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On Routing and Spectrum Assignment in Rings

Sahar Talebi, Evripidis Bampis, Giorgio Lucarelli, Iyad Katib, and George N. Rouskas

Abstract—We present a theoretical study of the routing and
spectrum assignment (RSA) problem in ring networks. We first
show that the RSA problem with fixed-alternate routing in general-
topology (mesh) networks (and, hence, in rings as well) is a special
case of a multiprocessor scheduling problem. We then consider
bidirectional ring networks and investigate two problems: 1) the
spectrum assignment problem under the assumption that each de-
mand is routed along a single fixed path (e.g., the shortest path),
and 2) the general case of the RSA problem whereby a routing de-
cision along the clockwise and counter-clockwise directions must
be made jointly with spectrum allocation. Based on insights from
multiprocessor scheduling theory, we derive the complexity of the
two problems and develop new constant-ratio approximation al-
gorithms with a ratio that is strictly smaller than the best known
ratio to date.

Index Terms—Approximation algorithms, multiprocessor
scheduling, optical fiber networks, routing and spectrum assign-
ment, routing and wavelength assignment, spectrum assignment,
wavelength assignment.

1. INTRODUCTION

LASTIC optical networking has been the subject of con-
E siderable research and development activities in recent
years due to its potential to accommodate efficiently the on-
going growth in traffic demands [1]-[3]. Key enabling tech-
nologies of elastic networking include optical OFDM, distance-
adaptive modulation, flexible spectrum selective switches, and
bandwidth-variable transponders [4]. These technologies make
it possible for network operators to support multirate connec-
tions and adapt to variable bandwidth requests dynamically, by
“slicing off” just the right amount of spectrum for each traffic
demand [2].

Routing and spectrum assignment (RSA) [5]-[7] has emerged
as the essential problem for network-wide management of spec-
tral resources in the context of design and control of elastic
optical networks. The objective of the RSA problem is to (1)
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assign a physical path to each demand, and (2) allocate contin-
uous and contiguous spectrum to the demand along the links
of each path, so as to optimize a metric of interest typically
related to spectrum utilization. Several offline and online vari-
ants of the problem have been studied; for a survey and clas-
sification of existing approaches, the reader is referred to [8].
Since general versions of the RSA problem are computation-
ally intractable, common solution approaches include integer
linear programming formulations (for small network sizes) and
heuristics.

While many studies of the RSA problem consider general
network topologies, we note that in addition to the fact that large
parts of the current infrastructure are based on SONET/SDH
rings, DWDM networks with topological rings are being
deployed based on technologies other than SONET (e.g.,
Ethernet, IP/MPLS, etc.), including for wireless backhaul to
accommodate the explosive growth of mobile data [9]-[12].
Therefore, more recently there has been increasing interest
in RSA solutions for ring networks [13]-[17]. Most of these
studies employ heuristics, although some interesting theoretical
results do exist. For instance, using results from graph coloring
theory, it was shown in [17] that there exists a (4 + 2¢)-
approximation algorithm for the spectrum assignment (SA)
problem in rings; whereas the work in [16] proves that the con-
tiguity (i.e., adjacency) constraint in SA can always be satisfied
starting from an optimal solution to a corresponding coloring
problem.

In this work, we present a comprehensive study of the RSA
problem in bidirectional ring networks, and make three con-
tributions. In Section II, we show that the RSA problem with
fixed-alternate routing in general-topology (mesh) networks is
a special case of a multiprocessor scheduling problem. Build-
ing upon this new perspective, we investigate theoretically two
approaches to tackling the RSA problem in rings. In Section III,
we consider the case of a single fixed path for each demand; this
corresponds to a two-step approach for RSA in which routing
of demands is performed first, followed by spectrum allocation.
When each traffic demand follows a predetermined path (e.g.,
the shortest path) from source to destination, RSA reduces to
the SA problem. We prove that the SA problem can be solved
in polynomial time in small bidirectional rings, and we de-
velop constant-ratio approximation algorithms for large rings.
In Section IV, we show that the RSA problem, in which routing
and spectrum allocation are considered jointly, is intractable for
rings with as few as four nodes. Based on insight from multi-
processor scheduling theory, we also develop an approximation
algorithm for ring RSA. The approximation ratios of our algo-
rithms are strictly smaller than the best known (4 + 2¢) ratio
presented in [17]. We also note that our results apply to the
routing and wavelength assignment problem, a special case of
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RSA in which all demands are of equal size. We conclude the
paper in Section V.

II. RSA IN GENERAL TOPOLOGY NETWORKS: A SPECIAL
CASE OF MULTIPROCESSOR SCHEDULING

Consider the following general definition of the RSA prob-
lem with fixed-alternate routing in elastic optical networks; in
this definition, we assume that a spectrum slot is the smallest
amount of spectrum (e.g., 12.5 or 6.25 GHz, depending on the
technology), that can be allocated and routed as a single unit.

Definition I1.1 (RSA): Given

e agraph G = (V, A) where V is the set of nodes and A the
set of arcs (directed links),

e aspectrum demand matrix 7' = [t,4], where 44 is the num-
ber of spectrum slots required to carry the traffic from
source node s to destination node d, and

e [ alternate routes, ri dre rfd, from node s to node d,
assign a route and spectrum slots to each demand so as to min-
imize the total amount of spectrum used on any link in the
network, under three constraints:

1) each demand is assigned contiguous spectrum slots (spec-

trum contiguity constraint);

2) each demand is assigned the same spectrum slots along

all links of its path (spectrum continuity constraint); and

3) demands that share a link are assigned non-overlapping

parts of the available spectrum (non-overlapping spectrum
constraint).

If each traffic demand is constrained to follow a specific route
from source to destination that is provided as part of the input,
(i.e., k=1 in the above definition,) then the RSA problem
reduces to the SA problem.

In recent work [18], we have shown that the SA problem
in (mesh) networks of general topology is a special case of
the classical multiprocessor scheduling problem denoted as
P|fix;|Cy, a0 In other words, every instance of the SA problem
can be transformed to an instance of P|fixz;|Cy,q, (Whereas
the reverse is not true), and hence, any algorithm that solves
P|fiz;|Cqq also solves SA. Problem P| fiz;|C, 4., in which
tasks are to be executed on multiple processors simultaneously,
is formally defined as [19], [20]:

Definition 112 (P|fix;|Cy,q4): Given

® aset of m identical processors,

® asetof n tasks with processing time p;,j = 1,...,n, and

® a prespecified set fix; of processors for executing each
task j,7=1,...,n,

schedule the tasks so as to minimize the makespan C,,,, =
max; C;, where C; denotes the completion time of task j, under
the constraints:

1) preemptions are not allowed;

2) each task must be processed simultaneously by all pro-

cessors in set fix;; and

3) each processor can work on at most one task at a time.

