath (28, 32) and the
wo-hop lightpath (31, 28). After running the RWA al-
orithm, the one-hop lightpath may be routed over the
ath 28–30–32 (since node 28 is not directly connected
o the hub node 32 of the virtual star), while the two-
op lightpath may in fact be routed over the direct

ink 31–28, completely bypassing the hub node 32 (un-
ike a physical star, where a two-hop lightpath is op-
ically switched at the hub). Similar observations ap-
ly to all clusters at both levels of the hierarchy.

III. HIERARCHICAL LOGICAL TOPOLOGY DESIGN

Suppose that the network has been partitioned into
clusters Bi with corresponding hub nodes hi, i

1, . . . ,m; we will describe such a clustering algo-
ithm shortly. Our objective is to determine the logical
opology and associated routing of the traffic demands
�sd� that minimizes the number of lightpaths; a sec-
ndary but important objective is to keep the number
f required wavelengths low. The hierarchical logical
opology algorithm we outline in this section reflects
he two-level cluster hierarchy we described in the
revious section and sets up lightpaths in a sequence
f three steps, each step dealing with a different type
f traffic demand: large demands, intracluster traffic,
nd intercluster traffic.

First−level clusters with hubs forming a second level
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ig. 1. (Color online) 32-node WDM network, partitioned into
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orm a (logical) second-level cluster with hub 11.
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A. Setup of Direct Lightpaths for Large Traffic
Demands

Some elements of the traffic demand matrix may be
large enough to utilize the whole capacity of one or
more wavelengths. For such demands t�sd�, we simply
assign as many direct lightpaths as necessary to carry
them even if nodes s and d belong to different clusters.
Given our goal of minimizing the total number of
lightpaths in the logical topology, setting up direct
lightpaths for such traffic is preferable to carrying it
over a series of lightpaths with intermediate stops at
hubs. We call this operation the reduction of the origi-
nal matrix, after which all elements of the matrix will
be smaller than the wavelength capacity C.

In this step, we also apply a “direct to the destina-
tion hub” rule to set up lightpaths between some
source node s and a remote hub h, if the total amount
of traffic from s to destination nodes d in h’s cluster
�dt�sd��p�C, where p� �0.5,1� is a parameter deter-
mined by the network designer; in our work, we let
p=0.8. Setting up such lightpaths for large demands
to bypass the local hub node (i.e., the hub in the clus-
ter of node s) has several benefits: the number of light-
paths in the logical topology is reduced, the number of
electronic ports and switching capacity required at
hub nodes is reduced (leading to higher scalability),
and the RWA algorithm may require fewer wave-
lengths (since hubs will be less of a bottleneck).

Let Rinit be the set of direct lightpaths created in
this step. Let Tr= �tr

�sd�� denote the matrix of residual
traffic demands (i.e., excluding those carried by the
lightpaths in Rinit) that need to be groomed. Obviously,
tr

�sd��C for all s, d.

B. Intracluster Traffic Grooming

Consider the ith cluster Bi with ni nodes and node
hi as its hub. We view cluster Bi as a virtual star with
a ni�ni traffic matrix Ti= �ti

�sd��, defined as

ti
�sd� = �

tr
�sd� s � hi,d � hi

tr
�sd� + �

x�Bi

tr
�sx�

d = hi

tr
�sd� + �

x�Bi

tr
�xd�

s = hi
�. �1�

In other words, if s and d are nonhub nodes, then ti
�sd�

represents the intracluster traffic from s to d. If, on
the other hand, node d (node s) is the hub node, then
ti

�sd� includes not only the intracluster traffic compo-
nent tr

�sd�, but also the aggregate intercluster traffic
originating at node s (terminating at node d). This
definition of ti

�sd�, when either s or d is the hub node,
implements the hierarchical grooming of traffic: all in-
tercluster traffic, other than that carried by direct
ightpaths set up earlier, is first carried to the local
ub, groomed there with intercluster traffic from
ther local nodes, carried on lightpaths to the destina-
ion hub (as we discuss shortly), groomed there with
ther local and nonlocal traffic, and finally carried to
he destination node.

Given traffic matrix Ti= �ti
�sd��, we view cluster Bi as

virtual star with hub hi and ni−1 nonhub nodes. We
pply the StarTopology algorithm described in [14] to
btain the set of lightpaths Ri for carrying the de-
ands �ti

�sd�	. The lightpaths in Ri are either one hop
i.e., from a nonhub node to the hub, or vice versa), or
wo hop (i.e., from one nonhub node to another).
ence, the routing of the traffic components ti

�sd� is im-
licit in the logical topology Ri.

