Efficient Resource Management using
Advance Reservations for Heterogeneous Grids

Claris Castillo, George N. Rouskas, Khaled Harfoush
Department of Computer Science
North Carolina State University
Raleigh, NC 27695
Email: {ccastil,rouskas,kaharfou} @ncsu.edu

Abstract—Support for advance reservations of resources
plays a key role in Grid resource management as it enables
the system to meet user expectations with respect to time
requirements and temporal dependence of applications,
increases predictability of the system and enables co-
allocation of resources. Despite these attractive features,
adoption of advance reservations is limited mainly due to
the fact that related algorithms are typically complex and
fail to scale to large and loaded systems. In this work
we consider two aspects of advance reservations. First, we
investigate the impact of heterogeneity on Grid resource
management when advance reservations are supported.
Second, we employ techniques from computational geome-
try to develop an efficient heterogeneity-aware scheduling
algorithm. Our main finding is that Grids may benefit from
high levels of resource heterogeneity, independently of the
total system capacity. Our results show that our algorithm
performs well across several user and system performance
and overcome the lack of scalability and adaptability of
existing mechanisms.

I. INTRODUCTION

Owing to the advances in technologies such as re-
source virtualization and network management Grids
have experienced enormous growth not only in respect
to their adoption—they have became the defacto infras-
tructure for computing service provisioning in academia
and corporate R& D environments—but also in their func-
tionality, complexity and size. This phenomenon has led
to the emergence of a whole new range of applications
capable of performing tasks of a complexity not envi-
sioned before. For instance, several scientific workfolk
applications [24], [25], [27] involve the orchestration
of multiple compute and data transfer stages. These
stages normally have strong dependency on completion
times; thus the ability to co-schedule and synchronize
resources usage is crucial. Furthermore, emerging classes
of deadline-driven scientific applications such as severe
weather modeling [23] require simultaneous access to
multiple resources and predictable completion times.
In order to support such temporal dependencies and
strict time constraints Grid, middleware needs to offer
planning capabilities so users can reserve resources in
advance based on resource availability and meet the time

This work was partially supported by NSF grants CAREER ANIR-
0347226 and CNS-0434975, Anita Borg Scholarship and Cisco Sys-
tems Inc.

requirements of their applications. However, most exist-
ing Grids resource schedulers [10], [26], [28], [29], [45],
[46] were originally designed to work under best-effort
policies. In response to the emerging needs for more
sophisticated resource management solutions some Grid
resource management’software has evolved to accommo-
date for advance reservations. Such software includes
LSF, PBS-Pro, Maui, Catalina, EASY and COSY (for a
comprehensive review of these schedulers refer to [10]
and references thereof).

Advance reservations have been widely proposed for
provisioning for performance predictability, meeting re-
source requirements and providing guaranteed quality
of service to applications [1]-[6], [20], [21], [35], [36],
[36]-[38], [40]. GARA [34] is one of the seminal works
on advance reservation and defines a basic architecture
and simple API for the manipulation of advance reser-
vation of different resources. A theoretical proof that
reservations can be used to improve the performance pre-
dictability of applications is presented in [38]. A compar-
ison of provisioning models and best-effort mechanisms
can be found in [32]. In [37] and [38] the performance
and predictability of workflows applications when ad-
vance reservations are used is investigated respectively,
concluding that it is beneficial for Grids to use advance
reservations. A more general study on the usefulness
of advance reservation is presented in [35]. In [5], [6]
authors investigated the negative impact advance reser-
vations have on system and user performance. In [31],
[43], [44] authors show how laxity and fuzziness in the
reservation requests may be exploited to address some of
the drawbacks of advance reservations. Two of the most
recent major works on advance reservations in Grids
are [32] and [21]. In [32], the authors propose a multi-
objective genetic algorithm formulation for selecting the
set of resources to be provisioned that optimizes the
application performance while minimizing the resource
costs. In [21] a cost-aware resource model is parented in
which reservation for each application task is performed
separately by negotiating with the resource provider.
In [33] the authors present a broker service for the Grid
resources that takes into account the fact that deadline
and budget are specified, and then optimizes the usage
of resources only by considering the current state of the

resources but without any planning horizon.

The impact of resource heterogeneity has been inves-
tigated in contexts other than Grids. In [41] the authors
exploit the heterogeneity found in HPC environment
by dividing a task into subtasks and then mapping the
latter to resources that best meet their requirements.
This work assumes offline scheduling and does not
support advance reservations; our work deals with online
scheduling and allow users to schedule jobs in advance.
In [19] the authors proposed a general framework to
quantify the worst-case effect of increasing heterogeneity
in models of parallel systems with finite total capacity.
An important contribution of this work was a model to
characterize resource heterogeneity which we adopt in
this paper.

Overall, advance reservation of resources [1]-[6] has
generated great interest in the Grid community as a
mechanism that Grid providers may employ to offer
planning capabilities to application users. Furthermore,
it has shown to increase the predictability of the system
maximizing the flexibility and adaptability of the system
to cope with the dynamic behavior of grid environ-
ments [35] [13] [38]. Despite the attractive features
of advance reservations, there is great scepticism in
the Grid community about their ability to meet their
promise; this fact is mainly due to three reasons. First,
advance reservations have shown to cause severe per-
formance degradation [5], [6]. Second, typical advance
reservation mechanisms lack flexibility as they do not
permit graceful degradation in application performance
when resource management policies mandate changes in
allocations [9]. Third, existing approaches suffer from
poor scalability as they are not effective in managing
large sets of advance reservations or handling resource
fragmentation. Also, most solutions lack of sophistica-
tion, and are not able to address the user needs (e.g.
for time guarantees) and system requirements (e.g., for
high performance/throughput) in an integrated manner.
To overcome these challenges, algorithms for advance
reservations need to be efficient so they can adapt to dy-
namic changes in resource availability and user demand
without hurting system and user performance. Moreover,
they must take into account resource heterogeneity since
resources in Grid environments are typically highly
heterogeneous.