Also, we denote by Pm|fiz;|C),q, the special case of
P|fiz;|Cyqp in which the number of processors m is con-
sidered to be fixed. The proof of the transformation is available
in [18]. Briefly, each link in the SA problem transforms to a
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Fig. 1. (a) Instance of the SA problem on a mesh network with five directed
links (arcs). (b) Optimal schedule of the corresponding P| fix j |C)y, 4., problem.

processor, each traffic demand (s, d) to a task j, the demand
size tyq and path 744 to the processing time p; and set fix; of
the corresponding task j, respectively, the maximum spectrum
assigned to any link to C),, .-, and each of the three constraints of
the SA problem to the similarly numbered constraint of problem
P‘fza:] ‘Cmaa:-

As an example, Fig. 1(a) shows an instance of the SA problem
on a mesh network with five directed links, L1, L2, L3, L4, and
L5. There are five demands, shown as dotted lines, with the
number of slots required by each demand shown next to the
corresponding line. Fig. 1(b) shows the optimal schedule for
the P|fiz;|Cy,q, problem corresponding to this SA instance,
whereby link L1 maps to processor P1, link L2 to processor
P2, and so on. As we can see, the demand of size 3 that follows
the path L1-L2 is mapped to a task that is scheduled in the
time interval [4, 7] on the corresponding processors P1 and P2;
similarly for the other demands. The schedule is optimal in
that C,,, ., = 7 is equal to the total processing time required for
processors P1, P4 and P5. Also, the value of C,,,, is equal
to the total number of spectrum slots required for links L1, L4,
and L5.

We now show that the RSA problem with fixed-alternate
routing in networks of general topology can also be viewed as
a multiprocessor scheduling problem. Consider the following
scheduling problem that has been studied in the literature [21]—
[23]:

Definition I11.3 (P|set;|Cy,qz): Given

® aset of m identical processors,

e aset of n tasks with processing time' pj,j=1,...,m,

* and a prespecified set set; = { fix}, ..., fiz%} of k alter-
native processor sets to which task j can be assigned,
schedule the tasks so as to minimize the makespan C,,,, =
max; C;, where C; denotes the completion time of task 7, under

the constraints:

'In its most general form, the P|set;|Chy, o problem allows for the process-
ing time p; of a task j to depend on the processor set f zx; to which the task is
assigned. This general variant of the problem may be used to model distance-
adaptive RSA, in which the modulation format, and hence, the required amount
of spectrum, depends on the length of the path assigned to the demand. Distance-
adaptive RSA is outside the scope of this paper, and is the subject of ongoing
research in our group; therefore, we only consider the version of the scheduling
problem in which a task’s processing time is independent of the processor set
to which it is assigned.
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1) preemptions are not allowed,

2) each task must be processed simultaneously by all pro-

cessors in only one of the processor sets in set;, and

3) each processor can work on at most one task at

a time.

Clearly, P|fix;|Cpq, is a special case of P|set;|Chy,q, With
k = 1 processor set for each task. It has been shown that, in the
general case, there can be no constant-ratio polynomial time ap-
proximation algorithm for P|set;|C,, 4, unless P = NP [24].
The two-processor problem P2|set;|Cmax has been proven
in [25] to be NP-hard. Approximation algorithms with ratio
m and m/2 have been developed in [21] and [22], respec-
tively, for problem Pm|setj|C’maz, in which the number m
of processors is considered to be fixed and is not part of the
input (as it is for P|set;|C), 45 ). Also, polynomial time approx-
imation schemes (PTAS) for Pm|set;|C,,,, were introduced
in [23], [26].

The following two lemmas show that the RSA problem with
fixed-alternate routing in mesh networks is a special case of
P|S€t]' |C'nm:y~

Lemma II.1: RSA with fixed-alternate routing in mesh net-
works transforms to P|set;|Cy, a2

Proof: Consider an instance of RSA with fixed-alternate rout-
ing on a network with a general topology graph G = (V, A),
demand matrix 7' = [t,4] and set {rl,,...,r",} of alternate
routes for source-destination pair (s, d). Construct an instance
of P|set;|Cy,qz such that:

e for each directed arc a; € A, there is a processor [, and

e for each spectrum demand %4, there is a task j with

pj =t and set; = {fix},..., fizk}, where fix} =
{a:a, € {ri}).

Hence, the amount of spectrum of a demand transforms to
the processing time of the corresponding task, the set of al-
ternate paths to the set of alternate processor sets for that
task, and the links of each alternate path to the correspond-
ing set of alternate processors for the task. Due to the spectrum
contiguity constraint, preemptions are not allowed. The spec-
trum continuity constraint guarantees that each task will be
processed simultaneously by all processors in the alternate set
assigned to the task, whereas the non-overlapping spectrum con-
straint requires that each processor work on at most one task at
a time.

By construction, the amount of spectrum assigned to any arc
of GG in a solution of the RSA instance is equal to the completion
time of the last task scheduled on the corresponding processor,
hence minimizing the spectrum on any link in the RSA problem
is equivalent to minimizing the makespan of the schedule in the
corresponding problem P|set;|Cy,qz - ]

We now show that the reverse of Lemma II.1 is not
true. In other words, there exist instances of P|set;|Cy oz
for which there is no corresponding instance of the RSA
problem.

Lemma I1.2: There exist instances of P|set;|C),,, for
which there is no corresponding instance of the RSA problem.

Proof: By counterexample. Consider an instance of
P|set;|Crnq, with eight processors {1,2,3,4,1",2,3" 4"},
and these five tasks whose processing times can be
arbitrary:
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task fix} fiz?