We emphasize that, at this stage, we only identify
he lightpaths to be created; the routing of these light-
aths over the physical topology is performed during
he third (RWA) phase of our approach. Depending on
he actual topology of the cluster Bi, which may be
uite different than that of a physical star, once
outed, the lightpaths in Ri may follow paths that do
ot resemble at all the paths of a physical star. For in-
tance, a one-hop lightpath from a nonhub node of the
luster to the hub hi is routed on the unique link from
he node to the hub in a physical star; in our case,
owever, the path followed by the lightpaths may con-
ist of several links, depending on the physical topol-
gy of the network. Similarly, a two-hop lightpath is
lways switched optically at the hub of a physical
tar; in a virtual star cluster, on the other hand, a two-
op lightpath will be routed by the RWA algorithm on
he actual underlying topology, and its path may not
ven pass through the hub hi at all, if not doing so is
ore efficient in terms of resource usage (e.g., if the

wo nonhub nodes are connected by a direct link).

We perform intracluster grooming in this manner,
y applying the StarTopology algorithm to each clus-
er Bi , . . . ,Bm, in isolation. As a result, at the end of
his step, we identify a set of lightpaths Rintra
R1�R2� ¯ �Rm for carrying all intracluster traffic.

. Intercluster Traffic Grooming

At the end of intracluster grooming, all traffic (other
han that carried by the initial direct lightpaths) from
he nodes of a cluster Bi with destination outside the
luster, is carried to the hub hi for grooming and
ransport to the destination hub. In order to groom
his traffic, we consider a new cluster B that forms the
econd-level hierarchy in our approach. Cluster B con-
ists of the m hub nodes h1 , . . . ,hm, of the first-level
lusters. Let h� �h1 , . . . ,hm	 be the node designated as
he second-level hub. We view cluster B as a virtual
tar with an m�m traffic matrix T = �t�hihj�� repre-
inter inter
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senting the intercluster traffic demands. This inter-
cluster matrix is defined as

tinter
�hihj� = �

s�Bi,d�Bj

tr
�s,d�, i,j = 1, . . . ,m, i � j. �2�

We now apply the StarTopology algorithm (see [14])
to the virtual star B with hub h, and we obtain the set
of lightpaths Rinter to carry the traffic demands �tinter

�hihj�	.
Again, we emphasize that the routing of these light-
paths is performed on the underlying physical topol-
ogy; thus, the same observations regarding the rout-
ing of the intracluster lightpaths above also apply to
the lightpaths in Rinter.

Figure 2 provides a pseudocode description of the
hierarchical logical topology (MeshTopology) algo-
rithm. The time complexity of the algorithm is deter-
mined by the application of the StarTopology algo-
rithm for intracluster and intercluster grooming in
Steps 5–8 and 13, respectively. Since the complexity of
the StarTopology algorithm for a star with n nodes is
O�n2�, it is straightforward to see that the complexity
of the MeshTopology algorithm for a network of N
nodes is O�N2�.

The outcome of the logical topology design phase is
a set of lightpaths R=Rinit�Rintra�Rinter and an im-
plicit routing of the original traffic components t�sd�

over these lightpaths. This set R of lightpaths is the
input to the RWA phase of our framework, which, as

Fig. 2. Hierarchical logical topology algorithm for mesh networks.
e discussed in the previous section, uses the LFAP
lgorithm [15] to route and color the lightpaths.

Finally, we note that we considered only two levels
f clusters in our grooming algorithm. However, for
etworks of very large size, our approach can be ex-
ended to three or more levels of hierarchy in a
traightforward manner.

IV. CLUSTERING ALGORITHMS IN NETWORK DESIGN

Clustering is a function that arises frequently in
roblems related to network design and organization.
classic book [17] defines clustering as “grouping of

imilar objects” and discusses many mainstream clus-
ering algorithms. The algorithms are classified as ei-
her minimum cut or spanning tree, depending on the
nderlying methodology. The input to the algorithms
enerally consist of a set of nodes (objects) and edge
eights (node relationships), while the output is a
artition of the nodes that optimizes a given objective
unction. In our case, the goal is to find a clustering
hat will minimize the number of lightpaths after ap-
lying the hierarchical grooming (logical design) ap-
roach, a fact that adds significant complexity to the
roblem. Specifically, the input to our problem con-
ists of a traffic demand matrix and several con-
traints, in addition to the physical network topology;
urthermore, unlike typical objective functions consid-
red in the literature (e.g., the physical cut size or the
mount of intercluster traffic), ours cannot be easily
xpressed as a function of the resulting clusters.
herefore, most of the existing clustering techniques
re not directly applicable to the problem at hand.

