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Abstract

We consider multichannel multihop lightwave networks with stations equipped with a small

number of transmitters and receivers. By assigning wavelengths to the receivers and transmitters

at each station, one can de�ne the logical connectivity of the network independently of the

underlying physical topology. The advent of fast tunable optical transmitters and receivers makes

it feasible to dynamically update the network connectivity to accommodate tra�c demands that

vary over time. Of major concern in such design is how the connectivity should react to changes

in tra�c patterns. The problem is formulated as a Markovian Decision Process and the properties

of the optimal con�guration policy are identi�ed. These properties are then used to develop an

algorithm for obtaining policies that make decisions similar to the decisions of the optimal policy.

A procedure is also proposed to manage the large state space for systems with a large number of

stations.



1 Introduction

Wave Division Multiplexing (WDM) is emerging as a promising technology for the next generation

of multiuser high-speed communication networks. WDM divides the low-loss wavelength spectrum

of the optical �ber into independent, non-overlapping channels, each operating at a data rate

accessible by the attached stations. The multiple channels introduce transmission concurrency and

provide a means to overcome the speed mismatch between electronics and optics. As a result,

WDM networks have the potential of delivering an aggregate throughput that can grow with the

number of wavelengths deployed, and can be in the order of Terabits per second.

In multihop networks each station is equipped with a small number of transceivers [1, 2]. An

assignment of transmit and receive wavelengths de�nes an interconnection pattern independent

of the underlying physical topology. Packets are relayed to their destination through, possibly,

intermediate stations, undergoing conversion from the optical to the electrical domain at each hop.

By properly assigning the wavelengths the connectivity can be optimized with respect to some

performance parameters. Techniques have been developed to minimize the mean packet delay [3],

and the maximum link ow [4], given some information about the network tra�c load.

In environments where tra�c demands change over time, it is desirable to have the network con-

nectivity dynamically respond to these changes. With the advent of fast tunable optical transceivers

[5], it is feasible to contemplate the design of such networks. Of major concern in such design is

when and how the connectivity should react to changing tra�c patterns. The approach taken by

Labourdette and Acampora [6] is to recon�gure the network infrequently, and only when the tra�c

pattern changes dramatically or when the current connectivity cannot accommodate the tra�c

load. Recon�guration is achieved through a series of branch exchange operations, whereby only

one pair of transceivers is retuned at a time. At the other extreme, Auerbach and Pankaj [7] have

devised a distributed algorithm to rearrange the connectivity at, potentially, the beginning of ev-

ery packet burst. Their algorithm recursively tries to establish 1-hop, 2-hop, etc., paths, and can

handle concurrent requests.

These approaches su�er from two problems. First, no attempt is made to model the e�ect of

the recon�guration phase on the overall network performance. The transition from one connec-

tivity to another incurs some cost due to packet loss, the control resources involved in transceiver

retuning, and the features of each recon�guration scheme; this cost is not taken into account in

the design process. A long recon�guration phase of branch exchange operations results in outdated

routing tables at all stations, and, consequently, misrouted packets, congestion and more packet

loss. Auerbach and Pankaj's scheme requires the execution of a very complex algorithm for every
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packet burst. Secondly, the issue of when to recon�gure the network has been decided upon a

priori, without investigating alternative solutions or considering the trade-o�s involved.

In this paper we start by modeling the e�ect of the recon�guration phase on network perfor-

mance in terms of packet loss. We then take this recon�guration penalty into account in the design

of recon�guration policies. Therefore, the recon�guration policy to be used and, consequently, the

frequency of recon�guration is determined by the extent of packet loss.

Following the introduction we present a model of the network and of the recon�guration phase.

In Section 3 we introduce the concept of a con�guration policy and in Section 4 we formulate

the problem as a Markovian Decision Process. Section 5 presents the properties of the optimal

con�guration policy, obtained for a small network. In Section 6 we develop an algorithm to obtain

good con�guration policies and Section 7 describes our approach to managing the state and decision

space explosion. Finally, Section 8 contains some concluding remarks.

2 Network Model

We consider a network ofN stations, each equipped with a small number, p, of transceivers attached

to a broadcast optical medium that can support C = pN wavelengths (see Figure 1). In a network

with tunable transmitters and �xed receivers (TT-FR), each receiver is assigned a unique receive

wavelength, while the transmitters can tune over the entire range of wavelengths; similarly for

a �xed-transmitter, tunable-receiver (FT-TR) network. An assignment of transmit and receive

wavelengths de�nes a logical connectivity. The tuning delay is de�ned as the time it takes a

transceiver to tune from one wavelength to another, and can be di�erent for di�erent transceivers

and/or wavelength pairs. For our purposes, knowledge of �min and �max, the minimum and

maximum tuning delays in the network, respectively, is su�cient.

We de�ne a template as a logical diagram that provides at least one path between any pair of

stations 1. For a given network (i.e., for a given N and p), a large number of di�erent templates

is possible. In general, the set of templates, T , that we will consider will be a subset of the set

of all templates, and will be derived using information about the tra�c characteristics. At any

time instant the connectivity will be described by a template � 2 T . The connectivity can be

changed to a new template � 0 2 T by assigning di�erent wavelengths to (retuning) all or some of

the transceivers.