- 1,2} (4,3}
Ty {2,3} {17,4"}
5 (3,4} {2/,1}
= (4,1} (3,2}
5 (2,4} (4,2},

Because of the first four tasks, the graph of the corresponding
RSA instance would have to be the four-node, eight-link bidirec-
tional ring network such that: (1) links l and /', = 1,2, 3,4, are
links in the clockwise and counter-clockwise direction, respec-
tively, between adjacent nodes in the ring, (2) in the clockwise
direction, link 1 is adjacent to 2, 2 is adjacent to 3, 3 to 4, and 4
to 1, and (3) similarly for links in the counter-clockwise direc-
tion. Since there are no feasible paths for the spectrum demand
corresponding to the last task 75, an instance of RSA does not
exist. |

III. SA IN RINGS

In this section, we study the SA problem in bidirectional rings
under the assumption that each traffic demand is carried over the
shortest path from its source to the destination node; we defer
discussion of the RSA problem, in which the RSA problems are
solved jointly, to the next section. Let /N be the number of nodes
of the ring network. Note that, whenever NN is even, there are two
shortest paths between every pair of nodes that are diametrically
opposite each other. In this case, we assume that one of these
paths (in either the clockwise or counter-clockwise direction) is
selected and is provided as input to the SA problem.

We first note that, under shortest path routing, the clockwise
and counter-clockwise directions of the ring become decoupled
and completely independent of each other. Consequently, the SA
problem in bidirectional rings is decomposed into two disjoint
subproblems, one for each direction, that can be solved sepa-
rately; the subproblem in the clockwise (respectively, counter-
clockwise) direction takes as input the subset of clockwise (re-
spectively, counter-clockwise) links and the subset of demands
with shortest paths along these links. It can be seen that this
decomposition is optimal, in that finding the optimal solution
(i.e., minimum total spectrum on any link) for each subprob-
lem and taking the maximum of the two is an optimal solution
to the original problem on the bidirectional ring. Therefore,
for the remainder of this paper, we will only consider the SA
subproblem for the clockwise direction of the ring. Because of
symmetry, the same results apply to the subproblem defined on
the counter-clockwise direction, although the optimal solution
may be different (e.g., because of the fact that different demands
are placed on each direction).

We have shown in [18] that the SA problem in unidirectional
rings can be transformed to a P| fiz;|C,;, o, problem. Moreover,
in the general case, i.e., whenever there are traffic demands
between any pair of nodes, the SA problem in unidirectional
rings with N = 3 nodes transforms [18] to the P3|fix;|Cyyas
problem that is strongly NP-hard [20]. On the other hand, the SA
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subproblem defined on the clockwise direction of a bidirectional
ring is a special case of the unidirectional ring problem inasmuch
as its input consists of only the subset of demands that are
routed in that direction. Therefore, the problem can be solved in
polynomial time for small rings, and approximation algorithms
with constant ratios exist, as we show next.

Since any algorithm that solves the P|fiz;|Ch,q. prob-
lem also solves the SA problem, in the following we will
derive results for the SA problem in bidirectional rings by
studying the corresponding multiprocessor scheduling problem.
In our discussion, we will make use of two concepts related to
P|fixj\CmM.

Definition II1.1 (Compatible Tasks): A set T of tasks for the
P|fix;|Cy,q. problem are said to be compatible if and only if
their prespecified sets of processors are pairwise disjoint, i.e.,
fiz; N fiz; =0,Vi,j € T.

Compatible tasks may be paired with each other (i.e., they
can be executed simultaneously), as they do not share any
processors.

Definition I11.2 (Dominant Processor and Lower Bound):
Consider an instance of P|fiz;|Cly, ., and let 7; denote the
set of tasks that require processor k, i.e., 7, = {j : k € fiz;}.
Clearly, all the tasks in 7, are pairwise incompatible, hence
they have to be executed sequentially. Let II; denote the sum
of processing times of tasks that require processor k:

M =Y pk=1,..,m (1)
jeT,

Then, a lower bound LB for the problem instance can be ob-
tained as:

, max {TI;}. (2)

We will refer to a processor that achieves the lower bound LB
as the dominant processor.

A. Complexity Results for Rings With N = 3,4 Nodes

The following two lemmas establish that, under shortest path
routing, the SA problem can be solved in polynomial time in
three- and four-node bidirectional rings, since the subprob-
lems defined on the clockwise (and, hence, also the counter-
clockwise) direction yield polynomial solutions. Note also that,
in the special case whereby all demands are equal to one slot,
tsq = 1, the spectrum contiguity constraint becomes redundant,
and the SA problem reduces to the wavelength assignment (WA)
problem [27]. Consequently, these two lemmas also establish
that the WA problem is solvable in polynomial time in three-
and four-node rings with shortest path routing.

Lemma III.1: The SA subproblem defined in the clockwise
direction of a bidirectional ring with N = 3 nodes and shortest
path routing is solvable in polynomial time.

Proof: In a bidirectional ring with N = 3 nodes, the short-
est path for each demand consists of a single link. Consider
the SA subproblem defined on the clockwise direction. This
subproblem has three demands, each carried on exactly one
of the three clockwise links of the ring. The corresponding
P3|fix;|Cy,q, multiprocessor scheduling problem has three
tasks, each requiring exactly one of the three processors (i.e.,
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Fig. 2. Optimal schedule for the clockwise direction of a four-node bidirec-
tional ring with shortest path routing.

|fiz;] = 1,7 = 1,2,3). Since the tasks are pairwise compati-
ble, they can be scheduled simultaneously. Hence, the optimal
value of the total amount of spectrum required in the network
(respectively, Cl,, 4. ) is equal to the maximum demand size (re-
spectively, the maximum task processing time). ]

Lemma I11.2: The SA subproblem defined in the clockwise
direction of a bidirectional ring with N = 4 nodes and shortest
path routing is solvable in polynomial time.

Proof: In a four-node ring, the clockwise and counter-
clockwise paths between two non-adjacent nodes are of equal
length (i.e., two), and either may be selected as the shortest
path. Let us consider the case where all demands between non-
adjacent nodes are routed in the clockwise direction. In other
words, for non-adjacent nodes 1 and 3, both traffic from 1 to
3 and traffic from 3 to 1 is routed clockwise; and similarly for
the other pair (2,4) of non-adjacent nodes. Hence, the input to
the SA subproblem consists of four one-link demands and four
two-link demands. Consequently, the input to the corresponding
P4 fiz; |Cy s problem consists of four single-processor tasks
and four two-processor tasks. Let us denote these tasks as 77,
15,15, Ty, The, Tos, T4, and T}y, where the subscript of each
task denotes the processors in the corresponding set fix;.