Some clustering studies consider only the communi-
ation (traffic) pattern between nodes. For instance,
n algorithm that can group a nearly completely de-
omposable matrix into blocks, so that the weighted
rcs between blocks have values not exceeding a given
hreshold, was introduced in [18]. The algorithm,
alled TPABLO, can be used to group the states of
arge Markov chains. A similar objective exists in the
raffic grooming context, as it is desirable for traffic
emands within a cluster to be denser than interclus-
er traffic. However, the TPABLO algorithm does not
ake into account the physical topology; hence it may
roup together nodes that are far apart. Such clusters
re inappropriate for the hierarchical logical topology
e consider, since the long lightpaths created for in-

racluster traffic may significantly increase the num-
er of wavelengths required in the whole network.

Other work has focused on the physical topology
nly. Typically, the goal is to partition the nodes into
ontiguous clusters containing roughly equal numbers
f nodes, and at the same time minimize the overall
ut size. An example is the work in [19] on multiobjec-
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tive graph partitioning, which was implemented in
the METIS software package. These algorithms were
designed for VLSI (very-large-scale integration) de-
sign, a very different problem, where equality in size
and a minimum of cross-layer connections are essen-
tial for each module, and are not applicable to traffic
grooming. First, there is no requirement that all clus-
ters be equal in size; more important, a small physical
cut size may result in bottlenecks for intercluster traf-
fic, which in turn may increase the wavelength re-
quirements during the RWA phase.

Another family of clustering problems concerned
with the physical network topology includes the well-
known k-center, k-clustering, k-median, and facility
location problems [20–23]. Unlike the applications
targeted by METIS, they do not require clusters to be
of equal size. Of all the variants, the k-center problem
is of most interest to us. The goal of the k-center prob-
lem is to find a set S of K nodes (centers) in the net-
work, so as to minimize the maximum distance from
any network node to the nearest center. Thus, the set
S implicitly defines K clusters with corresponding hub
nodes in S.

A solution to the k-center problem may be useful for
hierarchical traffic grooming, since it is likely to lead
to short lightpaths within a cluster, thus lowering the
wavelength requirements. Also, this type of clustering
tends to avoid creating pathlike physical topologies for
each cluster; pathlike topologies are not a good match
for the StarTopology algorithm (described in [14]),
which treats each cluster as a virtual star.

The k-center problem is NP-complete, and the best
approximation ratio that can be obtained in polyno-
mial time is 2 [24,25]. We implemented the
2-approximation algorithm in [24] for the k-center
problem, and we compare it with our own clustering
method in Section VII. For completeness, the steps of
the algorithm are listed below:

1) Create a single cluster, B1= �v1 , . . . ,vn	, with hub
node h1=v1. Calculate the all-pair shortest
paths, record the distances in matrix dist, and
let x←1.

2) Let x be the number of clusters and d be the
maximum distance between any node and its
hub, i.e., d=max�dist�vi ,hj�	 ,vi�Bj. Let v be a
node such that the distance between v and its
hub is d.

3) Create a new cluster Bx+1 with hx+1=v as the
only node. Then for each node v�, if v� is closer to
v than to its current hub, move v� from its cur-
rent cluster to the new cluster Bx+1. Let x←x
+1.

4) Repeat Steps 2 and 3 K−1 times, adding one
cluster at each iteration, for a total of K clusters.
More recently, some studies have explored cluster-
ng techniques in the context of traffic grooming: a hi-
rarchical design for interconnecting SONET rings
ith multirate wavelength channels was proposed in

26], and in [27], the blocking island paradigm is used
o abstract network resources and find groups of band-
idth hierarchies for a restricted version of the traffic
rooming problem. Our work, which we present in the
ext section, is more comprehensive, and it is appli-
able to many variants of the grooming problem.

V. CLUSTERING FOR HIERARCHICAL GROOMING

We now describe a clustering algorithm tailored to
he hierarchical grooming framework we propose. The
bjective of the algorithm is twofold: to partition the
etwork into some number m of clusters, denoted
1, . . . ,Bm, and to select one node in each cluster to

erve as the hub where grooming of intracluster and
ntercluster traffic is performed. As we discussed in
ection III, the clusters and hubs are the input to the
ubsequent logical topology design and RWA phases of
he framework. Consequently, the quality of the clus-
ering phase is an important factor in the quality of
he overall design. Next, we discuss the trade-offs in-
olved in selecting the clusters, which set the design
rinciples for our clustering algorithm.

