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We study the problem of carrying voice calls over a LEO satellite network, and we present an analytical
model for computing call blocking probabilities for a single orbit of a satellite constellation. We have devised a
method to solve the corresponding Markov process eÆciently for up to 5-satellite orbits. For orbits consisting
of a larger number of satellites, we have developed an approximate decomposition algorithm to compute the
call blocking probabilities by decomposing the system into smaller sub-systems, and iteratively solving each
sub-system in isolation using the exact Markov process. Our approach can capture blocking due to hand-o�s
for both satellite-�xed and earth-�xed constellations. Numerical results demonstrate that our method is
accurate for a wide range of traÆc patterns and for orbits with a number of satellites that is representative
of commercial satellite systems.
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1. Introduction

Currently, we are witnessing an increase in the demand for a broad range of wireless telephone and internet
services. Satellite based communication is posed to provide mobile telephony and data transmission services
on a worldwide basis in a seamless way with terrestrial networks. Satellite systems are location-insensitive,
and they can be used to extend the reach of networks and applications to anywhere on the earth.

Satellites can be launched in di�erent orbits, of which, the low earth orbit (LEO), the medium earth orbit
(MEO), and the geo-stationary orbit (GEO), are the most well-known. LEO satellites, which are the subject
of this work, are placed in orbits at an altitude of less than 2000 Km above the earth. Their orbit period is
about 90 minutes, and the radius of the footprint area of a LEO satellite is between 3000 km to 4000 km.
The duration of a satellite in LEO orbit over the local horizon of an observer on earth is approximately 20
minutes, and the propagation delay is about 25ms. A few tens of satellites on several orbits are needed to
provide global coverage.

In a LEO system, satellites may communicate directly with each other by line of sight using intraplane
inter-satellite links (ISL) which connect satellites in the same orbital plane and interplane ISLs which connect
satellites in adjacent planes. ISLs introduce 
exibility in routing, they can be used to build in redundancy
into the network, and they permit two users in di�erent footprints to communicate without the need of a
terrestrial system. A constellation of satellites may provide either satellite-�xed cell coverage or earth-�xed
cell coverage. In the �rst case, the satellite antenna sending the beam is �xed, and as the satellite moves
along its orbit, its footprint and the cell move as well. In the case of earth-�xed cell coverage, the earth
surface is divided into cells, as in a terrestrial cellular system, and a cell is serviced continuously by the same
beam during the entire time that the cell is within the footprint area of the satellite.

As satellites move, �xed and mobile users hand o� from one satellite to another (satellite hand-o�). The
velocity of a satellite is much higher than the velocity of objects on earth. Therefore, the number of hand-o�s
during a telephone call depends on the call duration, the satellite footprint size and the satellite speed, while
the location and mobility of a user only e�ects the time a hand-o� takes place. In an earth-�xed system,
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all satellite hand-o�s occur periodically at the same time. In a satellite-�xed system, a user may be handed
o� to the satellite behind, as the cell de�ned by the beam moves away from the user. The newly entered
satellite, may or may not have enough bandwidth to carry the handed-o� traÆc; in the latter case, the call
will be dropped. In general, hand-o�s in satellite systems impose a big problem from the point of quality of
service.

There are several LEO systems currently in operation, such as Argos, VITAsat, ORBCOMM, and Glob-
alstar. These systems di�er in many aspects, including the number of orbits and the number of satellites
per orbit, the number of beams per satellite, their capacity, the band they operate, and the access method
employed. Despite these di�erences, from the point of view of providing telephony-based services, the princi-
ples of operation are very similar, and thus, the analytical techniques to be developed in the proposed work
will be applicable to any LEO satellite system that o�ers such services.

Despite the importance of satellite systems, their performance has not been adequately evaluated. A
typical way of modeling a satellite system in the literature is to represent each cell as an M/M/K/K queue.
This approach permits the calculation of various useful performance measures, such as the call blocking
probability. However, this type of model does not take into account the fact that the amount of traÆc in
one cell depends on the amount of traÆc in one or more other cells. This type of traÆc dependencies are
taken into account in our models described in Section 2.