In previous work [40] we developed efficient algo-
rithms for advance reservations of homogeneous re-
sources. These algorithms are effective in meeting time
requirements (e.g.,deadlines), may be adapted to employ
several optimization criteria for scheduling jobs, and
their low running times make them practical for large
Grid environments. In this paper we address the issue of
meeting application time requirements in Grid environ-
ments with resources of heterogeneous capabilities (e.g,
as in the case of compute servers with varying processing
power). We consider an environment where users submit
jobs dynamically, and these jobs may start at a future

time and must be completed within a certain deadline.
We first investigate the impact of heterogeneity on the
scheduling of resources, and conclude that scheduling
algorithms need to be heterogeneity-aware to achieve
appropriate system and user performance. Based on this
observation, we then develop an efficient heterogeneity-
aware scheduling algorithm for advance reservations in
this context. We also describe how to apply techniques
from computational geometry to develop data structures
that allow the service provider to manage efficiently the
set of advance reservations and handle effectively the
resulting resource fragmentation.

The rest of the paper is organized as follows. In
Section II we describe the online scheduling problem
we study in this work. In Section III we make a
case for heterogeneity-aware algorithms in Grids. By
means of a simple experiment we show that resource
heterogeneity may have positive impact on performance
if heterogeneity-aware algorithms are used. In Section IV
we present a novel transformation of the advance reser-
vations problem that exploits techniques from computa-
tional geometry. Using insight from this transformation,
we then develop a heterogeneity-aware algorithm in
Section V, and provide details on its implementation
and the associated data structures used to manage the
fragmentation of resources. In Section VI we describe
several directions for further improving the performance
of the scheduling algorithm that are the subject of
ongoing research within our group. In Section VII we
investigate the performance of our algorithm through
simulation, and we conclude the paper in Section VIII.

II. PROBLEM DESCRIPTION

Consider a scheduler S for a Grid with n servers
which may be geographically distributed in a network.
We consider a heterogeneous environment in that server
1 has service rate u;, where service rate refers to the
amount of work a server can perform per unit of
time. We also assume network delays are negligible. A
user with job j requiring service submits a request to
the scheduler. The request is characterized by a three-
parameter tuple (r;,1;,d;), where:

1) r; is the ready time of the job, i.e., the earliest
time the job can be made available to the Grid for
processing;

2) 1; is the size of the job, i.e, the amount of work
the job requires; and

3) dj(z r; + lj) is the deadline of the job, i.e., the
latest time by which the job can be completed to
provide any utility to the user.

The deadline is a measure of the quality of service
required by the user. We assume that deadlines are hard,
in that a user receives utility only if the job completes
service by its deadline. Therefore, if S determines that
the deadline cannot be met, it drops the job and notifies
its user accordingly. Note that this restriction may be
relaxed with minimal modifications to our algorithm; in

Section VI we describe a set of mechanisms that may be
used to re-negotiate and re-plan advance reservations in
order to minimize the number of jobs that are dropped.
In our model, the availability of resources is repre-
sented by time intervals during which servers are idle.
We refer to these intervals as idle periods in this paper.
We say that an idle period is feasible for a given job j if it
can accommodate j within its deadline d;. The feasibility
of an idle period k for a given job j is determined by
both the service rate of the server associated with the
idle period and its duration. Therefore, we characterize
an idle period k on a server ¢ with service rate p; by a
three-parameter tuple (sty, ety, cx), where:

o sty is the starting time of the idle period;

e ety is the ending time of the idle period; and

o ¢ = p; X (ety — sty) is the nominal capacity of
the idle period, i.e., the amount of work that server
i can perform during idle period k.

Note that idle periods in slow (respectively, fast) servers
may have a long (respectively, short) duration but small
(respectively, large) nominal capacity. Moreover, the
nominal capacity ¢, of an idle period k represents the
maximum job size that it can accommodate, assuming
that the job is scheduled to start execution exactly at
time sti. As time progresses, the nominal capacity
ci, of the idle period decreases at a rate equal to its
server’s rate u,;. Consequently, if no job is allocated to
the idle period by time ¢ = st, then the maximum
job size that it can accommodate decreases linearly at
rate p;. Therefore, the nominal capacity of idle periods
belonging to fast (respectively, slow) servers expires at
a faster (respectively, slower) rate.

We consider the online scheduling problem whereby
users submit service requests to S at random instants.
We assume that S maintains a schedule which records,
for each server ¢, the time periods in the future during
which the server is reserved for jobs that have already
been accepted to the system. In essence, this schedule
represents the set of advance reservations that have been
made, and it guarantees that server resources will be
available to the accepted jobs at specific future times.

Figure 1(a) shows an example schedule for a 2-server
system in which server ¢ has rate pu; = 1, and server
2 has rate po = 0.5. The schedule is in the form of a
timetable, and shows that at the current time (i.e., { =
0), there are four jobs scheduled for server 1: the job
currently in service which will end at time ¢;, job A
which has reserved the server from time ¢4 to time ts,
job B which has reserved the server from time tg until
time ¢7, and job C' which is scheduled from time 11
to time ¢12. Similarly, there are two jobs scheduled for
server 2. The figure also shows a new job j requesting
service. The job has ready time r; = t3 and deadline
d;. There are two representations of the new job. The
representation at the top has a shorter duration and shows
the new job as seen by server 1, while the one below
has a longer duration (i.e., double that at the top) and

shows the job as seen by server 2.

When a service request (r;,l;,d;) for a new job j
arrives, S immediately runs an algorithm to determine
whether it is feasible to schedule the job so as to meet
its deadline. If so, then S uses a set of criteria to select
one of the (possibly multiple) servers that can handle
this job, updates its schedule, and returns a reference to
this server to the user; otherwise, the job is dropped. The
scheduling decision impacts the performance perceived
by users as reflected by the fraction of jobs meeting (or
missing) their deadlines and the response time of the
jobs. It also impacts the overall system performance as
reflected by the system utilization, which is a measure
of how well the overall service capacity of the system
is used. The challenge, therefore, is to develop efficient
online scheduling algorithms that minimize the fraction
of dropped jobs while maximizing utilization.