. Important Considerations

To obtain a good clustering, the number of clusters,
heir composition, and the corresponding hubs must
e selected in a way that helps achieve our goal of
inimizing the number of lightpaths and wave-

engths required to carry the traffic demands. There-
ore, the selection of clusters and hubs is a complex
nd difficult task, as it depends on both the physical
opology of the network and the traffic matrix T. To il-
ustrate this point, consider the trade-offs involved in
etermining the number m of clusters. If m is small,
he amount of intercluster traffic will likely be large.
ence, the m hubs may become bottlenecks, resulting

n a large number of electronic ports at each hub and
ossibly a large number of wavelengths (since many
ightpaths may have to be carried over the fixed num-
er of links to and from each hub).

On the other hand, a large value for m implies a
mall number of nodes within each cluster. In this
ase, the amount of intracluster traffic will be small,
esulting in inefficient grooming (i.e., a large number
f lightpaths); similarly, at the second-level cluster,
�m2� lightpaths will have to be set up to carry small
mounts of intercluster traffic. Therefore, the network
esigner must select the number and size of clusters
o strike a balance between capacity utilization and
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number of lightpaths for both intracluster and inter-
cluster traffic.

Now consider the composition of each cluster. If the
average traffic demand between nodes within a clus-
ter is higher than the average intercluster demand,
there will tend to be fewer intercluster lightpaths,
which are typically longer than local lightpaths.
Therefore, it is desirable to cluster together nodes
with denser traffic between each other: doing so re-
duces the number of longer lightpaths, alleviates hub
congestion, and provides more flexibility to the RWA
algorithm (since long lightpaths are more likely to col-
lide during the routing and wavelength assignment
phase).

On the physical topology side, we also need to con-
sider the cut links that connect different clusters.
Each cluster has a number of fibers that link to nodes
outside the cluster, and all traffic between a node out-
side the cluster and one within must traverse these
cut links. Since the cut links must have sufficient ca-
pacity to carry the intercluster traffic, it is important
to select clusters such that their cut size is not too
small, in order to keep the wavelength requirements
low.

Another important consideration arises in physical
topologies for which there exists a critical small cut
set that partitions the network into two parts. In such
a topology, all traffic between the two sides of the bi-
section will have to go through the cut. In this case,
creating clusters that consist of nodes on different
sides of the cut may be undesirable, because it may
generate unnecessary traffic that goes back and forth
through the cut. Consider a cluster with nodes i , j, on
one side of the bisection and the hub h on the other.
Due to the nature of the hierarchical grooming ap-
proach, traffic between i and j may need to be sent to
the hub first, creating additional traffic across the cut
links, with a corresponding increase in the number of
required wavelengths. This additional traffic can be
eliminated by forcing nodes on different sides of the
bisection to be in different clusters. We describe
shortly a precutting technique that can be useful in
such situations.

The physical shape of each cluster may also affect
the wavelength requirements. In particular, it is im-
portant to avoid the creation of clusters whose topol-
ogy resembles that of a path, since in such topologies
the links near the hub can become congested. Since
we use a virtual star approach for logical topology de-
sign within each cluster, topologies with relatively
short diameter are more attractive in terms of RWA.

In the next subsection, we describe an algorithm
that takes into account all the above factors in parti-
tioning the network into clusters to yield good groom-
ing solutions.
. MeshClustering Algorithm

Figure 3 provides a pseudocode description of our
eshClustering algorithm, which we use to partition
network of general topology in order to apply our hi-

rarchical traffic grooming framework. The algorithm
ncludes several user-defined parameters that can be
sed to control the size and composition of clusters, ei-
her directly or indirectly. Parameters MinCS and
axCS represent the minimum and maximum cluster

ize, respectively. Our algorithm treats these param-
ters as an indication of the desirable range of cluster
izes, rather than as hard thresholds that cannot be
iolated. Although the algorithm attempts to keep the
ize of each cluster between the values of these two
arameters (inclusive), it has the freedom, based on
he values of the other parameters, to determine what
t thinks may be the best clustering. Consequently,
he final result may contain clusters larger than

Fig. 3. Clustering algorithm for mesh networks.
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MaxCS (see also the discussion below regarding Step
26 of the algorithm).