In [2], Ganz et al., investigated the distribution of the number of hand-o�s and the average call drop
probability for LEO satellite systems. Both beam-to-beam and satellite-to-satellite hand-o�s were taken
into account. Each cell was modeled as an M/M/K/K queue, where K denotes the number of channels per
cell, assuming that the number of hand-o� calls entering a cell is equal to the number of hand-o� calls leaving
the cell. In [3], Jamalipour et al., investigated the traÆc characteristics of LEO systems and proposed a
probability density function to locate the position of each user. In [5], Pennoni and Ferroni described an
algorithm to improve the performance of LEO systems by using two queues for each cell, one for new calls
and one for hand-o� calls. In [7], Ruiz et al., used teletraÆc techniques to calculate the blocking and hand-o�
probabilities. Various channel assignment strategies were investigated. In [1], Dosiere et al., de�ned a model
for calculating the hand-o� traÆc rate by divideing a street of coverage into small pieces where each piece is
equal to the footprint area of a satellite. Uzunalioglu et al., suggested in [8,9] a connection hand-o� protocol
for LEO satellite systems. Finally, a new traÆc load balancing algorithm was proposed by Kim et al., in [4].

In this paper we study the problem of carrying voice calls over a LEO satellite network and we present an
analytical model for computing call blocking probabilities for a single orbit of a satellite constellation. The
paper is organized as follows. In Section 2 we develop an exact Markov process model under the assumption
that satellites are �xed in the sky (i.e., no hand-o�s take place), and in Section 3 we present an approximate
decomposition algorithm for a large number of satellites. In Section 4 we extend our approach to model
hand-o�s for both earth-�xed and satellite-�xed coverage. We present numerical results in Section 5, and
in Section 6 we conclude the paper by discussing possible directions to which this work may be extended in
the future.

2. An Exact Model for the No Hand-O�s Case

Let us �rst consider the case where the position of the satellites in the single orbit is �xed in the sky,
as in the case of geo-stationary satellites. The analysis of such a system is simpler, since no calls are lost
due to hand-o�s from one satellite to another, as when the satellites move with respect to the users on the
earth. This model will be extended in the following section to account for hand-o�s in constellations with
both earth-�xed and satellite-�xed coverage.

Each up-and-down link of a satellite has capacity to support up to CUDL calls, while each inter-satellite
link has capacity equal to CISL calls. Let us assume that call requests arrive at each satellite according to
a Poisson process, and that call holding times are exponentially distributed. We now show how to compute
blocking probabilities for the 3 satellites in the single orbit of Figure 1. The analysis can be generalized to



3

Satellite 1

Satellite 3

Satellite 2

ISL 1-2

ISL 3-1

ISL 2-3

Figure 1. Three satellites in a single orbit

analyze k > 3 satellites in a single orbit. For simplicity, we consider only shortest-path routing, although
the analysis can be applied to any �xed routing scheme whereby the path taken by a call is �xed and known
in advance of the arrival of the call request.

Let nij be a random variable representing the number of active calls between satellite i and satellite
j; 1 � i; j � 3, regardless of whether the calls originated at satellite i or j. Let �ij (respectively,
1=�ij) denote the arrival rate (resp., mean holding time) of calls between satellites i and j. Then, the
evolution of the three-satellite system in Figure 1 can be described by the six-dimensional Markov pro-
cess n = (n11; n12; n13; n22; n23; n33). Also let 1ij denote a vector with zeros for all random variables
except random variable nij which is 1. The state transition rates for this Markov process are given by
r(n; n+ 1ij) = �ij 8 i; j; and r(n; n� 1ij) = nij �ij 8 i; j; nij > 0. The �rst transition is due to the arrival
of a call between satellites i and j, while the second is due to the termination of a call between satellites i
and j.

Due to the fact that some of the calls share common up-and-down and inter-satellite links, constraints (1)-
(6) are imposed on the state space. Constraint (1) ensures that the number of calls originating (equivalently,
terminating) at satellite 1 is at most equal to the capacity of the up-and-down link of that satellite. Note
that a call that originates and terminates within the footprint of satellite 1 captures two channels, thus the
term 2n11 in constraint (1). Constraints (2) and (3) are similar to (1), but correspond to satellites 2 and 3,
respectively. Finally, constraints (4)-(6) ensure that the number of calls using the link between two satellites
is at most equal to the capacity of that link.