The proofis by construction of the optimal schedule, as shown
in Fig. 2. Specifically, first schedule the task 775 in parallel with
the task T34 starting at time ¢ = 0. Then, add all the single
processor tasks 74,75, T5,T) to this initial schedule without
any gaps. Finally, execute the two-processor tasks 753 and T
as soon as both processors of each task are available. For the
instance depicted in Fig. 2, the schedule is optimal as it is equal
to the lower bound determined by the sum of the processing
times of tasks requiring processor 2 (the dominant processor).
In fact, because of symmetry, the schedule is optimal regardless
of which processor is the dominant one.

If some of the demands between non-adjacent nodes are
routed in the counter-clockwise direction, then the instance of
P4|fiz;|Cyq, defined on the clockwise direction will not in-
clude the corresponding two-processor tasks. Again, it can be
seen that the above algorithm yields an optimal schedule. For
instance, if task 753 is excluded from Fig. 2, then the sched-
ule remains optimal. The same is true if Ty is excluded, or
T3 and Ty; are both excluded, or any combination of two-
processor tasks is excluded. If all two-processor tasks are ex-
cluded (i.e., all demands between non-adjacent nodes are routed
in the counter-clockwise direction), then the problem contains
only single-processor tasks and the algorithm again produces an
optimal schedule. [ ]
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The above lemma shows that as long as traffic demands in
a four-node bidirectional ring are routed along a shortest path
(with ties broken arbitrarily), the SA problem is solvable in
polynomial time using a simple algorithm that is linear in the
number of tasks (spectrum demands). The following lemma
shows that if one of the demands between adjacent nodes takes
anon-shortest path, the SA problem becomes NP-complete. The
proof is by reduction from the PARTITION problem [28] which
is defined as:

Definition I11.3 (PARTITION): Given a set of k integers A =
{a1,as9,...,a;} such that B = 2?:1 aj, does there exist a
partition of A into two sets, A; and As, such that Za/_ ca, @ =
Z(zj €A, a; = %r)

Following standard NP-Completeness proofs, the proof of the
following lemma, as well as that of Theorem III.1, shows that (1)
there is a polynomial transformation of any instance of PAR-
TITION to an instance of the corresponding Pm|fiz;|Cpqz
problem, and (2) a partition exists if and only if an optimal
schedule for the Pm)|fiz;|C,q, problem also exists. Specifi-
cally, in both proofs, we include a number of gadget tasks in the
instance of the Pm/| fix;|C,, 4, problem that are independent of
the PARTITION instance, and select the C,,, ., value to ensure
that the second condition above is satisfied.

Lemma I11.3: The SA subproblem defined in the clockwise
direction of a bidirectional ring with N = 4 nodes and such that:

¢ all demands between non-adjacent nodes are routed in the

clockwise direction, and

e all demands between adjacent nodes are routed along

their (one-link) shortest path in the clockwise or counter-
clockwise direction, except for one such demand that is
directed to a three-link path in the clockwise direction,

is NP-complete.

Proof: If a traffic demand with a one-link shortest path in the
counter-clockwise direction is routed along the alternate clock-
wise three-link path, then the P4|fiz;|C,, ., problem defined
on the clockwise direction will include a three-processor task.
Without loss of generality, assume that this three-processor task
requires processors 3, 4, and 1 (similar arguments apply for any
other three-processor task). Given an instance of PARTITION,
we create an instance of this Py | fix;|C), ., as follows. For each
a; € A we create a task 7; with processing time p; = a; and
fixz; = {2} (note that these tasks must be executed by proces-
sor 2, the one that is not required by the three-processor task).
We also create the following eight gadget tasks:

task D fix;
T, B {1,2}
T, B/2 {3,4}
T, B {2,3}
T, B/2 {4,1}
T. B/2 {3,4,1}
T B {1}
T, B {3}

Ty 3B/2 {4}.
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Fig. 3. A feasible schedule with C),, ,, = 3B for the clockwise direction of
a four-node bidirectional ring with shortest-path routing except for one demand
routed along a three-link path.

If A can be partitioned into two disjoint sets A; and A
such that 3°, 4 =>_, c4, = B/2, then there is a feasible
schedule with C,, ., = 3B, as shown in Fig. 3.

Conversely, let us assume that there exists a feasible schedule
S with C), ., < 3B. Without loss of generality, suppose that
T, and T, are executed before T,. and T, in S; otherwise, we
can use similar arguments and reach the same conclusion. Then,
all the single processor tasks 77, 75, and T3 must be executed
immediately after 7, or 7} complete, as scheduling any other
task at that time would lead to a makespan greater than 35.
T, must also be scheduled exactly right after 75 and before 7,
otherwise it would not be possible to obtain the schedule with
length of at most 35. Using a similar argument, 7; must be
scheduled right after 7} and 73 and before 7., and in parallel
with T,.. The schedule corresponding to this set of tasks is shown
in Fig. 3 where only the intervals [B, 3B/2] and [5B/2, 3B] are
available for the execution of the PARTITION jobs on processor
2. Therefore, a partition must exist. [ |

B. Complexity Results for Rings With N > 5 Nodes

The next theorem states that the SA problem on five-node

bidirectional rings (and, hence, on any larger ring) is intractable.
Theorem III.1: The SA subproblem defined in the clockwise

direction of a bidirectional rings with N' = 5 nodes and shortest
path routing is NP-complete.

Proof: As the number of nodes is odd, there is a unique short-
est path for each traffic demand between any two non-adjacent
nodes; therefore, the problem in the clockwise direction includes
only the demands with a shortest path along the clockwise links.
The proof is by reduction from the PARTITION problem, and
follows an approach similar to the one we used in the proof of
Lemma IIL.3. Specifically, for each a; € A, we create a task 7;

task Dj fix;
T, 3B/2 {1,2}
T, 5B/2 {2,3}
T. B/2 {3,4}
Ty B {4,5}
T, 2B {5,1}
T 3B/2 {1}
T, 2B {3}
T3 7B/2 {4}
Ty 2B {5}.
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Fig. 4. A feasible schedule with C),,,,, = 5B for the clockwise direction of
a five-node ring with shortest path routing.

with processing time p; = a; and fiz; = {2}. We also create
the following set of tasks:

If there exists a partition of A into two disjoint sets 4; and
Ay suchthat 35, 4 =3, c4, = B/2, then we can execute
the tasks as shown in Fig. 4 and create a feasible schedule with
Cma,:r =5B.