The parameter � (0.5���0.8, default value �
=0.8) is used to test whether there is sufficient capac-
ity at the hub node, as well as the edges connecting
the cluster to the rest of the network, to groom and
carry the traffic demands. Specifically, we require that
the intercluster traffic originating from or terminating
at a given cluster not exceed a fraction � of the hub
capacity (this is the HUBTEST in Step 9 of the algo-
rithm); similarly, this intracluster traffic must not ex-
ceed a fraction � of the capacity of the links connect-
ing the cluster to the rest of the network (the
CUTTEST in Step 10 of the algorithm). The algorithm
will consider a node to add to a cluster only if doing so
will not violate these two constraints.

The parameter � is meant to control the ratio of the
diameter of a cluster to the number of nodes it con-
tains. In order to avoid cluster topologies that re-
semble long paths, we require that 0���0.75. We
used the value �=0.75 in our experiments; this value
corresponds to a four-node path, hence restricting the
longest path within a cluster to no more than three
links. Finally, the parameter �, 0.8���1.25, specifies
the acceptable range for the ratio of intracluster-to-
intercluster traffic for a given cluster. As we discussed
earlier, it is desirable to cluster together nodes that
exchange a substantial amount of traffic among them-
selves relative to traffic they exchange with the rest of
the network; therefore, we let �=1.25 in our imple-
mentation.

The MeshClustering algorithm in Fig. 3 generates
one cluster during each iteration of the main while
loop between Steps 1 and 25. Initially, in Steps 2–4,
the hub of a new cluster B is selected as the node with
the maximum remaining capacity among those not
yet assigned to a cluster; by “remaining capacity,” we
mean the capacity remaining on its incident links af-
ter subtracting the bandwidth taken up by any direct
lightpaths set up as discussed in Section III.A. Follow-
ing the hub selection, we grow the cluster by adding
one node during each iteration of the innermost while
loop between Steps 5 and 24. At each iteration, the set
Q of candidate nodes for inclusion in cluster B consists
of all nodes, not yet assigned to another cluster, that
are adjacent to nodes in B. For each node q�Q, we
first check whether including q in B would result in a
cluster that passes both the HUBTEST (Step 9) and
CUTTEST (Step 10); if not, node q is removed for con-
sideration for inclusion into cluster B (Step 17). For
all nodes q that pass both tests, we compute the
diameter-to-nodes ratio �q and intracluster-to-
intercluster traffic ratio �q, assuming that q is added
to cluster B (Steps 11–16). Let q0 be a node that
passes both tests and has the largest �q value among
the candidates; if there are multiple such nodes, we
elect the one with the smallest �q value. We include
0 in cluster B (Steps 21–23), and the process is re-
eated as long as the size of B is less than MaxCS.

Once all nodes have been assigned to clusters, it is
ossible for one or more of the clusters to have fewer
han MinCS nodes. In this case, at Step 26, the algo-
ithm removes these clusters and includes their nodes
nto adjacent clusters. As a result, at the end of the al-
orithm some clusters may contain more than MaxCS
odes.

The running time complexity of the algorithm is de-
ermined by Steps 1–25. The main while loop ex-
cutes a number of times equal to the number m of
lusters; for each cluster, the innermost while loop
xecutes a number of times equal to the size of the
luster. Therefore, Steps 5–24 of the algorithm are re-
eated N times, where N is the number of nodes in the
etwork. Each time, the foreach loop executes at
ost N times. Steps 9, 10, 12, and 13 each take no
ore than O�N2� time in the worst case, while all

ther steps take constant time. Therefore, the
symptotic complexity of the algorithm is O�N4�. How-
ver, this bound is quite loose; in practice, we have
ound that the algorithm takes only a few seconds for
he 128-node, 321-link network we consider in Section
II.

. Precutting for Imbalanced Topologies

As we mentioned in Subsection V.A, when the topol-
gy has a bisection of small cut size, the cut links are
ikely to become congested, as they have to carry all
raffic between the two parts of the network on either
ide of the bisection. To reduce congestion, and hence
he number of required wavelengths, in such topolo-
ies, it may be necessary to disallow nodes on differ-
nt sides of the bisection from being in the same clus-
er. However, identifying such a critical bisection in a
arge, imbalanced topology, is a difficult task. In Sec-
ion VI.B, we describe a method we developed for this
urpose and which we also use to obtain a lower
ound on the number of wavelengths.