1For this paper we assume that if a receiver of station i is tuned to a transmitter of station j, then a receiver of j

is also tuned to a transmitter of i; this, however, need not be true in general.
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Communication in the network is connection oriented; a connection must be established prior

to any data been transferred between any two stations. Connections are established by issuing

connect requests. A disconnect request is issued at the conclusion of a session. A connection, c, is

identi�ed by two end-point stations and its duration follows an exponential distribution with mean
1
�c
. The time between the termination of connection c until it is requested again is exponentially

distributed with mean 1
�c
.

2.1 The Recon�guration Phase

In general, recon�guration of the network connectivity from one template to another will be trig-

gered by the occurrence of an event (what constitutes a valid event will be de�ned formally later).

When such an event occurs, several actions must be taken:

1. A new connectivity (template) must be determined, based on the current connectivity and

the information carried by the triggering event.

2. The decision to recon�gure, as well as the new connectivity must be communicated to all the

stations, not just those that will have to retune their transceivers, since the routing tables

may need to be updated.

3. Finally, the actual transceiver retuning must take place.

The rest of the paper addresses the problem of determining what the new connectivity should

be. In this section we focus on the remaining two issues.

One option for reporting a recon�guration triggering event would be to have a dedicated station

detect the occurrence of events, process them and compute the new connectivity, and inform all

other stations. A distributed version would require each station to detect local events and report

them, possibly on a common control channel employing TDMA. In the latter case, the station

reporting an event may also compute and transmit the new connectivity. A problem may arise

due to concurrent events arriving at di�erent parts of the network. A solution would be to have

the stations report only the occurrence of events; at the end of each TDMA cycle on the control

channel all stations would use the same algorithm to determine the new connectivity based on the

events that took place during the last cycle.

Let tr be the time a recon�guration triggering event, e, takes place. The event will be detected

by one or more stations and will be reported to the network, possibly by one of the mechanisms

discussed above. Regardless of the speci�c implementation, the net e�ect is that station i will
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�nd out about the occurrence of e at time tr + Ti(e); Ti(e) is the delay introduced by the event

reporting mechanism. This delay is a function of the event e (if i detects e then Ti(e) = 0, otherwise

Ti(e) > 0), and, in general, Ti(e) 6= Tj(e) for i 6= j.

In order to eliminate inconsistencies in routing tables and minimize the need for synchronization

among the network stations, the recon�guration phase must be as short as possible. We, therefore,

require that all stations retune their transceivers \simultaneously". For the distributed environment

under consideration, in which the stations do not share a common clock, \simultaneously" should be

interpreted as \as soon as they �nd out about the recon�guration triggering event". In particular,

station i's actions at time tr + Ti(e) for each of its transceivers that needs to be retuned are as

follows:

1. Complete the transmission (reception) of the current packet, if any.

2. Retune the transceiver to the new wavelength. During retuning (which takes time anywhere

between �min and �max), update the routing tables to reect the new connectivity.

3. Start transmitting (receiving) packets as soon as retuning is complete.

If a transceiver does not need to be retuned, its operation is not a�ected.

2.2 The E�ect of the Recon�guration Phase on Network Performance

We are interested in the e�ect of the recon�guration phase on packet loss. Lost packets have to be

retransmitted, increasing the average delay experienced by an application. Also, some loss-sensitive

applications may not tolerate excessive packet loss. In this section we show how to compute the

packet loss incurred during the recon�guration phase for a TT-FR network. The analysis for the

case of tunable receivers is very similar and is omitted 2.

One point of the network is taken as the reference point, RP . RP has the property that the

optical signal passing through it is the combination of the signals of all the transmitters in the

network. Depending on the physical topology, RP would be the hub (for a star network), the bend

(for a D-bus), or the root (for a tree network). The propagation delay from station i to RP is given

by di.

2If the receivers are tunable, packet collisions are not possible. Packets can still be lost, however, if they reach the

intended receiver while the latter is in the process of retuning, or they may be received by the wrong station if recon-

�guration has taken place during their ight (recall that propagation delays dominate in high-speed environments).
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In Figure 2 we show the occurrence of a recon�guration event that causes the transmitter of

j (denoted by Xj) to retune to wavelength �, used previously by the transmitter of i (which now

will retune to a new wavelength). The vertical axis shows the distance of the two stations from

RP , while the horizontal axis represents time. The �gure shows a worst case scenario, in the sense

that (a) at time Tr+Ti when i is informed about the upcoming recon�guration, it has just started

a packet transmission on wavelength � and has to delay the retuning of its transmitter until the

transmission is completed, and (b) j starts retuning its transmitter at the earliest possible time,

tr + Tj, its tuning delay is equal to �min, and it has a packet to send immediately after tuning to

wavelength �. The �rst bit of j's packet will arrive at RP at time tr + Tj + �min + dj , while the

last bit of i's packet will arrive at RP at time tr +Ti+TP +di; TP is the packet transmission time.