2n11 + n12 + n13 � CUDL (1)

n12 + 2n22 + n23 � CUDL (2)

n13 + n23 + 2n33 � CUDL (3)

n12 � CISL (4)

n13 � CISL (5)

n23 � CISL (6)

It is straightforward to verify that the Markov process for the three-satellite system shown in Figure 1 has
a closed-form solution which is given by:

P (n) = P (n11; n12; n13; n22; n23; n33) =
1

G

�n1111

n11!

�n1212

n12!

�n1313

n13!

�n2222

n22!

�n2323

n23!

�n3333

n33!
(7)

where G is the normalizing constant and �ij = �ij=�ij ; i; j = 1; 2; 3; is the o�ered load of calls from satellite i
to satellite j. As we can see, the solution is the product of six terms of the form �

nij
ij =nij !; i; j = 1; 2; 3; each

corresponding to one of the six di�erent types of calls. Therefore, it is easily generalizable to a k-satellite
system, k > 3.
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An alternative way is to regard this Markov process as describing a network of six M/M/K/K queues, one
for each type of calls between the three satellites. Since the satellites do not move, there are no hand-o�s,
and as a consequence customers do not move from one queue to another (we will see in Section 4.2 that
hand-o�s may be modeled by allowing customers to move between the queues). Now, the probability that

there are n customers in an M/M/K/K queue is given by the familiar expression (�n=n!)=
�PK

k=0 �
k=k!

�
,

and therefore, the probability that there are (n11; n12; n13; n22; n23; n33) customers in the six queues is given
by (7). Unlike previous studies reported in the literature, our model takes into account the fact that the six
M/M/K/K queues are not independent, since the number of customers accepted in each M/M/K/K queue
depends on the number of customers in other queues, as described by the constraints (1)-(6).

Of course, the main concern in any product-form solution is the computation of the normalizing constant:

G =
X
n

�n1111

n11!

�n1212

n12!

�n1313

n13!

�n2222

n22!

�n2323

n23!

�n3333

n33!
(8)

where the sum is taken over all vectors n that satisfy constraints (1) through (6). We now show how to
compute the normalizing constant G in an eÆcient manner. We can write P (n) as:

P (n11; n12; n13; n22; n23; n33) = P (n11; n22; n33 j n12; n13; n23)P (n12; n13; n23)

= P (n11 j n12; n13; n23) P (n22 j n12; n13; n23) P (n33 j n12; n13; n23) P (n12; n13; n23)

= P (n11 j n12; n13) P (n22 j n12; n23) P (n33 j n13; n23) P (n12; n13; n23) (9)

The second step in expression (9) is due to the fact that, once the values of random variables n12; n13; n23,
representing the number of calls in each of the inter-satellite links, is �xed, then the random variables n11; n22;
and n33 are independent of each other (refer also to Figure 1). The third step in (9) is due to the fact that
random variable n11 depends on n12 and n13, and it is independent of the random variable n23; similarly for
random variables n22 and n33.

When we �x the values of the random variables n12 and n13, the number of up-and-down calls in satellite

1 is described by an M/M/K/K loss system, thus P (n11 j n12; n13) =
P

0�2n11�CUDL�n12�n13

�
n11
11

n11!
. Similar

expressions can be obtained for P (n22 j n12; n23) and P (n33 j n13; n23), corresponding to satellites 2 and 3,
respectively. We can now rewrite expression (8) for the normalizing constant as follows:

G =
X

0�n12;n13;n23�minfCUDL;CISLg

�n1212 �n1313 �n2323

n12!n13!n23!

2
4
0
@ X
0�2n11�CUDL�n12�n13

�n1111

n11!

1
A

�

0
@ X
0�2n22�CUDL�n12�n23

�n2222

n22!

1
A
0
@ X
0�2n33�CUDL�n13�n23

�n3333

n33!