Once we identify a critical bisection, we apply the
ollowing approach. First, we use the MeshClustering
lgorithm to determine a clustering that does not take
he bisection into consideration. Then, we partition
he network into two parts along the bisection, and we
pply the MeshClustering algorithm on each part
eparately; this ensures that no cluster contains nodes
rom both sides of the bisection. We then select the
lustering that requires the fewest lightpaths after
he logical topology and RWA phases, unless it re-
uires a significantly larger number (e.g., 10% or
ore) of wavelengths; in this way, we achieve balance

etween the lightpath objective and the wavelength
equirements.



w
o
o
t
t
c
b
p

B

t
r
i
�
f
b
l
m

t
e
b
s
i
i
d
t
s
n
fi

C
t
r
o
t
t
v
s
W
b
u
w
t
e
s

d
e
=
a

510 J. OPT. COMMUN. NETW./VOL. 2, NO. 8 /AUGUST 2010 Chen et al.
VI. LOWER BOUNDS

We now obtain lower bounds on both the number of
lightpaths and the number of wavelengths required to
carry the traffic matrix T. These bounds are obtained
independently of the manner (e.g., hierarchical or oth-
erwise) in which traffic grooming is performed; hence
they are useful in characterizing the effectiveness of
our algorithm.

A. Integer Linear Programming Lower Bound on
Number of Lightpaths

A simple lower bound Fl on the total number of
lightpaths (our main objective) can be obtained as

Fl = max
�
s

��d t�sd�

C
�,�

d
��s

t�sd�

C
��. �3�

This bound is based on the observation that each node
must source and terminate a sufficient number of
lightpaths to carry the traffic demands from and to
this node, respectively. This bound can be determined
directly from the traffic matrix T.

It is possible to obtain a better lower bound by using
a standard ILP relaxation technique. Starting from
the ILP formulation (e.g., see [3]) of the traffic groom-
ing problem, we remove some variables and con-
straints, so that we can obtain a relaxed solution that
serves as a lower bound for the original objective. In
the relaxed ILP formulation, let bsd denote the num-
ber of direct lightpaths set up from s to d. Since all
traffic originating at source node s must be carried on
some lightpath also originating at s, the following con-
straints must be observed:

�
d

bsdC � �
d

t�sd� ∀ s. �4�

Similarly, for each destination d we have that

�
s

bsdC � �
s

t�sd� ∀ d. �5�

Since our goal is to minimize the overall number of
lightpaths, the resulting relaxed ILP formulation is

Minimize: �s,dbsd
Subject to: Constraints (4) and (5).

We emphasize that this ILP will not necessarily
yield a meaningful solution to the original grooming
problem, only a lower bound. By configuring CPLEX
to use dual steepest-edge pricing, we are able to com-
pute this bound within a few seconds even for the 128-
node topology that we consider in the next section. Al-
though this bound is better than the simple bound Fl

above, we believe that it is somewhat loose. However,
e have found that introducing additional constraints
n traffic flow and/or routing into the relaxed ILP in
rder to improve the lower bound tends to increase
he running time of CPLEX substantially, to the point
hat it becomes impractical for the large networks we
onsider in this work. Therefore, we use the lower
ound obtained from the above simple ILP in our ex-
erimental study.

. Lower Bound on Number of Wavelengths

Consider a bisection cut of the network, and let t be
he maximum amount of traffic that needs to be car-
ied on either direction of the links in the cut set. If x
s the number of links in the cut set, then the quantity
t /xC� is a lower bound on the number of wavelengths
or carrying the given traffic matrix. Computing this
ound does not require any information regarding the
ogical topology or the routing and wavelength assign-

ent of lightpaths.

The main challenge, then, is to find a bisection of
he network that yields a good lower bound. To this
nd, we make the observation that there is a trade-off
etween the cut size and the relative sizes of the node
ets at each side of the bisection. On the one hand, us-
ng software such as METIS [19] to divide the network
nto two equal parts may not yield a good bound if,
ue to the irregular nature of the topology, the cut size
urns out to be large. On the other hand, a small cut
ize may not be effective either, if one node set is sig-
ificantly larger than the other, resulting in little traf-
c across the cut links.

To reconcile these conflicting objectives, we used the
HACO software [28], which implements the parti-

ioning algorithm in [29]. The software uses the pa-
ameter KL-IMBALANCE to control the relative sizes
f the node sets on either size of the bisection. To de-
ermine a cut that achieves a good balance between
he two objectives, we apply CHACO several times,
arying the KL-IMBALANCE parameter, and obtain
everal different bisections of the physical topology.
e then select the bisection that corresponds to the

est (highest) lower bound, under the assumption of
niform traffic. We use this bisection to calculate
avelength bounds for all problem instances on this

opology, even though the actual traffic matrix is gen-
rated based on a different pattern (discussed
hortly).