As a result, there is a time period of length

Collision Interval =

8<
: di � dj + Ti � Tj + TP ��min; if di � dj + Ti � Tj + TP ��min > 0

0; otherwise
(1)

during which, packets by either i or j arriving at RP may collide; for a worst case scenario, we

may assume that all packets arriving at RP within this time interval will collide.

Observe that in some cases no packets will collide (for example, if in Figure 2 we interchange

the positions of i and j relative to RP ). Also, in the case of an ATM switch [8] when all stations

would be within the same room or building, we may have di � dj ; Ti � Tj ; 8 i; j; and the collision

interval can be as short as maxf0; TP � �ming. Another way to reduce packet loss is to delay

transmissions from station j in Figure 2 by a time �j such that

dj + Tj + �j � max
i
fdi + Tig (2)

provided that j has enough bu�er capacity to store packets arriving during a time interval equal

to �j .

In general, packet loss cannot be altogether eliminated. Our model can then be used to identify

limitations in the network size and frequency of recon�guration (more on this shortly), or the bu�er

requirements so that packet loss be kept within acceptable levels.

3 Con�guration Policies

The state of the network is de�ned as a tuple (v; �). v is a connection state that describes the

established connections; it can be described by a bit vector in which a 1 (0) in the c-th bit denotes
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that connection c is on (o�). � 2 T is a template representing the current network connectivity.

Changes in the network state occur at connect and disconnect request instants. Since we de�ne the

connect and idle times to have exponential distributions, our system is Markovian. We will refer

to 
, the set of all possible connection states, and T , the set of all templates, as the state and

decision spaces, respectively.

A network in state (v1; �1) will enter state (v2; �2) if a connection request or termination causes

the connection state to change form v1 to v2. Implicit in the state transition is that the system

makes a decision to recon�gure into template �2. In order to completely de�ne the Markovian

state transitions associated with our model we need to establish next template decisions. The

decision is a function of the current state and the next event and is denoted by d[(v; �); e]. Setting

d[(v; �); e] = �next implies that if event e occurs while the system is in this state, the network should

be recon�gured into template �next. Note that �next can be the same as � , in which case the decision

is not to recon�gure. A decision needs to be de�ned for each possible system state and for each

valid event. Disconnect requests for existing connections and connect requests for new connections

are the only valid events.

The set of decisions for all network states de�nes a con�guration policy. A given con�guration

policy in conjunction with the rates f�cg and f�cg completely de�nes a continuous time, discrete

state Markov process. Such a process, depending on the con�guration policy, might have multiple

chains and/or transient states.

Con�guration policies can be:

� Blocking or non-blocking. With a blocking policy connection requests may be blocked. A

non-blocking policy guarantees that any connect request can be satis�ed at any time.

� Rearranging or non-rearranging. With a rearranging policy, an ongoing connection may be

rerouted over di�erent paths. This is not allowed by a non-rearranging policy.

Since, by de�nition, a template provides full network connectivity, our policies will be non-

blocking. Insisting on a non-rearranging policy would mean that template changes are only allowed

when there are no on-going network connections; an uninteresting proposition. We, therefore,

allow our policies to be rearranging. Rearrangement of the path of an existing connection may

cause some packets to be lost. The extent of packet loss will be a factor determining the particular

con�guration policy to be used. Recovery from lost packets is assumed to take place via some

higher level (probably end-to-end) protocol.

Finally, it is important to emphasize that this work is concerned with policy selection and not
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with the mechanisms by which a policy can be implemented.

4 Markov Decision Process Formulation

Our objective is to obtain a con�guration policy such that the \cost" of running the network is

minimized. We now formulate the problem as a Markovian Decision Process (MDP). There are

two ways in which an MDP incurs cost:

1. Transition Cost, which is incurred in a lump sum when a state transition occurs, and

2. State Occupancy Cost, which is directly proportional to the time spent in each state.

The transition (i.e., recon�guration) cost from state (v1; �1) to state (v2; �2) is a function of the

two templates �1 and �2 and is incurred due to the packet loss and the control resources involved

in transceiver retuning. Let �(t) be the number of times the template had to be changed up to

time t under some policy, z. Let rk; k = 1; : : : ; �(t); be the number of packets lost during the k-th

recon�guration, and l(t) be the number of packets generated in the network up to time t. We de�ne

the average recon�guration cost, Rz , incurred by policy z, as:

Rz = lim
t!1

inf

P�(t)
k=1 rk
l(t)

(3)

Rz is the fraction of packets lost during the operation of the network under policy z.

We consider a state occupancy cost that is proportional to the distance travelled by a packet,

referred to as hop cost. Let (v(t); �(t)) be the network state at time t, and hc(�) be the distance

travelled by packets of connection c when the connectivity is described by template � . The average

\hop" cost incurred by policy z is then given by 3

Hz = lim
t!1

inf
1

t

Z t

0

P
c2v(t) hc(�(t))P

c2v(t) 1
dt (4)

We de�ne the total cost for policy z as:

Az = �Hz + �Rz (5)

where � and � are weights assigned to the costs.

3We will use c 2 v to denote that connection c is \on" in the connection state v.
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The basic idea is to use these weights to appropriately de�ne a total performance measure.