1
A
3
5 (10)

Let C = maxfCISL; CUDLg. Using expression (10) we can see that the normalizing constant can be
computed in O(C3) time rather than the O(C6) time required by a brute force enumeration of all states, a
signi�cant improvement in eÆciency.

Once the value of the normalizing constant is obtained, we can compute blocking probabilities by summing
up all the appropriate blocking states. Consider the 3-satellite orbit of Figure 1. The probability that a
call which either originates or terminates at satellite 1 will be blocked on the up-and-down link of that
satellite is given by PUDL1

=
P

2n11+n12+n13=CUDL
P (n), while the probability that a call originating at

satellite i (or satellite j) and terminating at satellite j (or i) will be blocked by the inter-satellite link (i; j)

is PISLij =

�
0; CISL > CUDLP

nij=CISL
P (n); otherwise

.
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Once the blocking probabilities on all up-and-down and inter-satellite links have been obtained using
expressions similar to the above, the blocking probability of calls between any two satellites can be easily
obtained. We note that the above two expressions explicitly enumerate all relevant blocking states, and thus,
they involve summations over appropriate parts of the state space of the Markov process for the satellite
orbit. Consequently, direct computation of the link blocking probabilities using these expressions can be
computationally expensive. We have been able to express the up-and-down and inter-satellite link blocking
probabilities in a way that allows us to compute these probabilities as a byproduct of the computation of
the normalizing G. As a result, all blocking probabilities in a satellite orbit can be computed in an amount
of time that is equal to the time needed to obtain the normalizing constant, plus a constant. The derivation
of the expressions for the link blocking probabilities is a straightforward generalization of the technique
employed in (9) and is omitted.

3. A Decomposition Algorithm for the No Hand-O�s Case

Let k be the number of satellites in a single orbit, and N be the number of random variables in the state
description of the corresponding Markov process, N = k(k + 1)=2. Using the method described above, we
can compute the normalizing constant G in time O(CN�k) as opposed to time O(CN ) needed by a brute
force enumeration of all states. Although the improvement in the running time provided by our method for
computing G increases with k, the value of N will dominate for large values of k. Numerical experiments
with the above algorithm indicate that this method is limited to k = 5 satellites. That is, it takes an amount
of time in the order of a few minutes to compute the normalizing constant G for 5 satellites. Thus, a di�erent
method is needed for analyzing realistic constellations of LEO satellites.

In this section we present a method to analyze a single orbit with k satellites, k > 5, by decomposing
the orbit into sub-systems of 3 or fewer satellites. Each sub-system is analyzed separately, and the results
obtained by the sub-systems are combined using an iterative scheme.

In order to explain how the decomposition algorithm works, let us consider the case of a six-satellite orbit,
as shown in Figure 2(a). This orbit is divided into two sub-systems. Sub-system 1 consists of satellites 1, 2,
and 3, and sub-system 2 consists of satellites 4, 5, and 6. In order to analyze sub-system 1 in isolation, we
need to have some information from sub-system 2. Speci�cally, we need to know the probability that a call
originating at a satellite in sub-system 1 and terminating at a satellite in sub-system 2 will be blocked due
to lack of capacity in a link in sub-system 2. Also, we need to know the number of calls originating from
sub-system 2 and terminating in sub-system 1. Similar information is needed from sub-system 1, in order to
analyze sub-system 2.

In view of this, each sub-system is augmented to include two �ctitious satellites which represent the
aggregate behavior of the other sub-system. In sub-system 1, we add two new satellites, which we call N1
and S1, as shown in Figure 2(b). A call originating at a satellite i; i = 1; 2; 3, and terminating at a satellite
j; j = 4; 5; 6, will be represented by a call from i to one of the �ctitious satellites (N1 or S1). Depending
upon i and j, this call may be routed di�erently. For instance, let us assume that i = 2 and j = 4. Then, in
our augmented sub-system 1, this call will be routed to satellite S1 through satellite 3. However, if j = 6,
the call will be routed to satellite N1 through satellite 1. In other words, satellite N1 (respectively, S1)
in the augmented sub-system 1 is the destination for calls of the original orbit that originate from satellite
i; i = 1; 2; 3 and are routed to satellite j; j = 4; 5; 6 in the clockwise (respectively, counter-clockwise) direction
in Figure 2(a). Similarly, calls originating from satellite j; j = 4; 5; 6, to satellite i; i = 1; 2; 3, and are routed in
the counter-clockwise (respectively, clockwise) direction, are represented in sub-system 1 as calls originating
from N1 (respectively, S1) to i. Again, the originating satellite (N1 or S1) for the call depends on the values
of i and j and the path the call follows in the original 6-satellite orbit.