A. Computational Heterogeneity

To incorporate computational heterogeneity into our
framework we use the model introduced in [19]. In this
model the authors use majorization partial order to com-
pare the imbalance, i.e., heterogeneity, of capacity distri-
butions. The majorization partial order, >, is defined as
follows. Given two nonnegative vectors corresponding
to the service rates of two n-servers systems C' =

(1, pr2, p3y - -+ 5 pin) and C" = (phy, puy, piy, - -+ pa,), We
have C’ > C when

k k n n
VEY pig > g and Y opi =Y (1)
i=1 =1 i=1 i=1

where ;) denotes the i-th largest component of C. We
say that the computational capacity distribution C'4 of a
system A is more heterogeneous than the computational
capacity Cp of a system B whenever C'y = Cp.

We say that a Grid system is (H,n)-heterogeneous,
H < n, if the n servers are partitioned in H groups such
that servers in group h,h = 1,---, H, have the same
service rate (. Note that most existing Grids follow
this model as they consist of a collection of clusters
of identical processors. Thus, an (H,n)-heterogeneous
system has n servers with H different rates. For a
given (H,n)-heterogeneous system we may generate a
range of service rate distributions that are more or less
heterogeneous according to the majorization partial order
in expression (1). We let L denote the levels of het-
erogeneity, i.e., the number of service rate distributions
considered for a (H,n)-heterogeneous Grid, labeled in
order of increasing heterogeneity:

(H7n)Ltt(Han)1t(H7n)0 (2)

where we use (H,n) to denote the completely homo-
geneous system, i.e., one in which all n servers have
the same rate ;. We use this model in the experimental
studies we report in Sections III and VIIL

ready time rj

\4 A\

new
job

new
job

deadline dj

1
I
X z
server 1 % ' \YE’(____ C
capacity=1 . \
|
I

new job

server 2
capacity=0.5

1
1
1
1
' g
1
1
1
|
y
O—
e
11

I T rrrro

(@)

Fig. 1.

III. THE CASE FOR HETEROGENEITY-AWARE
ALGORITHMS

To investigate the impact of heterogeneity in resource
allocation mechanisms in Grid environments we perform
two different experiments. We refer to these experiments
as heterogeneity-aware (HA) and heterogeneity-unaware
(HU) experiments. In both experiments we consider
the problem described in Section II and use the same
scheduling algorithm and data structure; the only differ-
ence being that in one experiment we adapt the algorithm
and data structure to accommodate heterogeneity.

More specifically we consider the well-known first-
fit (FF) scheduling algorithm, and we use a linked-list
data structure to store idle periods. In the heterogeneity-
unaware (HU) experiment, all idle periods over all
servers are stored in a single linked list in ascending
order of their starting times. To schedule a new job,
the FF algorithm searches the linked list and returns
the first feasible idle period for the job; we refer to
this algorithm as FF-HU. In the heterogeneity-aware
(HA) experiment, the idle periods are stored in [linked
lists, where H denotes the number of different rates in
the system. Specifically, linked list A,h = 1,--- | H,
stores the idle periods over all servers with rate pj, in
ascending order of their starting times. To schedule a
new job, the FF algorithm considers the H lists in some
order, and searches the first linked list for a feasible idle
period; if no such idle period is found, the algorithm
continues to search the next list in the order, and so on.
The FF-HA algorithm terminates when the first feasible
idle period is found, or when all the lists have been
searched unsuccessfully. Clearly, the order in which the
FF-HA algorithm considers the H linked lists will have

te t7 &g Tg tpty tpp

A
2
E
=%
8
idle period x
slope = -1
idle period w
slope = -0.5 idle period z
slope = -1
Cy idle period y /
Cz ! slope = _1, new job
1 . !
! : N
! ! ! h >
> 1 L L L LI I
0 4 bhis 4is g toty
time
(b)

(a) Schedule of a 2-server system as a timetable, and (b) geometric representation of the idle periods and the new job.

an impact on performance.

We used simulation to compare the performance of
the FF-HU and FF-HA algorithms; the details of the
simulation setup are described in Section VII. Follow-
ing the model of Section II-A, we consider a (H,n)-
heterogeneous Grid with n = 120 servers divided into
H = 3 groups, with the server in each group h,h =
1,2,3, having the same rate uj,. We created L = 4
(H,n)-heterogeneous systems by selecting the rate uy,
of each server group within each system so that L = 4
refers to the most heterogeneous system with respect to
expression (1) and L = 1 to the least heterogeneous one.

Figure 2 plots the loss rate and utilization against
system load, respectively. Each figure shows two sets
of four plots, one set for the FF-HU algorithm and
one for FF-HA; in this case, FF-HA considers the H
lists of idle periods in increasing value of the rate puy
of the corresponding servers. Each plot within a set
corresponds to one of the L = 4 levels of heterogeneity,
i.e., one of the (H,n)-heterogeneous systems obtained
as we described above. We have obtained results for
other performance measures, e.g., waiting time, but do
not include them here as they exhibit similar trends.

As we can see, for a given level of heterogeneity, the
heterogeneity-aware algorithm (FF-HA) outperforms the
heterogeneity-unaware one (FF-HU) across the spectrum
of system loads. We also observe that the performance
of each algorithm improves as the system becomes more
heterogeneous, despite the fact that the total service rate
is the same for all L = 4 heterogeneity levels. This phe-
nomenon is due to the effect of statistical multiplexing,
and is discussed in more depth in Section VII. These
results, obtained with a basic scheduling algorithm and
data structure, suggest that computational heterogeneity

Work Loss Rate
o
o n
N &
T A
»
b
.\
.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
System Load

Fig. 2.

may have a significant impact on both user and system
performance metrics and should be taken into account
when designing scheduling algorithms. Nonetheless, tak-
ing heterogeneity into account comes with a price since
it adds complexity to the problem and hence to the
algorithms. For instance, although the worst-case run-
ning time of the FF-HA and FF-HU algorithms is the
same (linear in the number of idle periods), the average
running time of FF-HA can be significantly longer than
that of FF-HU (since it may have to traverse several lists
before it finds a feasible period that might be stored near
the head of the single list maintained by FF-HU). The
challenge, therefore, is to design scheduling algorithms
that are both heterogeneity-aware and efficient; this is
the subject of the next two sections.