Conversely, assume that there exists a feasible schedule S
with C},4, < 5B. Similar to the proof of Lemma III.3 and
without loss of generality, suppose that T, and T are executed
before T, and T, in S; otherwise, we can use similar arguments
and reach the same conclusion. We need to schedule 75 in
parallel with T}, and T}, otherwise the schedule length will ex-
ceed 5B. As T,; completes earlier than 7},, we need to execute
T, before T,. Therefore, 17 must be scheduled right after T},
and before 7,. On the other hand, 75 must be executed imme-
diately after T;, and 7. must be scheduled at the very end of
S, since if we change the order of execution of 73 and T, in
S, the makespan will be greater than 55. Finally, executing 7,
between [9B/2, 5B] means that T, must be scheduled immedi-
ately after 7T5. A feasible schedule corresponding to this set of
tasks is shown in Fig. 4 where only the intervals [3B/2, 2B] and
[9B/2,5B] are available for the execution of the PARTITION
jobs on processor 2. Thus, we conclude that a partition of A
must exist. |

C. Approximation Algorithms

In this section, we first provide approximation algorithms for
the SA problem on bidirectional rings with N = 5, 6 and 7 nodes
under shortest path routing. We then develop approximation
algorithms for bidirectional rings with N > 8 nodes. Since, as
we mentioned earlier, the WA problem is a special case of SA,
all approximation algorithms in this section also apply to WA.

1) Rings With N =5 — 7 Nodes:

Lemma I11.4: There exists an 1.5-approximation algorithm
for the SA subproblem defined on the clockwise direction of a
bidirectional ring with N = 5 nodes and shortest path routing.

Proof: As we mentioned earlier, in a five-node ring each traffic
demand has a unique shortest path. Therefore, the clockwise
direction serves 10(= 5 x 4/2) demands, and the corresponding
scheduling problem has 10 tasks as shown in Fig. 5, where the
subscript of each task indicates the processors required by the
task. Without loss of generality, let processor 3 be the dominant

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 33, NO. 1, JANUARY 1, 2015

Processor
1 Ty Ts1
ir, b—m——mm1—F------ —— o
2 T,
[REg—— T23 -
3 T3
- T34 -
4 Ty
N T45 7 ————————————
5 Ts /A Tsq
Cmax

Fig. 5.
routing.

Two-part schedule for a five-node bidirectional ring with shortest path

processor, i.e., the one that achieves the lower bound LB in (2).
Let OPT denote the optimal value of the makespan for this
problem; clearly, LB < OPT.

Consider now the seven tasks that do not require processor
3, shown in the left part of the schedule in Fig. 5. The schedul-
ing problem consisting of these seven tasks can be viewed as
the scheduling problem on a four-processor system (i.e., one
without processor 3), similar to the one depicted in Fig. 3—
but with three rather than four two-processor tasks. In essence,
this scheduling problem corresponds to the SA problem on the
clockwise direction of the five-node after removing the link cor-
responding to processor 3 and the three traffic demands using
that link. Based on our earlier result regarding the four-node
rings, these seven tasks can be scheduled optimally, as shown
on the left part of Fig. 5. Let OPT’ be the makespan of this
schedule; then, OPT" < OPT.

Now consider the three tasks that require processor 3. These
can be scheduled back-to-back without any gaps, as shown in
the right part of Fig. 5. The makespan of this schedule is equal
to L B. Hence, the makespan of the two-part, ten-task schedule
depicted in Fig. 5 is equal to: OPT" + LB < 2 x OPT.

We can improve the approximation ratio of 2 by modifying the
above two-part schedule as follows. Without loss of generality,
assume that Tb3 > Tj4 asindicated in Fig. 5; if T34 is larger than
T3, then simply reverse the roles in the following discussion.
In this case, we have that:

T3y < T3+ T
Ty + Tys + T34 = LB < OPT

0.5 x OPT. 3)

= 2734 <

=T34 <

Now slide the right part of the schedule in Fig. 5 (i.e., the
three tasks 73, T3 and T3,) as far left as possible so that tasks
T3 and/or T3 overlap with the tasks in the left part of the
schedule. Consider the resulting nine-task schedule, i.e., the one
consisting of all tasks of the problem except 75,. It can be seen
that this schedule is optimal for these nine tasks. Let O PT” be
the makespan of this nine-task schedule, and OPT” < OPT.
Scheduling task 73, immediately after the end of this schedule
results in a ten-task schedule of length O PT" + Tj,4. Using (3),
we conclude that the makespan of this schedule is no larger than
1.5 x OPT. [ ]
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Lemma I11.5: There exist 2-approximation algorithms for
the SA subproblem defined on the clockwise direction of bidi-
rectional rings with N = 6, 7 nodes and shortest path routing.

Proof: The proof is by construction of a two-part schedule
similar to the one we created for the proof of Lemma II1.4. The
proof is omitted due to its length, and the details are available
in the first author’s dissertation. |

2) Rings With N > 8 Nodes: We now present a general ap-
proximation algorithm for rings of any size. Consider the SA
problem defined on the clockwise direction of aring with N > 8
nodes and shortest path routing. The key idea is based on the
observation that if we remove a link from the ring along with the
traffic demands whose shortest paths use this link, the resulting
SA subproblem is equivalent to the SA problem on a directed
path with N — 1 nodes. Furthermore, the 2 + € approximation
algorithm in [29] for computing the interval chromatic number
of interval graphs can be used to solve the SA problem in chain
networks with the same performance bound [17]. Therefore,
the approximation algorithm for rings consists of the following
steps:

1) Formulate the PN|fix;|C), 4, problem for the clockwise
direction of the original ring.

2) Let processor N be the dominant processor (and relabel
the processors appropriately if necessary).

3) Remove processor [V and all tasks j that use this processor
(i.e., tasks j suchthat NV € fix;); the resulting scheduling
problem corresponds to the SA problemon a (N — 1)-link
chain.

4) Use the 2 + € approximation algorithm in [29] to create
schedule S; for the scheduling problem on the chain net-
work.

5) Schedule all tasks that use processor N sequentially with-
out any gaps to create schedule S».

6) Concatenate schedules S; and S, to create schedule S for
the ring network.

Let OPT be the optimal makespan for the ring network. By
construction, the makespan of Ss is equal to LB < OPT', while
the makespan of S; is no longer than (2 + ¢)OPT. Hence, the
approximation ratio of the above algorithm for an /N-node ring
is 3 + €, better than the 4 + 2¢ algorithm presented in [17].