Sub-system 2 is likewise augmented to include two �ctitious satellites, N2 and S2 (see Figure 2(b)), which
represent the aggregate behavior of sub-system 1. Satellites N2 and S2 become the origin and destination of
calls traveling from sub-system 2 to sub-system 1, and vice versa, in a manner similar to N1 and S1 described
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Figure 2. (a) Original 6-satellite orbit, (b) augmented sub-systems

above.

Due to space constraints, a detailed description of our iterative algorithm is omitted, but it can be found
in [10]. Below we describe the decomposition algorithm using the 6-satellite orbit shown in Figure 2(a).
Recall that �ij ; 1 � i � j, is the arrival rate of calls between satellites i and j. For analyzing the augmented
sub-systems in Figure 2(b), we will introduce the new arrival rates �i;N1, �i;S1, �N2;j , and �S2;j , i = 1; 2; 3,
j = 4; 5; 6. Speci�cally, �i;N1 (respectively, �i;S1) accounts for all calls between satellite i; i = 1; 2; 3,
and a satellite in sub-system 2 that are routed in the clockwise (respectively, counter-clockwise) direction.
Similarly, �N2;j (respectively, �S2;j) accounts for all calls between sub-system 1 and satellite j; j = 4; 5; 6
that are routed in the clockwise (respectively, counter-clockwise) direction.

Initially, we solve sub-system 1 in isolation using:

�1;N1 = (1� q16)�16 + (1� q15)�15 (11)

�1;S1 = (1� q14)�14 (12)

�2;N1 = (1� q26)�26 + (1� q25)�25 (13)

�2;S1 = (1� q24)�24 (14)

�3;N1 = (1� q36)�36 (15)

�3;S1 = (1� q34)�34 + (1� q35)�35 (16)

Quantity qij ; 1 � i � 3 < j � 6, represents the current estimate of the probability that a call between
a satellite i in sub-system 1 and and satellite j in sub-system 2 will be blocked due to lack of capacity
in a link of sub-system 2. For the �rst iteration, we use qij = 0 for all i and j; how these values are
updated in subsequent iterations will be described shortly. Thus, the term (1 � q16)�16 in (11) represents
the e�ective arrival rate of calls between satellites 1 and 6, as seen by sub-system 1; similarly for the other
terms in (11){(16).

The solution to the �rst sub-system yields an initial value for the probability pij ; 1 � i � 3 < j � 6,
that a call between a satellite i in sub-system 1 and a satellite j in sub-system 2 will be blocked due to lack
of capacity in a link of sub-system 1. Therefore, the e�ective arrival rates of calls between, say, satellite 1
and satellite 4, that is o�ered to sub-system 2 can be initially estimated as (1� p16)�16. We can now solve
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sub-system 2 in isolation using 1:

�N2;4 = 0 (17)

�S2;4 = (1� p14)�14 + (1� p24)�24 + (1� p34)�34 (18)

�N2;5 = (1� p15)�15 + (1� p25)�25 (19)

�S2;5 = (1� p35)�35 (20)

�N2;6 = (1� p16)�16 + (1� p26)�26 + (1� p36)�36 (21)

�S2;6 = 0 (22)

Based on the above discussion, �S2;4 in (18) represents the e�ective arrival rate of calls between a satellite
in sub-system 1 and satellite 4, as seen by sub-system 2. Expressions (17){(22) can be explained in a
similar manner. The solution to the second sub-system provides an estimate of the blocking probabilities
qij ; 1 � i � 3 < j � 6, that calls between satellites in the two sub-systems will be blocked due to lack of
capacity in a link of sub-system 2.