IV. A GEOMETRIC MODEL FOR ADVANCE
RESERVATIONS

In this section we employ techniques from computa-
tional geometry to model the problem we introduced in
Section II. We then use this model to develop an algo-
rithm for advance reservation of resources, along with
an associated data structure for storing and accessing
efficiently the set of idle periods.

Without loss of generality, in the following discussion
we make the assumption that the service rate p; of each
processor % is such that 0 < p; < 1. This assumption
allows us to define the size /; of a job j as the amount of
time for this job to complete on a server of rate u = 1.
Clearly, the duration of the job on a server of rate p; < 1
is then equal to [;/p;.

A. Geometric Representation of Idle Periods and Jobs

We represent idle periods and jobs on the first quadrant
of a Cartesian coordinate system in which the z axis
represents time and the y axis represents nominal capac-
ity. Figure 1(b) illustrates the geometric representation
of the idle periods and new job of Figure 1(a). A job
Jj characterized by the tuple (r;,1;,d;) is represented
in this coordinate system as a line segment between

0.8

0.7

06 -]

05 - e |
5 7
8 o4l e o
= e _ R
=] //// - %
o s
03l e o |
- /// 8
e
e o
< == -HU-L=2 .
i FF-HU-L=3
o FF-HU-L-4 + =
01 g FF-HA. |
FF-HA-L=2 —o—
FF-HA.
A M

Pt
Kb

0.1 0.2 0.3 0.4 0.5 0.6 0.7
System Load

o
)

0.9

Comparison of heterogeneous aware and unaware algorithms

two points P = (r;,1;) and P’ = (d; — l;,1;). Since,
in Figure 1(a), the new job is defined by the tuple
(t3,1;,d;), the two endpoints of the line segment repre-
sentation of this job in Figure 2(b) are P = (¢3,/;) and
P" = (t10 = dj —l;,1;). As defined, point P represents
the earliest possible starting time and required capacity
for this job if it were scheduled on the fastest server, i.e.,
one with rate . = 1; similarly, point P’ corresponds the
latest possible starting time and required capacity for this
job to be feasibly completed on the fastest server. Note
that although we assume that servers may have different
capacities, we use a single representation for each job
7, namely the line segment with respect to the server of
rate p = 1.

An idle period k characterized by the tuple
(stg, ety, ci) is also represented in the coordinate system
as a line segment between two points, k1 = (stg,ck)
and ko = (ety,0). Recall that ¢; denotes the nominal
capacity of idle period k. Therefore, point k; represents
the point in time (i.e., starting time) at which the idle
period has the largest nominal capacity, and point ko
the point in time (i.e., ending time) at which the idle
period has reached zero capacity. The slope of the line
segment representing idle period %k is equal to —puy;,
where p; is the rate of the server corresponding to this
idle period; this representation clearly shows that the
nominal capacity of the idle period decreases at rate
;. Consider, for example, idle period x in Figure 1(a)
with starting time st, = t1, ending time et, = ¢4, and
nominal capacity c,. This idle period is represented in
the plane by the line segment between the two points
x1 = (stg,c,) and xo = (et,,0). The slope of the line
segment is -1, since the rate of server 1 is p; = 1. Idle
periods y, z, and w are similarly represented by the line
segments shown in Figure 1(b). Note also that the slope
of the line segment corresponding to idle periods y and
z is -1, while the one corresponding to w is -0.5 since
the latter is on server 2 of rate ps = 0.5.

Feasibility Criteria. We may now use the above geo-
metric representation to determine whether an idle period

is feasible for a new job. Consider an idle period k
with tuple (stg, ety, cx) represented by the line segment
defined by points k; and ko, as explained earlier, and a
new job j with tuple (r;,l;,d;) that is represented by
a line segment between points P and P’. Idle period k
is feasible for job j if and only if both of the following
conditions are satisfied.

1) Starting time feasibility. Let i be the server corre-
sponding to idle period k, and p; be its service rate.
For the idle period k to be feasible for the new job
7, its starting time sty has to be sufficiently early
for the server to be able to complete the job before
its deadline, i.e.:

Hi

Expression (3) is necessary but not sufficient for
feasibility, since the idle period £ may end early,
before job j can complete on server i. Returning
to Figure 1, we observe that idle period x satisfies
the above condition with respect to the new job.
However, the residual capacity of this idle period
at the time the new job arrives is not sufficient to
accommodate it.

2) Capacity feasibility. Assuming that the starting
time feasibility is satisfied, an idle period k is
feasible for a new job j if the line segment
representing k lies above or intersects with, the
line segment representing j. Equivalently, this con-
dition is satisfied if the leftmost endpoint of the
line segment representing the new job lies below
the line segment representing the idle period. In
Figure 1(b) we see that idle period y does not
satisfy this condition as its line segment lies below
the line segment representing the new job; hence,
y is not feasible for the new job.

Stk S dj

In Figure 1(b), the two conditions are satisfied for
both idle periods w and z with respect to the new job
represented by the line segment between points P and
P’. Consequently, idle period w has enough capacity to
accommodate the new job, as long as the latter starts
before the time instant at which the corresponding lines
intersect; similarly for idle period z.

Our objective is to develop techniques to identify
efficiently feasible idle periods for each arriving job
request, without having to examine all idle periods. As
we have shown in [40], we can efficiently find idle
periods that meet the starting time feasibility criterion
by organizing the idle periods in an appropriate balanced
tree structure that can be searched in logarithmic time.
However, identifying idle periods that meet the capacity
requirement, e.g., determining line segments lying above
point P in Figure 1(b), requires that each idle period
be examined separately. This is due to the fact that
to perform this test the equation representing each line
segment needs to be evaluated for the coordinates of the
given point.

Next, we employ techniques from computational ge-
ometry to obtain an equivalent representation of idle
periods and new jobs that allows us to develop an
elegant solution to the problem of testing for the capacity
feasibility criterion.