D. Evaluation

The approximation ratios of the algorithms described in the
previous subsection correspond to worst-case inputs, and we
expect that the algorithms will perform better on average. To
investigate the average-case performance of the algorithms, we
have carried out simulation experiments on rings of various
sizes. We assume that the network supports the following data
rates (in Gbps): 10, 40, 100, 400, and 1000. For each problem
instance, we generate random traffic rates between every pair of
nodes based on one of three distributions: (1) Uniform: traffic
demands may take any of the five discrete values in the set
{10, 40, 100, 400, 1000} with equal probability; (2) Skewed low:
traffic demands may take one of the five discrete values above
with probabilities 0.30, 0.25, 0.20, 0.15, and 0.10, respectively
(i.e., the lower data rates have higher probability to be selected);
or (3) Skewed high: traffic demands may take one of the five
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Fig. 6. Average ratio of solutions produced by the approximation algorithms
to the lower bound.

discrete values above with probabilities 0.10,0.15,0.20,0.25,
and 0.30, respectively (i.e., the higher data rates have higher
probability to be selected). Once the traffic rates between every
source-destination pair have been generated, we calculate the
corresponding spectrum slots as follows. We assume that the
slot width is 12.5 GHz, and the 16-QAM modulation format,
such that demands of size 10, 40, 100, 400, and 1000 Gbps
require 1, 1, 2, 8, and 20 slots, respectively, consistent with the
values used in [30, Table 1].

Since the optimal solution is not known for rings with more
than four nodes, we compute the lower bound as in expression
(2). We then compute the ratio of the makespan produced by
the algorithm to the lower bound. Note that the lower bound is
not tight, as it ignores any gaps introduced by the scheduling of
incompatible tasks in the optimal solution. Therefore, this ratio
overestimates the difference between the solution produced by
the algorithm and the optimal one. Fig. 6 plots this ratio as a
function of ring size for the three demand distributions; each
data point in the figure represents the average of thirty random
problem instances.

As we can see, the average performance of the approximation
algorithms is significantly better than what their respective con-
stant (worst-case) ratios suggest. For instance, for a five-node
ring, the algorithm is within 15% of the lower bound although
its worst-case ratio is 1.5; whereas for a seven-node ring, the
worst-case ratio is 2, but the average ratio is at most 1.6. Further,
for rings of nine or more nodes, the worst-case ratio is 3, but
the average ratio is around 2. Recall that the average ratio is
relative to the lower bound, not the optimal, hence the actual
performance of the algorithms (i.e., compared to the optimal
solution) is better than the figure suggests.

Finally, we note that for the problem instances used to derive
the results of Fig. 6, the running time of the approximation
algorithms was about 15 ms on a 3.10 GHz 4-core Xeon CPU;
this value did not depend on the demand distributions or ring
sizes used in our experiments.

IV. RSA IN RINGS

Let us now turn our attention to the RSA problem in bidirec-
tional rings. Unlike the previous section where we assumed that
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traffic demands are routed on the shortest path, our objective
is to determine both a route and a spectrum allocation for each
demand. Since there are exactly two paths between each pair
of nodes in a ring network, the general RSA problem on rings
reduces to the RSA problem with £ = 2 fixed-alternate paths in
Definition II.1.

We first present results to establish the complexity of the
RSA problem in rings, followed by a new approximation al-
gorithm. Our discussion builds upon the results of Lemma II.1
which shows that the RSA problem with fixed-alternate routing
is a special case of the P |set]- |Cy o multiprocessor scheduling
problem.

A. Complexity Results

Lemma IV.1: The RSA problem in 3-node bidirectional rings
is solvable optimally in polynomial time.

Proof: We will show that in a bidirectional ring with N =
3 nodes, the solution in which each traffic demand takes the
shortest (i.e., one-link) path, is optimal.

Consider the corresponding P|set;|C), ., with six proces-
sors and six tasks. Clearly, the length of the longest task is
a lower bound on the optimal makespan, i.e., OPT > LB =

....6{p;j }. In the solution to the P|set;|C,,q, problem
defined by shortest path routing in the RSA instance, each task
is executed on a different single processor. Hence, the tasks are
pairwise compatible and may all start execution at time ¢ = 0.
Consequently, this solution is optimal as its makespan is equal
tomax;—1 _ 6{p;}. ]

Theorem IV.1: The RSA problem in 4-node bidirectional
rings is NP-Complete.

Proof: Consider a 4-node bidirectional ring with traffic de-
mands between each pair of nodes, for a total of 12 (=4 x 3)
types of demands. Let {1,2,3,4,1',2', 3’ 4'}, denote the eight
directed links of the network such that [ and I',] = 1,2, 3,4,
are the links in the clockwise and counter-clockwise direction,
respectively, between adjacent nodes in the ring. Also, assume
that, in the clockwise direction, link 1 is adjacent to 2, 2 is
adjacent to 3, 3 to 4, and 4 to 1, and similarly for links in the
counter-clockwise direction. Each demand may be assigned a
path in either the clockwise or counter-clockwise direction. For
instance, a demand may take either a one-link path (say, along
link 1) in the clockwise direction or the three-link path (along
links 4’, 3/, and 2') in the counter-clockwise direction.

The equivalent multiprocessor scheduling problem
P8|set;j|Cryqr has m =8 processors, which we assume
are labeled identically to the corresponding links, and is
constructed according to Lemma II.1. We will prove that this
scheduling problem is NP-Complete by reduction from the

PARTITION problem.
Given an instance of PARTITION, we create an
instance of P8|set;|C)q,; with the eight processors

{1,2,3,4,1',2,3",4'}. For each a; € A, we create a task 7;
with processing time p; = a; and set; = {{2}, {1’,4’,3'}};in
the equivalent RSA problem, this demand may be routed ei-
ther along link 2 in the clockwise direction or along the path
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Fig. 7. A feasible schedule for the RSA problem in a four-node bidirectional
ring with C',, 4 = 3B.

< 1’,4',3" > in the counter-clockwise direction. We also create
the following eleven gadget tasks:

task j D set;

T, B/2 {{2,3,4},{1'}}
Ty B {41143 2'}}
T. B2 {2,381 {1,4'}}
Ty B {{1;2};{4,~,3,}}
T, B/2 {{3,4,1}, {2'}}
Ty 3B {{3.4},{2",1"}}
T B/2 {{1}7{4/73,¢2/}}
T 3B/2  {{3},{2/,1,4'}}
Ts B {{4},{3",2",1'}}
T 3B {{4,1,2}, {3'}}
s 3B {{1,2.3}.{4'}}.