VII. NUMERICAL RESULTS

In this section, we present experimental results to
emonstrate the performance of our clustering and hi-
rarchical grooming algorithms. The traffic matrix T
�t�sd�� of each problem instance we consider is gener-
ted by drawing N�N−1� random numbers (rounded
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to the nearest integer) from a Gaussian distribution
with a given mean t and standard deviation � that de-
pend on the traffic pattern. We consider three traffic
patterns here:

1) Random pattern. Random patterns are often
challenging, since the matrix does not have any
particular structure that can be exploited by a
grooming algorithm. To generate a traffic ma-
trix, we let the standard deviation � be 150% of
the mean t. Consequently, the traffic elements
t�sd� take values in a wide range around the
mean, and the link loads also vary widely. If the
random number generator returns a negative
value for some element, we set the correspond-
ing t�sd� value to zero.

2) Falling pattern. This pattern is designed to cap-
ture the locality property that has been observed
in some networks. Specifically, if the mean of the
distribution for node pairs that have shortest
distance 1 is t, then the mean for node pairs with
shortest distance 2 (3) is set to 0.8t (0.6t); for all
other pairs, the mean is set to 0.2t. We also let
the standard deviation � be 20% of the mean.

3) Rising pattern. This is the opposite of the falling
pattern. We use t as the mean for traffic de-
mands between node pairs with the longest
path. Node pairs with the second and third long-
est paths have mean values 0.8t and 0.6t, respec-
tively. All other node pairs have mean 0.2t. The
standard deviation is also set to 20% of the
mean.

For a given network topology and traffic pattern, we
generate 30 problem instances, and we compare our
MeshClustering algorithm (shown in Fig. 3) to the
k-center algorithm [24] we described in Section IV. We
consider two performance metrics in our study: the
normalized lightpath count and the normalized wave-
length count. The former is the ratio of the number of
lightpaths required for hierarchical traffic grooming,
when clustering is performed by one of the two algo-
rithms above, to the lightpath lower bound obtained
using the relaxed ILP in Subsection VI.A; the latter is
the ratio of the number of wavelengths required to the
wavelength lower bound computed as explained in
Subsection VI.B. The normalized metrics filter out the
effect of the traffic matrix, allowing us to compare re-
sults among problem instances created by very differ-
ent traffic patterns; obviously, a smaller value of the
two metrics implies a better solution. We also consider
two network topologies, one in each of the following
two subsections. We emphasize that the size of the
second topology is about an order of magnitude larger
than the typical topology considered in previous
grooming studies, a fact that demonstrates the scal-
ability of our hierarchical grooming approach.
. 47-Node Balanced Topology Network

We first consider a 47-node, 96-link network topol-
gy that appeared in a historical paper on network de-
ign [30]. The node degree of the network is relatively
igh, and the topology is balanced, in the sense that
here is no bisection with a small cut size that can be
bottleneck in traffic grooming.

Figures 4 and 5 plot the normalized lightpath and
avelength count, respectively, for each of 30 problem

nstances whose traffic matrix was generated accord-
ng to the falling pattern. For each problem instance,
our values are shown, corresponding to four different
lusterings. The first two are from the k-center algo-
ithm, with the number of clusters K equal to 4 and 6,
espectively. The other two are from our MeshCluster-
ng algorithm. Recall that our algorithm does not take
he number of clusters as input; rather, it tries to op-
imize it. Consequently, the algorithm may produce
ifferent clusters for two different problem instances,
ven if they are defined on the same topology and
heir matrices are drawn from the same distribution.
o make the comparison against the k-center algo-
ithm as fair as possible, we selected two sets of val-
es for the user-defined parameters of MeshCluster-

ng (refer to Fig. 3) so that the average number of
lusters over all 30 instances are 3.52 and 5.45, re-
pectively.

Let us first consider the normalized lightpath count.
rom Fig. 4, we observe that the number of lightpaths
equired for hierarchical grooming is about 40%
igher than the lower bound, regardless of the cluster-

ng algorithm used. Recall that the lower bounds were
btained by relaxing most of the constraints in the
LP formulation; hence we believe that they are
ather loose. Therefore, these results (as well as the
nes to be discussed shortly) serve as a validation of
ur approach, as they demonstrate that the lightpath
equirements for hierarchical grooming are close to
ptimal. We also observe that, except for a couple of
nstances, the curves corresponding to the MeshClus-
ering algorithm lie below those corresponding to the
-center algorithm. Although the difference is not
igh, we would like to point out that a 1% reduction in
he number of lightpaths in this network with rela-
ively dense demands would result in about 40 fewer
lectronic ports, a substantial savings in cost.