B. Duality Transform and Duality Plane.

Geometric duality [17] refers to the direct mapping
between a point p (respectively, line [) and a line
p* (respectively, point [*). The duality transform maps
objects from the primal plane to the dual plane. We
now describe a simple duality transform we use in the
remaining of this paper. Let p := (p,, p,) be a point in
the plane. The dual of p, denoted p*, is the line defined
as

p* = (y = poz — py) O]

where p, and p, are p’s x and y coordinates, respec-
tively. The dual [* of a line [:= (y = mx + b) is the
point p such that p* = [, that is,

I* := (m, —b) ()

where m and b are the slope and y-intercept of line
I, respectively. One major advantage of this particular
duality transform is that it is order preserving, that is,
point p lies above line [if and only if point [* lies above
line p* [17].

Let us now return to our original problem and the
geometric representation of idle periods and jobs shown
in Figure 1(b). We transform this primal plane to the dual
plane by mapping the line [; corresponding to an idle
period k to a point [}, and the point P corresponding
to the earliest time new job j can start execution, to a
line P*. Using basic geometry principles we find that
for any idle period k, the value of b in expression (5) is
uietr. Since the slope m of idle period k is —pu;, where
1; is the rate of the corresponding server, expression (5)
can be written as:

= (— i, —piet). ©)

To find P*, we substitute p, and p, in expression (4)
with 7; and [;, respectively:

Pr .= (yz’l“j.’L‘—lj). (7)

Figure 3(b) shows the dual plane corresponding to the
primal plane in Figure 3(a); the latter figure is identical
to Figure 1(b), and is repeated here for convenience. As
we can see, the idle periods are now mapped to points in
the dual plane. Specifically, all idle periods on server 1
of rate 43 = 1 are now points with y coordinates equal
to —u1 = —1; similarly, the idle period on server 2 of
rate p12 = 0.5 has y coordinate equal to —py = —0.5.
Point P, on the other hand, which represents the earliest
time the new job can start execution is represented on
the dual plane as a line.

Consider now the capacity feasibility criterion we
defined above. In the primal plane of Figure 3(a), it is

A
2
g
=%
]
Q
idle period x
slope = -1
idle period w
slope = -0.5 idle period z
)) slope = -1
Cx idle period y /
! = —
Cz ! slope = 1, new job
I
i 1 | — / : 4
CJy— : ! 1
\ : 1 {
T LI I B T
0 4 by 4is iy Lol
time
(2)
Fig. 3.

clear that the idle period x is not feasible for the new
job, as point P lies above the line segment representing
z. Due to the order preservation of the duality transform,
in Figure 3(b) we see that the point corresponding
to idle period x also lies above the line representing
point P. Similarly, idle periods y and w are feasible
for the new job, and their corresponding points in the
dual plane lie below the line representing point P.
Therefore, checking for capacity feasibility in the dual
plane requires checking whether the points representing
idle periods lie below the line representing the new job.
This test can be performed efficiently by organizing the
idle periods (points) lying on the vertical line © = —p
(i.e., those corresponding to servers with rate y) in a
search tree structure, and searching for those with a y-
coordinate less than that of the point at which the line
representing the new job intersects the line x = —p; this
search structure is described in the next section.

The observant reader will have noticed that, in the dual
plane of Figure 3(b), the point representing idle period
y lies below the line representing point P; however, a
look at the primal plane of Figure 3(a) indicates that
idle period y is not feasible. Note that extending the
line segment representing idle period y in the primal
plane would result in a line lying above point P, hence
the dual plane representation is consistent in this regard.
The issue here is that idle period y starts too late
to be feasible, therefore it will not pass the starting
time feasibility criterion above. Consequently, both the
starting time and capacity feasibility criteria must be
checked to ensure that an idle period is feasible.

.5 0

/—new job (point P only)
1
J

eriod w
- —0.5%

- _t4

idle period y

/ idle period z
6_ ____________ — _tl 1

(b)

(a) Primal plane and (b) dual plane representations of the idle periods and new job of Figure 1(a)

V. ALGORITHM AND DATA STRUCTURE
DESCRIPTION

We now introduce an efficient algorithm for finding
a feasible idle period for a new job in a (H, n)-
heterogeneous system with advance reservations. The
algorithm is derived from the heterogeneity-aware FF-
HA algorithm we described in Section III, and will refer
to it as FF-HA+. The FF-HA+ algorithm differs from
FF-HA in that it maintains H balanced trees, rather than
H linked lists, such that balanced tree 7, h = 1,--- , H,
stores information about the idle periods over all servers
with rate yip,. Similar to FF-HA, when a new job arrives,
FF-HA+ searches the balanced tree structures in ascend-
ing order of server rate, and returns as soon as it finds
a feasible idle period.

A. Balanced Tree Structure

The FF-HA+ algorithm maintains H 2-dimensional
binary search trees to organize the idle periods in a
(H,n)-heterogeneous system, one such tree Tp,h =
1,-.-, H, for each distinct server rate value uj. When-
ever the algorithm needs to search the idle periods avail-
able in servers associated with rate u;, the associated
tree T}, is searched.

We will refer to the first and second dimension trees of
Ty as T} rimal and T;f““l. As their name indicates, they
organize the idle periods according to their parameteri-
zations on the primal and dual planes, respectively. More
specifically, tree T,f”mal is used to select idle periods
that meet the starting time feasibility criterion, and tree
T,‘f““l is used to select among these idle periods the ones
that meet the capacity feasibility criterion.

Let us now describe the 2-dimensional tree 7}, more in
detail. In tree T,f”mal, the actual idle periods are in the
leaf nodes, arranged in ascending order of their starting
time. A leaf node corresponding to idle period k stores
the following information:

« the starting time of k;

« the ending time of k; and

o auxiliary data, such as the identity of the corre-
sponding server.

Internal tree nodes store information regarding the
idle periods in their subtree. This information is used
to navigate the tree and locate idle periods appropriate
for the new job. The information at an internal node v
consists of:

o the median starting time of the idle periods stored
in the subtree of T,f”m“l rooted at v; and
« a pointer to the secondary priority search tree 737*!

containing idle periods.

Tree T stores the idle periods sorted in descending
order of the y-coordinate of their dual representation,
that is, of the corresponding point in the dual plane.
Each intermediate node v in T,‘f““l stores the following

information:

« the median y-coordinate of the dual representation
of the idle periods stored in the subtree rooted at v;
and

« a pointer to the idle period in v’s subtree with the
maximum nominal capacity.