Consider for example the case when the important performance measure is average packet delay. Let

� be 1=�, where � is the speed of light in the optical medium. Let � be the average time-out interval.

Then �Rz is the extra delay experienced by packets that are lost and have to be retransmitted,

and Az gives the average packet delay. On the other hand, for some loss-sensitive applications the

only performance measure may be packet loss, in which case we may set � = 0; � = 1.

Howard [9] has developed a policy-iteration algorithmwhich is guaranteed to produce a con�gu-

ration policy that minimizes Az for our model. A di�culty in applying Howard's algorithm is that

its complexity is directly proportional to the number of network states and events, which grows

very rapidly with N and j T j (see Appendix A for a description of this algorithm and a discussion

on its complexity). In general, it is not possible to apply Howard's algorithm to obtain the optimal

con�guration decisions. Our approach is to apply the algorithm to a small system and identify the

properties of optimal con�guration policies. These properties are then used to develop techniques

to obtain con�guration policies for larger systems.

5 Properties of the Optimal Con�guration Policy

We now consider a network with N = 4 and p = 2. There are 6 di�erent connections for this

network, which can be operating in any of the 3 interconnection patterns (templates) shown in

Figure 3. Note that when p = 2, for any N , the stations will be connected as a ring. The valid

connections and the numbers we will use to refer to them are shown in Table 1. Table 2 lists, for

sixteen of the connection states, the template(s) that provide the minimum total hop cost. The

table will help us interpret the decisions of the optimal con�guration policies.

connection connection No connection state

(1,2) 1 (0,0,0,0,0,1)

(1,3) 2 (0,0,0,0,1,0)

(1,4) 3 (0,0,0,1,0,0)

(2,3) 4 (0,0,1,0,0,0)

(2,4) 5 (0,1,0,0,0,0)

(3,4) 6 (1,0,0,0,0,0)

Table 1: Connections and corresponding connection states for N = 4
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Figure 3: Templates for N = 4 and p = 2. Each link is bidirectional

For this network we were able to obtain the optimal con�guration policy using Howard's algo-

rithm, but only after setting �6 = �6 = 0 (connection 6 was never used). For the results presented

here and in the following sections we have made the following simplifying assumptions. First, the

distance between any pair of stations was taken to be equal to 1. Secondly, we assume that a con-

nection is always routed over a minimum distance path in the current template. Finally, instead of

(3) we used

Rz = lim
t!1

inf
1

t

�(t)X
k=1

sk (6)

where sk denotes the number of transceivers retuned in the k-th recon�guration instant. We feel,

however, that our conclusions about the relative performance of the various policies are not a�ected

by these simpli�cations (the e�ect of di�erent levels of packet loss was captured by adjusting the

value of �).

The next template decisions of the optimal policy for di�erent values of � and � are shown

in �gures 4 - 11, where we show what the next template will be if the network is at the current

connection state and makes a transition to the next connection state. For ease of presentation,

we only show results for connection states 0 to 15 that do not involve connections 5 and 6. Very

similar results have been obtained for the states not shown here.

In Figures 4 - 6 we show the next template decisions when the network is operating in any

of the templates 1, 2 or 3, and � = � = 1. For all connections we assume that �c = �c = 1 4.

4Note that �c
�c+�c

is the percentage of time that connection c is \on". The higher this value, the more the hop

cost the network will incur due to connection c.
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connection state optimal templates hop cost

0 = (0,0,0,0,0,0) 1,2,3 0

1 = (0,0,0,0,0,1) 1,3 1

2 = (0,0,0,0,1,0) 2,3 1

3 = (0,0,0,0,1,1) 3 2

4 = (0,0,0,1,0,0) 1,2 1

5 = (0,0,0,1,0,1) 1 2

6 = (0,0,0,1,1,0) 2 2

7 = (0,0,0,1,1,1) 1,2,3 4

8 = (0,0,1,0,0,0) 1,2 1

9 = (0,0,1,0,0,1) 1 2

10 = (0,0,1,0,1,0) 2 2

11 = (0,0,1,0,1,1) 1,2,3 4

12 = (0,0,1,1,0,0) 1,2 2

13 = (0,0,1,1,0,1) 1 3

14 = (0,0,1,1,1,0) 2 3

15 = (0,0,1,1,1,1) 1,2 5

Table 2: Optimal templates and hop costs for connection states

Observe that in all cases the next template decision depends only on the next connection state:

decisions are the same along a horizontal line. Let us consider decisions out of template 3 (Figure

6). We see that the network either remains at the same template or recon�gures to template 2.

Recon�guration takes place only if the next connection state incurs lower hop cost at template 2.

However, for some next connection states, the network does not recon�gure to the template that

provides lower hop cost for this next state (for example, see the decisions when the next connection

state is 5,9 or 13). Similar observations can be made for the decisions when at template 1 (Figure

4).