Let us now turn our attention to the normalized
avelength count. As Fig. 5 demonstrates, the Mesh-
lustering algorithm requires significantly fewer
avelengths than the k-center algorithm. This result

s due to the fact that unlike the k-center algorithm,
urs is designed to take the wavelength requirements
nto account. In absolute terms, the difference in the
umber of wavelengths for these problem instances is
f the order of 10–12. Put another way, given a con-
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straint on the number of available wavelengths, our
algorithm is more likely to generate clusters that ad-
mit a feasible grooming solution. We also note that the
large values of the normalized wavelength count are
due to the fact that the lower bound is loose in this
case. Recall that a good bound depends on finding a
network cut of small size and large crosscut traffic.
However, this particular 47-node network was de-
signed to avoid such a bottleneck cut. Furthermore,
the falling traffic pattern makes it unlikely that a
large amount of traffic will cross any network cut; as
we shall see in a moment, the rising pattern yields
better bounds.

Figures 6 and 7 are similar to Figs. 4 and 5, respec-
tively, but show results for the rising traffic pattern.
Note that, due to the nature of this pattern, relatively
large amounts of traffic will cross any network cut, re-
sulting in the much tighter wavelength bounds in Fig.
7. Again, except for a few instances, our clustering al-
gorithm outperforms the k-center algorithm. Regard-
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Fig. 5. (Color online) Wavelength comparison, falling pattern, 47-
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ess of the clustering algorithm, we observe that hier-
rchical grooming is also close to optimal, confirming
ur earlier observations.

We have obtained similar results for the random
nd other traffic patterns, which we omit because of
pace constraints; these results can be found in [14].

. 128-Node Imbalanced Topology Network

We now consider a 128-node, 321-link network,
hich corresponds to the worldwide backbone oper-
ted by a large service provider; we obtained the to-
ology information from data documented on CAIDA’s
eb site (http://www.caida.org). This topology is im-
alanced, in the sense that there exists a bisection
ith a small cut size of 5 links that divides it into two
arts of 114 and 14 nodes, respectively. We identify
his critical cut with the method discussed in Subsec-
ion VI.B and use it to calculate the lower bound on
he number of wavelengths. We also steer our algo-
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rithm towards creating clusters that contain nodes on
one side of the cut only, as we explained in Subsection
V.C.

Figures 8 and 9 plot the normalized lightpath and
wavelength count, respectively, for 30 instances gen-
erated according to the random traffic pattern; Figs.
10 and 11 show similar plots but for instances gener-
ated according to the rising pattern. Additional re-
sults for other traffic patterns may be found in [14].
For the k-center algorithm, we let the number K of
clusters be either 9 or 10, and we selected the param-
eters of the MeshClustering algorithm so that it also
produces either 9 or 10 clusters (the average over all
instances is 9.33 and 9.03 for the random and rising
patterns, respectively). As we can see, our clustering
algorithm slightly outperforms k-center in terms of
the number of lightpaths, and both algorithms are
relatively close to the (loose) lower bound. However, in
terms of the number of wavelengths, our algorithm
produces results that are within 5% of the lower
bound, whereas k-center requires more than twice the
number of wavelengths of our algorithm.

VIII. CONCLUDING REMARKS

Hierarchical traffic grooming is a new approach for
efficient and cost-effective design of large-scale optical
networks with multigranular traffic demands. We
have demonstrated that the hierarchical grooming
framework must be coupled with clustering tech-
niques that follow grooming-specific design principles;
we have presented such a clustering algorithm that is
flexible in balancing various conflicting goals via user-
defined parameters. We have also developed practical
methods for computing lower bounds on metrics of in-
terest. We have applied our algorithms to networks of
realistic size. Overall, our experimental results dem-
onstrate that (1) our hierarchical grooming approach
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Fig. 8. (Color online) Lightpath comparison, random pattern, 128-
node network.
cales to very large networks; (2) our clustering algo-
ithm outperforms algorithms that were not devel-
ped with traffic grooming in mind; and (3) hierarchi-
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cal grooming combined with specially designed
clustering techniques produce logical topologies that
perform well in terms of both lightpath and wave-
length requirements across a variety of traffic pat-
terns.
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