B. Searching the Balanced Tree Structure

Consider a request to schedule a new job j with
parameters (r;,(;,d;). The FF-HA+ algorithm searches
the H balanced trees as we explained earlier, and returns
the first feasible idle period found. We now describe how
the search of balanced tree T}, is performed; this process
is identical for all trees Tp,,h = 1,--- , H. Specifically,
the search proceeds in two steps:

1) In the first step, the algorithm traverses the tree
17 rimal and marks the intermediate nodes v whose
subtrees contain idle periods that meet the starting
time feasibility criterion.

2) In the second step, the algorithm searches the
secondary trees 79%%! at each intermediate node
v marked during the first step, to locate the subset
of idle periods that meet the capacity feasibility
criterion.

Step 1: Search in T,f”mal. In this step, the algo-
rithm identifies idle periods that meet the starting time
feasibility criterion expressed in (3). To this end, we
employ a standard search algorithm which starts at the
root node and compares the quantity in the right-hand
side of (3) to the median starting time stored at each
internal node v. If the median starting time is smaller,
then all the idle periods stored in v’s left subtree meet
the first feasibility criterion; the algorithm marks the
left subtree and proceeds to search the right subtree.

If the median starting time of the tree rooted at v is
larger, then we can safely conclude that all the idle
periods in the right subtree are infeasible and proceed
recursively to search the left subtree of v. The algorithm
returns the set of marked intermediate nodes as soon
as it reaches a leaf, and proceeds to Step 2 described
below. If no intermediate node is marked, the FF-HA+
strategy continues to search in the 2-dimensional tree
T}+1 corresponding to the next larger value of server
rate.

Step 2: Search in T%“%, In this step, the algorithm
searches the idle periods meeting the starting time feasi-
bility criterion, to identify the ones that also satisfy the
capacity feasibility criterion. To this end, the algorithm
searches each of the subtrees rooted at the intermediate
nodes marked in Step 1 and returns as soon as it finds
one feasible idle period (if one exists). We will refer to
T{f“‘” as the secondary tree, i.e., the dual tree, associated
with marked node v. The algorithm starts at the root of
Tdual and compares the median y-coordinate stored at
each internal node w to the y-coordinate of the point
in the dual plane at which the line corresponding to
the new job intersects the vertical line x = —py, (refer
also to Figure 3(b)). If the latter value is smaller then
it can be concluded that all the idle periods in the left
subtree are above the line, and hence are infeasible; the
algorithm then recursively searches w’s right subtree. If
the former value is smaller, then all the idle periods
in the right subtree of u are feasible, and there may
also exist feasible idle periods in its left subtree. In this
case, the algorithm accesses the idle period with the
maximum capacity in the right subtree by following the
pointer stored at node u. If this idle period is feasible,
the algorithm returns it and assigns it to the new job.
Otherwise, the search continues recursively with the left
subtree of wu. If the algorithm reaches a leaf, then no
feasible idle period exists in the given subtree and the
algorithm continues searching the next tree marked in
Step 1.

Running time complexity. In the worst case, the search
algorithm marks an intermediate node at each level of
the tree 77" in Step 1. Given that it has to perform
a standard search for each of these trees, the overall
complexity is O(log2 V3) for 2-dimensional tree T},
where V}, is the number of idle periods in the tree. Since
the algorithm may have to search all H trees, the worst
case complexity for FF-HA+ is O(H log® V'), where
V = max{V}}. As a comparison, the running time of
FF-HA is O(HV), i.e., linear in the number of idle
periods, since it has to traverse H linked-list structures.
Since H is typically a small constant, whereas the
number V of idle periods can be quite large (especially
for large systems with thousands of servers and for
long time horizons for advance reservations), FF-HA+
is significantly more scalable than FF-HA.

VI. ADAPTABILITY: RE-PLANNING CAPACITY AND
MAXIMIZING UTILIZATION

As we mentioned earlier in Section I, one of the

major concerns regarding the deployment of advance
reservation mechanisms has to do with their lack of
flexibility that does not permit graceful degradation
in application performance when resource management
policies mandate changes in allocations. In this section
we describe two mechanisms that make it possible to
exploit the efficiency of FF-HA+ in order to relax the
hard deadline assumption and accommodate changes
in resource availability; the implementation of these
mechanisms is the subject of ongoing work within our
group.
Replanning Capacity. In our work so far we have
assumed that deadlines are hard, i.e., jobs are dropped
if they can not be allocated within their deadline. It
is possible to make the algorithm more flexible and
increase the overall ability of the system to meet ap-
plication QoS requirements by introducing a negotiation
process. This process is invoked whenever the sched-
uler fails to allocate a job and attempts to reschedule
existing reservations in order to allocate new incoming
jobs whenever possible without affecting the QoS of
previously scheduled jobs. This negotiation process may
utilize a set of data structures and algorithms similar to
the one we described in the previous section to organize,
search, and modify existing reservations.

Our algorithm can also be adapted to handle efficiently
changes in job demands. Consider, for instance, a job
currently running on a server, and assume that it needs
to execute for a longer period of time than the one
it originally reserved (i.e., the original estimate of its
running time was incorrect). In current systems, such
jobs are either terminated or preempted and given low
priority for scheduling. Given the low running time
complexity of our search algorithm, there are several
options to handling such situations: one can either invoke
the negotiation process to reschedule the job that has
reserved the server following the current job, or one can
checkpoint the job, invoke the scheduling algorithm to
find the next available feasible idle period for it, and then
migrate the job to complete execution in another server.

Opportunistic Scheduling. To enable users and Grid
administrators to exploit the variations of resource con-
ditions to improve both application and system per-
formance, the FF-HA+ algorithm may be extended to
implement opportunistic scheduling. More specifically,
new jobs that have no deadline requirements may use
resources as they become available, and they may be
preempted to accommodate new jobs with deadlines.
Such an approach will increase utilization by filling idle
periods that might not be used otherwise, and increases
the flexibility of the system.