It is interesting to see that when at template 2, the decisions are not to recon�gure. Therefore,

regardless of which template it is started at, the network will eventually be operating at template

2. Similar results have been obtained by increasing the value of �, and can be explained as follows.

For this set of values for f�cg and f�cg, the average hop cost is minimized when the network is at

template 2. Since the importance of the recon�guration cost is relatively high, the network tends

to enter template 2 and stay there, thus incurring zero recon�guration cost (see (3) or (6)).
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We then increase the relative importance of the hop cost by setting � = 5 and keeping all other

parameters the same. The next template decisions are shown in Figures 7 - 9. The next template is

always a template in which the next connection state incurs the minimumhop cost (if this template

is di�erent than the current template, the decision is always to recon�gure). Similar results have

been obtained for larger values of �. We can see that when the hop cost is important, the network

tends to recon�gure to templates that favor the next connection state.

In Figure 10 we show the decisions out of template 2 when � = 0 (the actual value of � is

not important as long as � > 0). The next template is again one that provides the minimum hop

cost for the next connection state. In particular, although the current template may provide this

minimum cost, the decision sometimes is to recon�gure, as for example in the transition from state

6 to state 2. This, of course, is due to the fact that there is no recon�guration cost involved.

Finally, Figure 11 shows the decisions when the network is at template 2 and � = � = 1. In

this case however, the value of �c
�c+�c

is equal to 0.5 for connection 1 and is equal to 0.1 for all

other connections. Figure 11 (which is identical to Figure 8) should be compared to Figure 5 for

which the value of �c
�c+�c

= 0:5 for all connections. In the new network, connection 1 incurs more

hop cost per unit time than any of the other connections, because of its longer average duration.

For this set of values for f�cg and f�cg no template is favored, in terms of the hop cost incurred

when the network is operating in it. Thus, the network keeps changing template (decisions out of

templates 1 and 3 are the same as in Figures 4 and 6). This example shows how di�erent values

for f�cg and f�cg inuence the decisions taken by the optimal con�guration policy.

Based on the above experiments and from various common sense arguments it can be surmised

that the basic pattern followed by an optimal con�guration policy is as follows:

When the recon�guration cost is heavily weighted compared to the hop cost, the de-

cisions most of the time are not to recon�gure. Usually, a template that provides the

minimum average hop cost is preferred: if the network enters this template, it will stay

there forever. As the relative weight of the hop cost is increased the network tends to

recon�gure to templates in which it incurs lower hop cost at the expense of incurring

some recon�guration cost. When the weight of the hop cost exceeds a certain threshold,

the network, at each transition, recon�gures to one of the templates that provide the

minimum hop cost for the next connection state.

The policies at the two ends of the policy \spectrum" (the no recon�guration policy and con�gure

for minimum hop cost policy) can be easily determined. However, the points at which these policies

become optimal are not easy to determine as they depend on tra�c parameters f�cg and f�cg. In
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Figure 7: Next template decisions at template 1, � = 5; � = 1; �c = �c = 1; c = 1; : : : ; 5; �6 = �6 = 0
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Figure 8: Next template decisions at template 2, � = 5; � = 1; �c = �c = 1; c = 1; : : : ; 5; �6 = �6 = 0
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Figure 9: Next template decisions at template 3, � = 5; � = 1; �c = �c = 1; c = 1; : : : ; 5; �6 = �6 = 0
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Figure 10: Next template decisions at template 2, � = 1; � = 0; �c = �c = 1; c = 1; : : : ; 5; �6 =

�6 = 0

what follows we concentrate on a class of policies for which the decision as to which template to

use upon entering a new connection state is only a function of that state, or

d[(v; �); e] = �next = f(vnext) (7)

Our examination of this class of policies is motivated by two factors. First, it is relatively

straightforward to compute the cost of such policies (partly because they induce an ergodic Markov

process). Secondly, this type of policy has been observed in our experiments for a wide range of

parameters.

6 Near-Optimal Policies

Our objective is to �nd, within the class of policies described by (7), a dynamic con�guration

policy with low cost. Our approach is to start with the optimal policy in the case of � = 0 (i.e.,

the recon�guration cost is not considered) and modify it to make decisions similar to those of the

optimal policy for � > 0. When � = 0 the optimal policy dictates that the network be recon�gured

to the minimum hop cost template for the new connection state. Such a policy obviously falls into

the class de�ned by (7).

For the class of policies de�ned by (7) the Markov process consists of a single chain and there

are no transient states. We can then compute the hop and recon�guration costs as follows.

15



0 2 4 6 8 10 12 14

Current connection state

0

2

4

6

8

10

12

14

Next
connection

state

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2
2

2

2

2

2 2

2

2

2

2

2

2

3 3 3 3

Figure 11: Next template decisions at template 2, � = 1; � = 1; �c = 1; c = 1; : : : ; 5; �1 = 1; �c =

9; c = 2; : : : ; 5; �6 = �6 = 0

Hz =
X
v2


P (v) HopCost(v; f(v)) (8)

Rz =
X
v2


P (v) ReconfCost(v; f(v)) (9)

ReconfCost(v; �) =
X
u2


vu RCost(�; f(u)) (10)

P (v) =

 Y
c2v

�c
�c + �c

!0@Y
c 62v

�c
�c + �c

1
A (11)

P (v) is the probability that the network is in connection state v, HopCost(v; �) is the hop

cost and ReconfCost(v; �) is the recon�guration cost that the network incurs when at state v and

template � , RCost(�i; �j) is the cost to recon�gure from template �i to template �j , and vu is the

transition rate from state v to state u 5.