The new estimates for qij are then used in expressions (11) to (16) to update the arrival rates to the two
�ctitious satellites of augmented sub-system 1. Sub-system 1 is then solved again, and the estimates pij
are updated and used in expressions (17) to (22) to obtain new arrival rates for the �ctitious satellites of
sub-system 2. This leads to an iterative scheme, where the two sub-systems are solved successively until a
convergence criterion (e.g., in terms of the values of the call blocking probabilities) is satis�ed.

Orbits consisting of any number k > 5 of satellites can be decomposed into a number of sub-systems, each
consisting of 3 satellites of the original orbit (the last sub-system may consist of fewer than 3 satellites).
The decomposition method is similar to the one above, in that for sub-system l, the remaining satellites
are aggregated to two �ctitious satellites. Each sub-system is analyzed in succession as described above.
The decomposition algorithm described above is similar in spirit to the decomposition algorithms developed
for tandem queueing networks with �nite capacity queues (see [6]). We note that when employing the
decomposition algorithm, the selection of the sub-system size will depend on the number of satellites in the
original orbit and how eÆciently we can calculate the exact solution of the Markov process associated with
each sub-system. It is well known in decomposition algorithms that the larger the individual sub-systems
that have to be analyzed in isolation, the better the accuracy of the decomposition algorithm. Thus, as
we mentioned above, we have decided to decompose an orbit into sub-systems of the largest size (three of
the original satellites plus two �ctitious ones) for which we can eÆciently analyze the Markov process, plus,
possibly, a sub-system of smaller size, if the number of satellites is not a multiple of three.

4. Modeling Hand-O�s

4.1. Earth-Fixed Coverage

Let us now turn to the problem of determining blocking probabilities in a single orbit of satellites with
earth-�xed coverage. Let k denote the number of satellites in the orbit. In this case we assume that the
earth is divided into k �xed cells (footprints) and that time is divided in intervals of length T such that,
during a given interval, each satellite serves a certain cell by continuously redirecting its beams. At the end
of each interval, i.e., every T time units, all satellites simultaneously redirect their beams to serve the next
footprint along their orbit, and they also hand-o� currently served calls to the next satellite in the orbit.

We make the following observations about this system. Hand-o� events are periodic with a period of T
time units, and hand-o�s take place in bulk at the end of each period. Also, there is no call blocking due to
hand-o�s, since, at each hand-o� event a satellite passes its calls to the one following it and simply inherits
the calls of the satellite ahead of it. Finally, within each period T , the system can be modeled as one with no

1In (17) we have that �N2;4 = 0 because we assume that calls between satellites in sub-system 1 and satellite 4 are routed in
the counter-clockwise direction; similarly for expression (22).
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Figure 3. Calculation of the hand-o� probability

hand-o�s, such as the one described in the previous subsection. Given that the period T is equal to the orbit
period (approximately 90 minutes) divided by the number of satellites (e.g., 11 for the Iridium constellation)
we can assume that the system reaches steady state within the period, and thus, the initial conditions (i.e.,
the number of calls inherited by each satellite at the beginning of the period) do not a�ect its behavior.

Now, since every T units of time, each satellite assumes the traÆc carried by the satellite ahead, from
the point of view of an observer on the earth, this system appears to be as if the satellites are permanently
�xed over their footprints. Hence, we can use the decomposition algorithm presented above to analyze this
system.

4.2. Satellite-Fixed Coverage

Consider now satellite-�xed cell coverage. As a satellite moves, its footprint on the earth (the cell served
by the satellite) also moves with it. As customers move out of the footprint area of a satellite, their calls
are handed o� to the satellite following it from behind. In order to model hand-o�s in this case, we make
the assumption that potential customers are uniformly distributed over the part of the earth served by the
satellites in the orbit. This assumption has the following two consequences.

� The arrival rate � to each satellite remains constant as it moves around the earth. Then, the arrival
rate of calls between satellite i and satellite j is given by �ij = �rij , where rij is the probability that
a call originating by a customer served by satellite i is for a customer served by satellite j.

� The active customers served by a satellite can be assumed to be uniformly distributed over the satellite's
footprint. As a result, the rate of hand-o�s from satellite i to satellite j that is following from behind
is proportional to the number of calls at satellite i.