VII. PERFORMANCE EVALUATION

In this section we present simulation results to demon-
strate the performance of the FF-HA+ scheduling algo-
rithm. We used the method of batch means to estimate
the performance parameters we consider (and which we
discuss shortly), with each batch consisting of thirty
simulation runs and each run lasting until 10° jobs have
been submitted to the Grid scheduler. We have also
obtained 95% confidence intervals for all the results,
which are shown in the figures.

In our simulation, we assume that job requests arrive
following a uniform distribution in the range from one
minute to 14 days [21]. The duration of each reservation
request is randomly selected so that 80% of the incoming
jobs are smaller than 4 hours, and 20% are between 4 and
36 hours; the mean job size is 5.6 hours. These values
were chosen based on the experience with running real
Grid workfolk applications as described in [21], [22].
We let the deadline d; of job j be uniformly distributed
in the interval (r;,r; 4+ ¢), where ¢ corresponds to the
“tightness” of the deadline; for most of our experiments
we assume ¢ = 20 hours unless stated otherwise.

We consider a (H, n)-heterogeneous system with n =
120 servers and H = 3 distinct service rates. We gener-
ated and studied L = 4 computational rate distributions
such that L = 1 refers to the least heterogeneous system
and L = 4 refers to the most heterogeneous one.

We use four performance metrics in our study. The
work loss rate is the fraction of work that is dropped
due to the fact that the deadline of the corresponding
jobs cannot be met. The system utilization is the fraction
of time the n servers are busy serving jobs. The waiting
time is the mean amount of time that a job has to wait
beyond its ready time until it starts execution; note that
dropped jobs do not contribute to the average waiting
time. Finally, the algorithm running time captures the
efficiency of the search algorithm to schedule incoming
jobs. To compute the running time we record the CPU
time for each simulation corresponding to 10° jobs.
Work loss rate and waiting time are measures of the QoS
perceived by the user, system utilization is a measure of
system performance, and running time determines the
scalability of the system.

In our first experiment, we compare the FF-HA+
algorithm to the baseline algorithm FF-HU we described
in Section III. Recall that FF-HU strategy organizes idle
periods in a single linked list ordered in ascending order
of their starting time; the algorithm traverses the list and
returns the first feasible idle period for a new job, i.e.,
the one with the earliest starting time. Note that idle
periods with early starting times are at risk of expire
unused if new jobs are not assigned to them. Therefore,
this choice of a feasible idle period is expected to lead
to low loss, since assigning a new job to the earliest
possible feasible period allows idle periods starting later
to be used for future job requests. On the other hand, the
running time of the algorithm increases quickly with the

Work Loss Rate
o
Ny
T
.
|

FF-HU o1
FF-HA+ - o

0.05 L L L L L L
0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.9

System load

40000

35000 - e g
30000]

25000 - o g

Running Time

20000 B
15000 ° B
°

10000 |- ° B

FF-HU oot
FF-HA+

5000 L L L L L L
0.1 0.2 03 0.4 05 06 07 08 0.9

System load

Fig. 4. Comparison of FF-HA+ and FF-HU: (a) work loss rate against load, (b) running time (in milliseconds) against load

07

10 T

9 BT]
06 | 4 s
s
8 o g
s
R .
05 F R 7L .]
- 6t B
04 o e 2
< r
s e IS
g . o 5|]
= @ e =
2 o03f] s
o 4 4
e
.
02 F | 3t]
. .
2 o B
01k ol 1
1 b o @ i
FF-HU +--e e FF-HU -0
FF-HA+ o FF-HA+ o
0 I I I I I I | 0 I I I I I I 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
System load System load

Fig. 5.

size of the Grid system and the time horizon for making
reservations. The FF-HA+ algorithm organizes the idle
periods in balanced tree structures, hence it scales well
to large Grid systems. However, it does not necessarily
return the feasible idle period with the earliest starting
time, hence we expect that its work loss rate will be
higher than FF-HU. But we emphasize that FF-HA+ will
always find a feasible idle period for a new job if one
exists.

Figure 4 confirms the above observations. The figure
plots the work loss rate and running time of the FF-
HU and FF-HA+ algorithms against the system load. As
we can see in Figure 4(a), the loss rate increases with
the system load for both algorithms. The two strategies
exhibit similar loss rates at low loads (when there are
sufficient resources to schedule almost all jobs) and
high loads (when the issue is the lack of resources,
not the particular strategy used). However, the FF-HA+
strategy exhibits a higher loss rate at medium loads, as
we expected. A careful examination of our experiments
shows that FF-HU incurs less resource fragmentation
that FF-HA+. This result is due to the fact that FF-HA+
returns the feasible idle period of maximum capacity
among those in its subtree; while this choice was made

Comparison of FF-HA+ and FF-HU: (a) utilization against load, (b) waiting time against load

to speed up the operation of the algorithm, the side effect
is higher fragmentation. On the other hand, the running
time of FF-HU is significantly higher than that of FF-
HA+, especially at medium to high loads; again, this
result is consistent with our discussion above.

The system utilization curves in Figure 5(a) suggest
that FF-HA+ utilizes better the resources available in the
system, i.e., the servers are busy performing work for
a longer fraction of time than under FF-HU. However,
since the loss rate for FF-HA+ is slightly higher, this
results implies that FF-HA+ allocates more jobs to slow
processors than FF-HU. A more careful examination of
our results reveals that, under FF-HA+, processors with
high service rate exhibit a higher fragmentation; since
the capacity of processors with high service rate expires
faster as time progresses, fragmentation of capacity on
high-rate servers has a more detrimental effect on system
performance, as exhibited by the higher loss rate of HH-
FA+. Figure 5(b) plots the average waiting time that
jobs have to wait beyond their ready time. We observe
that jobs have to wait significantly longer under FF-HU
compared to FF-HA+. In other words, although FF-HU
schedules a larger fraction of jobs than FF-HA+, the start
time of these jobs is pushed back resulting in longer

0.45 | R
041 E
x

0.35 | . A
o ///
£ o3}) - _ g
@ -
2 = — -
3 . * / L
£ o0t L 1
2 _—F 2

02 o 1

= &
= :
015 4+ P]
.
L - L=1 4
0.1 . IE=2 .
- -3 ——
e L=4 e~
0.05 N
0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.9
System load
Fig. 6.

waiting times.