If it is possible to partition A into A; and A, such that
D eA, = Da,ea, = B/2, then there exists a feasible sched-
ule as shown in Fig. 7 with C,, .. = 3B.

Conversely, suppose that there exists a feasible schedule S
with C), .. < 3B. Since T, and T5 have length equal to 35,
they must be executed on their respective single-processor set;
scheduling either of them on the respective three-processor set
would create conflict with some other task, resulting in a longer
schedule. T, also of length 33, must be executed on its two-
processor set that is compatible with the single-processor sets
of T, and T5. Since all four processors 1’,2’, 3’, and 4" are busy
in the interval [0, 3B] (equivalently, the counter-clockwise di-
rection of the ring is fully utilized), the remaining tasks must
be assigned to the other four processors (equivalently, the cor-
responding demands must be routed in the clockwise direction)
to ensure that C), ., < 3B.

Without loss of generality, assume that 7}, is executed before
T, in S; otherwise, similar arguments can be used to reach the
same conclusion. 7] is the only remaining task that is compat-
ible with 7, and must be executed in parallel with the latter.
Then, tasks 7}, and 7. must be scheduled immediately after 7},
and 77 complete. Since 7, completes earlier than 73, T must
be executed immediately following T, otherwise the schedule
length for the clockwise direction would exceed 3B5. Similarly,
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as soon as T; completes execution, 7, and 73 must be sched-
uled in parallel. Finally, we note that the only remaining gadget
task, T, must be appended at the end of this schedule of tasks
to ensure that the makespan does not exceed 35. The schedule
corresponding to this ordering of tasks is shown in Fig. 7, where
only the intervals [B,3B/2] and [5/2B, 3B] are available for
the PARTITION jobs. Thus, a partition exists. |

B. Approximation Algorithms

The best approximation algorithm for the m-processor
scheduling problem Pm/|set;|C),,, was developed in [22]
and has a ratio of m/2. The algorithm proceeds in two
phases:

1) Processor Assignment: In the first phase, each task j is
assigned to one of its alternate processor sets in set ;. Con-
sider an assignment JF, and let L Bx denote the process-
ing time on the dominant processor under F, as given by
expression (2). A dynamic programming algorithm was
developed in [22] to obtain in pseudopolynomial time an
optimal assignment F* such that LB* = LBz is min-
imum over all possible assignments. Clearly, LB* is a
lower bound on the optimal makespan O PT for the orig-
inal Pm/|set;|Cy,q, problem, ie., LB* < OPT.

2) Task Scheduling: Given the assignment F*, the orig-
inal problem reduces to a Pm|fix;|Cy,q, problem in
which the objective is to schedule the tasks so as to min-
imize the makespan. A polynomial heuristic is used to
solve this problem, and it is shown that the makespan
C achieved by this scheduling heuristic is such that C' <
(m/2)LB*. Hence, the two-phase algorithm is an (1m/2)-
approximation algorithm for the original Pm/|set;|Ch, 42
problem.

The above two-phase approximation algorithm for
Pm|set;|Cy,q, corresponds to a natural decomposition of the
RSA problem into two subproblems that are solved sequentially:
a routing problem (in which a demand is assigned to either the
clockwise or counter-clockwise path in a manner that takes into
account the spectrum demands), and a SA problem (in which
spectrum is assigned to each demand along the path determined
by the solution to the routing problem).

Note that a ring with [V nodes has a total of m = 2N directed
links (i.e., processors in the corresponding scheduling problem).
Hence, a straightforward application of the two-phase approx-
imation algorithm to the RSA problem in rings would yield an
approximation ratio of N. However, as we noted earlier, once
the routing of demands has been determined, the clockwise
and counter-clockwise directions of the ring become indepen-
dent of each other and the corresponding SA problems may
be solved separately. Therefore, rather than solving a single
P2N|fixj|Cpq, problem in the second phase, it is only nec-
essary to solve two PN|fix;|Cpq, problems, one for each
direction of the ring. With this observation, the approximation
ratio of the two-phase algorithm for the RSA problem in rings
is N/2 rather than V.

We now show that it is possible to further improve the ap-
proximation ratio for the RSA problem in rings. First, we note
that linear time approximation ratios for the P4|fiz;|Ch,,, and
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P5|fixj|Cp g, problems with ratios of 1.5 and 2, respectively,
were developed in [31]. By using these algorithms in the task
scheduling phase above, rather than the general one presented
in [22], the two-phase algorithm yields approximation ratios of
1.5 and 2 for rings with N = 4 and N = 5 nodes, respectively.
For larger rings (i.e., N > 6), we leverage the approximation
algorithm for the SA problem we developed in Section III-C2
to obtain a two-phase approximation algorithm for the RSA
problem with a constant ratio that is smaller than N/2:

1) Routing: Use the dynamic programming algorithm in [22]
to assign each traffic demand to the clockwise or counter-
clockwise path.

2) Spectrum Assignment: Consider only the traffic demands
routed along the clockwise direction and assign spectrum
to them by solving the corresponding PN |fix;|Cyqx
problem with the approximation algorithm in Section III-
C2; repeat for the traffic demands in the counter-clockwise
direction.

Following similar arguments as in Section III-C2, we con-

clude that the above two-phase algorithm for the RSA problem
in N-node rings has an approximation ratio of 3 + e.

V. CONCLUDING REMARKS

We have studied the complexity of the RSA problem in bidi-
rectional rings and we have developed new constant-ratio ap-
proximation algorithms. In future work, we plan to apply multi-
processor scheduling theory to tackle the distance-adaptive RSA
problem in ring and mesh networks.

REFERENCES

[1]1 O. Gerstel, M. Jinno, A. Lord, and S. J B Yoo, “Elastic optical networking:
A new dawn for the optical layer?” IEEE Commun. Mag., vol. 50, no. 2,
pp. s12—s20, Feb. 2012.

[2] M. Jinno, H. Takara, and B. Kozicki, “Dynamic optical mesh networks:
Drivers, challenges and solutions for the future,” in Proc. 35th Eur. Conf.
Opt. Commun., Sep. 2009, pp. 1-4.

[3] G. Shen and M. Zukerman, “Spectrum-efficient and agile CO-OFDM op-
tical transport networks: architecture, design, and operation,” IEEE Com-
mun. Mag., vol. 50, no. 5, pp. 82-89, May 2012.