Our approach to obtaining a good con�guration policy is described by the following heuristic.

5vu is equal to �c or �c for some connection c, or zero if no single connect/disconnect request can take the

connection state from v to u.

16



Heuristic 1

1. Optimal Policy for � = 0. For each connection state v let � be the template for which the

hop cost of v is minimized. Set f(v) = � .

2. Local Improvement. For each v consider all � 2 T as possible candidates for f(v). Let � 0 be

a template such that

�HopCost(v; � 0) + �ReconfCost(v; � 0) = min
�2T

f�HopCost(v; �)+ �ReconfCost(v; �)g

Set f(v) = � 0. Repeat for all v until no further cost reduction is possible.

3. Template Removal. For each � 2 T do the following: for each v such that f(v) = � , set

f(v) = � 0 2 T � f�g and � 0 is selected as in Step 2. If the new policy incurs lower cost set

T = T � f�g, otherwise restore the old policy. Repeat for the new T until no further cost

reduction is possible.

After producing a policy optimal for � = 0, Step 2 of the heuristic goes through the state

space and modi�es the decisions at each state (using information only about the state and the

transitions out of it) to improve the initial policy. Step 3 goes through the decision space and

removes templates (i.e., the �nal policy does not consider them as decision alternatives 6) if the

cost of making a transition to these templates is high. The degree by which the �nal policy

di�ers from the initial and intermediate policies depends on the relative importance of the hop and

recon�guration costs (the relative values of � and �).

6.1 Numerical Results

Heuristic 1 was applied to a network with N = 5 stations and p = 2 transceivers per station.

Results for two sets of values for f�cg and f�cg are presented in Tables 3 and 4. The costs incurred

by the initial policy and the policies after Steps 2 and 3, as well as the number of templates active

for the �nal policy are shown; the value of � was set to 100 and we varied the value of �. The costs

for all policies were computed using (5) and expressions (8) - (11).

The costs presented in Tables 3{6 can be interpreted as follows. Since we have assumed unit

distances among network stations, the hop cost Hz is a measure of the total number of hops

ongoing connections are routed over. Also, according to (6), the recon�guration cost Rz is the

average number of transceivers retuned per unit of time. If we think of � as the average packet

6We say that a template � is \active" if 9v 2 
 : f(v) = � ; otherwise, � is \removed" in Step 3.
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delay (propagation plus processing plus queueing) per hop, and of � as the extra delay per retuned

transceiver introduced in a unit of time as a result of recon�guration (e.g., by means of packet loss),

then �Hz + �Rz is the average total delay in the network.

From the tables we observe that for a given value of � > 0, Steps 2 and 3 of Heuristic 1 improve

on the cost of the policy produced by the previous step. As � increases the �nal policies incur higher

hop cost and lower recon�guration cost; this is desirable as the importance of the recon�guration

cost increases with �. Also, templates for which the recon�guration cost is prohibitively high are

not considered by the policies for high � values; when � exceeds a certain threshold the best policy

is to choose one template and never recon�gure.

6.2 Further Improvement of the Final Policy

It is possible to further re�ne the �nal policy of Heuristic 1 to obtain a lower cost policy. This can

be done, if there are at least two templates that have not been removed, by noting the following.

Suppose the network is in state v and template � = f(v) when an event causes a transition to

state u for which f(u) = � 0 6= � . If HopCost(u; �) � HopCost(u; � 0), it is better for the network

to remain at template � than to recon�gure to template � 0. Obviously, it will incur no greater hop

cost in � . But also, the recon�guration cost will be decreased since the network will occur no cost

for this state transition. A fourth Step can be introduced in Heuristic 1 that considers all states

and active templates to set

d[(v; �); e] = � if HopCost(vnext; �) � HopCost(vnext; f(vnext)) (12)

The new policy will incur lower cost than the policy at the end of Step 3. Unfortunately, this

policy is not in the class of policies de�ned by (7), as its next template decisions are based on

both the next connection state and the current template, and we do not yet have an e�cient and

accurate method for computing its cost.

7 Con�guration Policies for Large Systems

As the number of states and alternatives per state grows exponentially with N and j T j, Heuristic

1 becomes ine�cient even for networks of moderate size since it operates on the whole state and

decision spaces. We now propose a way to manage the state and decision space explosion.