Clearly, the assumption that customers are uniformly distributed (even within an orbit) is an approximation.
In Section 6 we will discuss how we are currently extending the results presented in this section to accurately
model the situation when customers are not uniformly distributed.

Let A denote the area of a satellite's footprint and v denote a satellite's speed. As a satellite moves around
the earth, within a time interval of length �t, its footprint will move a distance of �L, as shown in Figure 3.
Calls involving customers located in the part of the original footprint of area �A (the hand-o� area) that
is no longer served by the satellite are handed o� to the satellite following it. Let �A = A��L, where
� depends on the shape of the footprint. Because of the assumption that active customers are uniformly
distributed over the satellite's footprint, the probability q that a customer will be handed o� to the next
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satellite along the sky within a time interval of length �t is q = �A=A = ��L = �v�t. De�ne � = �v.
Then, when there are n customers served by a satellite, the rate of hand-o�s to the satellite following it will
be �n.

Let us now return to the 3-satellite orbit (see Figure 1) and introduce hand-o�s. This system can be
described by a continuous-time Markov process with the same number of random variables as the no-hand-
o�s model of Section 2 (i.e., n11; � � � ; n33), the same transition rates as in Section 2, but with a number of
additional transition rates to account for hand-o�s. We will now derive the transition rates due to hand-o�s.

Consider calls between a customer served by satellite 1 and a customer served by satellite 2. There are n12
such calls serving 2n12 customers: n12 customers on the footprint of satellite 1 and n12 on the footprint of
satellite 2. Consider a call between customer A and customer B, served by satellite 1 and 2, respectively. The
probability that customer A will be in the hand-o� area of satellite 1 but B will not be in the hand-o� area of

satellite 2 is q(1�q) = q�q2. But we have that lim�t!0
q2

�t
= 0, so the rate at which these calls experience a

hand-o� from satellite 1 to satellite 3 that follows it is �n12. Let n = (n11; n12; n13; n22; n23; n33), and de�ne
1ij as a vector of zeroes for all variables except variable nij which is 1. Based on the above discussion, we
have r(n; n� 112 + 123) = �n12; n12 > 0. Similarly, the probability that customer B will be in the hand-o�
area of satellite 2 but A will not be in the hand-o� area of satellite 1 is q(1 � q) = q � q2. Thus, the rate
at which these calls experience a hand-o� from satellite 2 to satellite 1 that follows it is again �n12, and
r(n; n� 112 + 111) = �n12; n12 > 0. On the other hand, the probability that both customers A and B are
in the hand-o� area of their respective satellites is q2, which is o(�t), and thus simultaneous hand-o�s are
not allowed.

Now consider calls between customers that are both served by the same satellite, say, satellite 1. There are
n11 such calls serving 2n11 customers. The probability that exactly one of the customers of a call is in the
hand-o� area of satellite 1 is 2q(1�q), so the rate at which these calls experience hand-o�s (involving a single
customer) to satellite 3 is 2�n11; thus, r(n; n� 111 +113) = 2�n11; n11 > 0. As before, the probability that
both customers of the call are in the hand-o� area of satellite 1 is q2, and again, no simultaneous hand-o�s
are allowed. The transition rates involving the other four random variables in the state description n are
omitted due to space constraints, but can be derived using similar arguments.

From the queueing point of view, this system is the queueing network of M/M/K/K queues described
in Section 2, where customers are allowed to move between queues according to the above transition rates.
(Recall that in the queueing model of Section 2, customers are not allowed to move from node to node.) This
queueing network has a product-form solution similar to (7). Let 
ij denote the total arrival rate of calls
between satellites i and j, including at a rate of �ij) and hand-o� calls (arriving at an appropriate rate).
The values of 
ij can be obtained by solving the traÆc equations for the queueing network. Let also �ijnij
be the departure rate when there are nij of these calls, including call termination (at a rate of �ijnij) and
call hand-o� (at a rate of 2�nij). Also, de�ne �

0
ij = 
ij=�ij . Then, the solution for this queueing network

is given by an expression which is identical to (7) except that �ij is replaced by �0ij . This product-form
solution can be generalized in a straightforward manner for any k-satellite orbit, k > 3. We can thus use
the techniques developed in Section 2 to solve the system involving hand-o�s exactly, or we can use the
decomposition algorithm presented in Section 3 to solve orbits with a large number of satellites.