[4] G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on
OFDM-based elastic core optical networking,” IEEE Commun. Surveys
Tut., vol. 15, no. 1, pp. 65-87, Jan.—Apr. 2013.

[5] K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos, “Elastic band-
width allocation in flexible OFDM-based optical networks,” J. Lightw.
Technol., vol. 29, no. 9, pp. 1354-1366, Aug. 2011.

[6] M. Klinkowski and K. Walkowiak, “Routing and spectrum assignment in
spectrum sliced elastic optical path network,” IEEE Commun. Lett., vol.
15, no. 8, pp. 884-886, May 2011.

[7]1 L. Velasco, M. Klinkowski, M. Ruiz, and J. Comellas, “Modeling the
routing and spectrum allocation problem for flexgrid optical networks,”
Photon. Netw. Commun., vol. 24, pp. 177-186, 2012.

[8] S. Talebi, F. Alam, I. Katib, M. Khamis, R. Khalifah, and G. N. Rouskas,
“Spectrum management techniques for elastic optical networks: A sur-
vey,” Opt. Switching Netw., vol. 13, pp. 3448, Jul. 2014.

[9] L-F. Chao and M. C. Yuang, “Toward wireless backhaul using circuit

emulation over optical packet-switched metro WDM ring network,” J.

Lightw. Technol., vol. 31, no. 18, pp. 3032-3042, Sep. 2013.

C. Cao, H. Fu, J. Wang, X. Tan, and Y. Zhang, “Round robin ring for metro

wireless backhaul networks,” presented at the Asia Commun. Photon.

Conf., Beijing, China, Nov. 2013.

Q. Wei, J. Bazzi, M. Lott, and Y. Pointurier, “Multicast in mobile backhaul

with optical packet ring,” presented at the 6th Int. Workshop Sel. Topics

Mobile Wireless Comput., Lyon, France, Oct. 2013.

[10]

[11]



160

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

International Telecommunications Union. Ethernet Ring Protection
Switching, ITU-T Standard G.8032, Feb. 2012.

F. Musumeci, F. F. Puleio, and M. Tornatore, “Dynamic grooming and
spectrum allocation in optical metro ring networks with flexible grid,” pre-
sented at the Int. Conf. Transparent Opt. Netw., Jun. 2013, Paper We.A1.2.
C. Rottondi, M. Tornatore, A. Pattavina, and G. Gavioli, “Routing, modu-
lation level, and spectrum assignment in optical metro ring networks using
elastic transceivers,” IEEE/OSA J. Opt. Commun. Netw., vol. 5, no. 4, pp.
305-315, Apr. 2013.

Y. Wang, X. Cao, and Y. Pan, “A study of the routing and spectrum
allocation in spectrum-sliced elastic optical path networks,” in Proc. IEEE
INFOCOM, 2011, pp. 1503-1511.

1. Popescu, I. Cerutti, N. Sambo, and P. Castoldi, “On the optimal design
of a spectrum-switched optical network with multiple modulation formats
and rates,” IEEE/OSA J. Opt. Commun. Netw., vol. 5, no. 11, pp. 1275-
1284, Nov. 2013.

S. Shirazipourazad, C. Zhou, Z. Derakhshandeh, and A. Sen, “On routing
and spectrum allocation in spectrum-sliced optical networks,” in Proc.
IEEE INFOCOM, Apr. 2013, pp. 385-389.

S. Talebi, E. Bampis, G. Lucarelli, I. Katib, and G. N. Rouskas, “The
spectrum assignment (SA) problem in optical networks: A multiprocessor
scheduling perspective,” in Proc. Opt. Netw. Des. Model., May 2014, pp.
55-60.

E. Bampis, M. Caramia, J. Fiala, A. Fishkin, and A. Iovanella, “Scheduling
of independent dedicated multiprocessor tasks,” in Proc. 13th Annu. Int.
Symp. Algorithms Comput., 2002, vol. 2518, pp. 391-402.

J. A. Hoogeveen, S. L. Van de Velde, and B. Veltman, “Complexity of
scheduling multiprocessor tasks with prespecified processor allocations,”
Discree Appl. Math., vol. 55, pp. 259-272, 1994.

L. Bianco, J. Blazewicz, P. Dell’Olmo, and M. Drozdowski, “Scheduling
multiprocessor tasks on a dynamic configuration of dedicated processors,”
Ann. Oper. Res., vol. 58, no. 7, pp. 493-517, 1995.

J. Chen and Ch. Lee, “General multiprocessor task scheduling,” Nav. Res.
Logist., vol. 46, no. 1, pp. 57-74, 1999.

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 33, NO. 1, JANUARY 1, 2015

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

K. Jansen and L. Porkolab, “General multiprocessor task scheduling: Ap-
proximate solutions in linear time,” SIAM J. Comput., vol. 35, no. 3, pp.
519-530, 2005.

L. Torres A. Miranda, and J. Chen, “On the approximability of mul-
tiprocessor task scheduling problems,” in Proc. 13th Annu. Int. Symp.
Algorithms Comput., 2002, vol. 2518, pp. 403-415.

M. Kubal, “The complexity of scheduling independent two-processor
tasks on dedicated processors,” Inform. Process. Lett., vol. 24, no. 3,
pp. 141-147, 1987.

J. Chen and A. Miranda, “A polynomial time approximation scheme for
general multiprocessor job scheduling,” SIAM J. Comput., vol. 31, no. 1,
pp. 1-17,2001.

G. N. Rouskas, “Routing and wavelength assignment in optical WDM
networks,” in Wiley Encyclopedia of Telecommunications, J. Proakis, Ed.
New York, NY, USA: Wiley, 2001.

M. R. Garey and D. S. Johnson, Computers and Intractability. New York,
NY, USA: Freeman, 1979.

A. L. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold, and M. Thorup,
“Opt versus load in dynamic storage allocation,” SIAM J. Comput., vol.
33, no. 3, pp. 632-646, 2004.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and
A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-
sliced elastic optical path network,” IEEE Commun. Mag., vol. 48, no. 8,
pp. 138-145, Aug. 2010.

J. Huang, J. Chen, S. Chen, and J. Wang, “A simple linear time approxi-
mation algorithm for multi-processor job scheduling on four processors,”
J. Combinatorial Optim., vol. 13, pp. 3345, 2007.

Authors’ biographies not available at the time of publication.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