Managing the Connection State Space. The �rst component of our approach deals with

de�ning a set of \important" connection states. We, therefore, restrict our attention to a small
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� Policy for � = 0 Policy After Step 2 Policy After Step 3 Active

�Hz + �Rz Hz Rz �Hz + �Rz Hz Rz �Hz + �Rz Templates

0 668.03 6.68 2.90 668.03 6.68 2.90 668.03 12

5 682.52 6.68 2.09 678.47 6.68 2.09 678.47 12

10 697.01 6.68 2.08 688.89 6.68 2.08 688.89 12

20 725.99 6.69 2.02 709.05 6.85 0.77 700.77 3

40 783.95 6.89 0.40 704.84 6.93 0.17 699.34 4

50 812.93 6.91 0.22 701.84 6.92 0.17 700.66 5

80 899.87 6.91 0.21 707.85 6.93 0.16 705.38 4

100 957.83 6.91 0.21 712.04 6.93 0.16 708.51 3

110 986.81 6.91 0.21 714.13 7.01 0.08 709.86 2

150 1102.73 6.91 0.21 722.42 7.10 0.00 710.06 1

Table 3: Results for N = 5, � = 100, �c = 0:1 and �c = 0:01 � c2; c = 1; : : : ; 10

� Policy for � = 0 Policy After Step 2 Policy After Step 3 Active

�Hz + �Rz Hz Rz �Hz + �Rz Hz Rz �Hz + �Rz Templates

0 438.11 4.38 3.24 438.11 4.38 3.24 438.11 12

5 454.30 4.38 2.74 451.80 4.38 2.74 451.80 12

20 502.87 4.38 2.73 492.75 4.38 2.73 492.75 12

30 535.25 4.39 2.63 518.19 4.59 1.78 512.11 5

40 567.62 4.43 2.34 536.20 4.67 1.24 516.58 3

50 600.00 4.45 2.21 554.87 4.71 1.00 521.15 4

60 632.38 4.45 2.17 575.35 5.04 0.00 504.41 1

Table 4: Results for N = 5, � = 100, �c = 0:1; c = 1; : : : ; 10 and �c = 0:0111; c = 1; : : : ; 5; �c =

0:9; c= 6; : : : ; 10
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subset,
P , of the connection state space. To this end we use algorithmORDER-II [10] to e�ciently

enumerate the most probable connection states until a desirable degree, P ; 0 < P � 1, of coverage

of the state space, is obtained. The main justi�cation for doing this lies in the fact that the network

will be operating in one of the \important" states most of the time. In addition, the number of

these states will in general be a very small fraction of the total number of states.

Managing the Decision Space. Secondly, we only consider a small number, M , of templates.

These templates may be selected randomly. However, since we are interested in minimizing the

cost the network will occur while in the connection states in 
P , we can select a set of templates

that optimize the hop cost for these states as follows: (a) Partition 
P in M sets �1; : : : ; �M , and

(b) for each set �k �nd a template �k that maximizes the one hop tra�c for the connection states

in the set. Finding such a template is similar to the Connectivity Problem in [4], a transportation

problem that can be solved using a specialized version of the Simplex algorithm.

Heuristic 2 describes our approach to managing the large state and decision spaces. By adjusting

the values of P and M we can trade the quality of the �nal policy for speed.

Heuristic 2

1. Given P , use ORDER-II [10] to produce 
P .

2. Given 
P and M obtain a set of templates, T , such that j T j= M .

3. Apply Heuristic 1 to obtain f(v) 2 T for all states v 2 
P .

4. For each v and � 2 T , if event e takes the network to u 62 
P , set d[(v; �); e] = � .

Heuristic 2 optimizes the decisions for the states in 
P in which the network will be operating

most of the time. In addition, Step 4 ensures that when the network makes a transition to a

connection state not in
P the decision is not to recon�gure, and no recon�guration cost is incurred.

The hop cost experienced while in states not in 
P is not expected to constitute a signi�cant part

of the total cost, as the network will spend only a small amount of time in these states. An

upper bound on this extra cost (not included in the cost of the policy produced in Step 3) is

(1�P)HopCostmax, where HopCostmax is the highest hop cost incurred by any state.

7.1 Numerical Results

In this section we apply Heuristic 2 to a network with N = 16; p = 2 and tra�c parameters as

in Tables 5 and 6. Using algorithm ORDER-II we obtain a 90% coverage of the state space by

considering the 2047 most probable connection states, only a tiny fraction of the total number of
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states, which is equal to 2120. The results presented in the two Tables are for M = 15, and two

di�erent sets of templates; for the �rst set the templates were chosen randomly, while for the second

they were selected so as to minimize the hop cost of the connection states in 
P . Again, � was

�xed at 100 and only the value of � was varied.

Regarding the properties of the policies produced as the value of � increases, we can make

observations similar to the ones for tables 3 and 4. In addition, we note how the particular set

of templates a�ects the quality of the policies. A comparison of Tables 5 and 6 reveals that the

the policies for the second set of templates outperform the corresponding policies for the �rst

set. Although when operating on the second set of templates the network incurs slightly higher

recon�guration cost, the lower hop cost more than makes up for the di�erence.

8 Concluding Remarks

We have considered multichannel multihop networks with stations equipped with a small number

of tunable transceivers, and we have studied the problem of updating the network connectivity in

response to changes in the tra�c pattern. The problem has been formulated as a Markov Decision

Process. Two costs have been considered: the fraction of packets lost as the network recon�gures

from one interconnection pattern to another, and the distance that connections are routed over.

Associated with each state transition in our model, is a decision to recon�gure the network, de�ning

a con�guration policy. Although an algorithm to obtain the optimal con�guration policy exists, it

can not be applied to networks of practical interest due to the state and decision space explosion.