5. Numerical Results

In this section we validate the decomposition algorithm by comparing to simulation results. Results using
the exact model are omitted due to space constraints, but can be found in [10]. We consider a single
orbit of a satellite constellation consisting of 12 satellites, a number representative of typical commercial
satellite systems. In the �gures presented, simulation results are plotted along with 95% con�dence intervals
estimated by the method of replications. The number of replications is 30, with each simulation run lasting
until each type of call has at least 15,000 arrivals. For the approximate results, the iterative decomposition
algorithm terminates when all call blocking probability values have converged within 10�6. In all cases
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Figure 4. 12-satellite orbit, � = 5, CISL = 20, uniform pattern

studied, we have found that the algorithms converges in only a few (less than ten) iterations, taking a few
minutes to terminate. On the other hand, simulation of 12-satellite orbits is quite expensive in terms of
computation time, taking several hours to complete. We have considered three di�erent traÆc patterns: a
uniform traÆc pattern, a locality pattern were most calls originating at a satellite i are to users in satellites
i� 1, i, and i+ 1, and a two-community pattern.

Figure 4 plots the blocking probability against the capacity CUDL of up-and-down links, when the arrival
rate � = 5 and the capacity of inter-satellite links CISL = 20, for the uniform traÆc pattern. Six sets
of calls are shown, one for local calls, and �ve for non-local calls. Each set consists of two plots, one
corresponding to blocking probability values obtained by running the decomposition algorithm of Section 3,
and one corresponding to simulation results. Each non-local call for which results are shown travels over a
di�erent number of inter-satellite links, from one to �ve. Thus, the results in Figure 4 represent calls between
all the di�erent sub-systems in which the 12-satellite orbit is decomposed by the decomposition algorithm.

From the �gure we observe the excellent agreement between the analytical results and simulation. The
behavior of the curves can be explained by noting that, when the capacity CUDL of up-and-down links is
less than 20, these links represent a bottleneck. Thus, increasing the up-and-down link capacity results in
a signi�cant drop in the blocking probability for all calls. When CUDL > 20, however, the inter-satellite
links become the bottleneck, and non-local calls do not bene�t from further increases in the up-and-down
link capacity. We also observe that, the larger the number of inter-satellite links over which a non-local call
must travel, the higher its blocking probability, as expected. The blocking probability of local calls, on the
other hand, drops to zero for CUDL > 20 since they do not have to compete for inter-satellite links.

Figures 5 and 6 are similar to Figure 4 but show results for the locality and 2-community traÆc patterns,
respectively. For the results presented we used � = 5 and CISL = 10, and we varied the value of CUDL.
We observe that the values of the call blocking probabilities depend on the actual traÆc pattern, but the
behavior of the various curves is similar to that in Figure 4. Finally, in Figure 7, we �x the value of CUDL
to 20, and we plot the call blocking probabilities for the 2-community traÆc pattern against the capacity
CISL of the inter-satellite links. Overall, the results in Figures 4{7 indicate that analytical results are in
good agreement with simulation over a wide range of traÆc patterns and system parameters.
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Figure 5. 12-satellite orbit, � = 5, CISL = 10, locality pattern
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Figure 6. 12-satellite orbit, � = 5, CISL = 10, 2-community pattern
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Figure 7. 12-satellite orbit, � = 5, CUDL = 20, 2-community pattern

6. Concluding Remarks

We have presented an analytical model for computing blocking probabilities, for new and hand-o� calls, for
a single orbit of a LEO satellite constellation. We have devised a method for solving the exact Markov process
eÆciently for up to 5-satellite orbits. For orbits consisting of a larger number of satellites, we have developed
an approximate decomposition algorithm to compute the call blocking probabilities by decomposing the
system into smaller sub-systems, and iteratively solving each sub-system in isolation using the exact Markov
process. We have also shown how our approach can capture blocking due to hand-o�s for both satellite-�xed
and earth-�xed orbits.
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