We have used this algorithm to identify the properties of the optimal policy, based on which we have

developed heuristics to obtain policies that make decisions similar to the decisions of the optimal

policy.
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� Policy for � = 0 Policy After Step 2 Policy After Step 3 # of Active

�Hz + �Rz Hz Rz �Hz + �Rz Hz Rz �Hz + �Rz Templates

0 1790.03 17.90 1.22 1790.03 17.90 1.22 1790.03 15

50 1850.83 17.90 1.18 1848.71 17.90 1.16 1848.42 14

100 1911.72 17.90 1.18 1907.47 17.92 1.14 1905.51 13

150 1972.61 17.90 1.18 1966.23 17.95 1.11 1961.23 12

200 2033.50 17.90 1.18 2024.99 18.16 0.98 2011.67 8

250 2094.38 17.90 1.18 2083.76 18.24 0.94 2058.79 7

300 2155.27 17.90 1.17 2142.17 19.01 0.53 2060.57 6

500 2398.83 17.91 1.17 2374.31 20.37 0.07 2069.90 2

600 2520.60 17.92 1.16 2488.22 20.71 0.00 2071.31 1

Table 5: Results for N = 16, P = 0:9, M = 15, � = 100, �c = 0:194; �c = 0:1; c = 1; : : : ; 11 and

�c = 0:1; �c = 99:9; c= 12; : : : ; 120 (�rst set of templates)

� Policy for � = 0 Policy After Step 2 Policy After Step 3 Active

�Hz + �Rz Hz Rz �Hz + �Rz Hz Rz �Hz + �Rz Templates

0 1222.12 12.22 1.46 1222.12 12.22 1.46 1222.12 15

50 1294.68 12.22 1.41 1292.54 12.22 1.40 1292.51 14

100 1367.44 12.22 1.41 1363.16 12.28 1.33 1361.43 11

150 1440.20 12.22 1.41 1433.78 12.32 1.30 1427.64 9

200 1512.95 12.22 1.41 1504.38 12.37 1.27 1490.81 7

250 1585.71 12.22 1.41 1575.00 12.55 1.19 1553.03 6

300 1685.47 12.22 1.41 1645.66 13.03 0.96 1591.95 4

500 1949.50 12.26 1.39 1921.24 15.98 0.00 1597.85 1

Table 6: Results for N = 16, P = 0:9, M = 15, � = 100, �c = 0:194; �c = 0:1; c = 1; : : : ; 11 and

�c = 0:1; �c = 99:9; c= 12; : : : ; 120 (second set of templates)
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A Howard's Policy-Iteration Algorithm

Consider an ergodic, continuous-time, discrete-space Markov process with rewards. Let K be the

total number of states of the process, and let li be the number of alternatives when the system is

at state i. We call �mij the transition rate from state i to state j under alternative m; 1 � m � li,

and rmij the reward (or cost) of making a transition from state i to state j under alternative m;

similarly, rmii is the reward earned (or cost incurred) per unit time by the system while at state i.

Howard's algorithm [9] can be used to develop a policy, i.e., a set of alternatives, one for each state,

that maximizes the long term rewards (or minimizes the cost) of the system.

Initially an arbitrary policy is speci�ed from which all state transition rates are determined.

The �rst stage of Howard's policy-iteration algorithm, the Value-Determination Operation, uses �ij

and Qi to solve the set of equations

A = Qi +
KX
j=1

�ij Vj ; i = 1; : : : ; K (13)

Vj is a measure of the cost of occupying state j, A is a relative measure of the long term average

system cost, and Qi is the expected immediate reward for state i, given as Qi = rii +
P

j 6=i �ijrij ;

there is no need for a superscript m in these expression, because the establishment of a policy

has determined the rates and rewards for the system. In the second stage of Howard's algorithm,

the Policy-Improvement Routine, we use the V 's obtained from the �rst stage and obtain a new

con�guration policy, i.e., a new alternative m0 for each state, and therefore new state transition

rates �ij , such that

Qm0

i +
KX
j=1

�m
0

ij Vj = min
m=1;:::;li

8<
:Qm

i +
KX
j=1

�mij Vj

9=
; i = 1; : : : ; K (14)

The new values for �ij are used in the next iteration of the algorithm. The two stages are repeated

until the policy remains unchanged for successive iterations. At this point the algorithm has

converged and the policy is optimal with respect to minimizing A. Note that Howard's algorithm

is guaranteed to converge [9].

Expression (13) requires the solution of a set of K linear equations, while expression (14)

considers li alternatives per state. For our model, a state is described by (v; �);v 2 
; � 2

T ; since j 
 j= 2N , then K = 2N j T j. There are N(N�1)
2 valid events (connect/disconnect

requests) per state, and for each event any template can be chosen as �next, resulting in j T j
N(N�1)

2

alternatives per state. Thus, the complexity of the algorithm is determined by (13) and (14) as

O

��
2N j T j

�3
+
�
2N j T j

�
j T j

N(N�1)
2

�
per iteration, and is impractical to apply in this form

even for N = 5.
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