Finally, Figure 6 investigates the impact of different
levels of heterogeneity on performance. Figure 6 (a)
plots the work loss rate against the load for L = 4
different levels of heterogeneity, where larger values of
L imply higher heterogeneity; Figure 6 (b) is similar but
plots system utilization against load. We can see that as
resources become more heterogeneous, the loss rate and
system utilization both improve, in many cases signif-
icantly so. This behavior follows from the fact that to
increase resource heterogeneity in a given system while
keeping the total service rate constant, as required by
expression (2), the service rate of a few fast processors
must increase further. In other words, a larger fraction of
the total service rate is concentrated on fewer resources.
Consequently, making the system more heterogeneous
introduces a higher degree of statistical multiplexing,
whereby fewer high capacity servers are responsible
for serving larger number of customers. The results
in Figure 6 then are consistent with the well-known
fact from queueing theory that statistical multiplexing
improves system performance.

VIII. CONCLUDING REMARKS

We have considered the problem of advance reser-
vations for jobs with deadlines in a Grid system with
heterogeneous resources. We have developed a geometric
representation of idle periods and jobs that provides
new insight and allows for efficient organization of the
reservations. We have developed a scheduling algorithm
with good performance that can scale to large Grid
systems and long time horizons. We have also shown
that resource heterogeneity may have a positive impact
on performance if taken into account in the design of
scheduling algorithms.

REFERENCES

[1] E. Elmroth and J. Tordsson. A grid resource broker supporting
advance reservations and benchmark-based resource selection.
Lecture Notes in Computer Science, volume 3732, pages 1077-
1085. Springer-Verlag, 2005.

0.7

06 e

0.5

04

Utilization

03

0.2

.

e
Locnoun

.

0 L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7

System load

o [Pwo—~

o

0.9

The impact of heterogeneity: (a) work loss rate against load, (b) utilization against load

[2] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann, 2003.

[3] M. Maheswaran K. Krauter, R. Buyya. A taxonomy and survey of
grid resource management systems for distributed computing. Soft-
ware: Practice and Experience, 32(2):135-164, February 2002.

[4] R. Min and M. Maheswaran. Scheduling Advance Reservations
with Priorities in Grid Computing systems. In Proceedings of
PDCS’01, pages 172-176, 2001.

[S] W. Smith, I. Foster, and V. Taylor. Scheduling with advanced
reservations. In Proceedings of IPDPS’00, pages 127-132, 2000.

[6] A. Sulistio and R. Buyya. A grid simulation infrastructure
supporting advance reservation. In Proceedings of PDCS’04, pages
1-7, Nov. 2004.

[7] H. Rasheed, M. Dikaiakos, and S. Haridi. Quantification of Grid
Resource Heterogeneity Effects on Performance. Technical Report,
January, 2006.

[8] G. Dasgupta, K. Dasgupta, A. Purohit, and B. Viswanathan. QoS-
GRAF: A Framework for QoS based Grid Resource Allocation
with Failure provisioning. Proceedings of the 14th IEEE Interna-
tional Workshop on QoS (IWQOS’06), pages 281-283, June 19-21,
New Heaven, CT, USA.

[9] 1. Foster and A. Roy. Quality of Service Architecture that
Combines Resource Reservation and Application Adaptation. Pro-
ceedings of the 8th International Workshop on Quality of Service
(IWQOS’2000), pages 181-188, June 5-7, 2000.

[10] J. MacLaren. Advance Reservations: State of the Art. http://
www.fz-juelich.de/zam/RD/coop/ggf/graap/graap-wg.html.

[11] A. Andrieux, K. Czajkowski,A. Dan, K. Keahey, H. Ludwig,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services
Agreement Specifications WS-Agreement. Global Grid Forum,
2004.

[12] A. Left, J.T. Rayfield, and D.M. Dias. Service-Level Agreements
and Commercial Grids. IEEE Internet Computing, pages 44—
50,volume 7, number 4, July, 2003.

[13] H. Li, and L. Wolters. An Investigation of Grid Performance
Predictions Through Statistcal Learning. /st Workshop on Tackling
Computer System Problems with Machine Learning Techniques
(SysML), in conjunction with ACM Sigmetrics, Saint-Malo, France,
2006.

[14] L. Yang, J.M. Schopf, and I. Foster. Conservative Scheduling:
Using Predicted Variance to Improve Scheduling Decisions in
Dynamic Environments. Proceedings of the 15th ACM/IEEE
Conference in Supercomputing (SC’03), pages , Phoenix, Arizona,
2003.

[15] I. Foster. What is The Grid? A Three Point Checklist. www-fp.
mcs.anl.gov/~foster/Articles/WhatlsTheGrid.pdf, July 20, 2002.

[16] L. Jin, V. Machiraju, and A. Sahai. Analysis on Service Level
Agreement of Web Services. HP Lab Technical Report HPL-2002-
180, June 21st, 2002.

[17] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-
Verlag, second edition, 2000.

[18] A. Sahai, S. Graupner, V. Machiraju, A. Van Moorsel. Specifying
and Monitoring Guarantees in Commercial Grids through SLA.
Proceedings of the 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid’03), pages 292-299,
May 12-15, Tokyo, Japan.

[19] P. Godfrey, and R. Karp. On the Price of Heterogeneity in Parallel
Systems. Proceedings of 18th ACM Symposium on Parallelism
in Algorithms and Architectures, July 30th to August 2nd, 2006,
Cambridge, MA, USA.

[20] L. Dubois, G. Mounie, and D. Trystram. Analysis of Scheduling
Algorithms with Reservations. Proceedins of the 21st IEEE In-
ternational Parallel and Distributed Processing Symposium, Long
Beach, CA, USA, March 26-30,2007.

[21] M. Siddiqui, A. Villazon, and T. Fahringe. Grid Capacity
Planning with Negotiation-based Advance. Reservation for Op-
timized QoS. Proceedings of the 2006 IEEE/ACM Conference
in Supercomputing (SC2006), pages 103-118, November 15-21,
Phoenix, Arizona, 2006.

[22] T. Fahringer, R. Prodan, R. Duan, F. Nerieri,S Podlipnig,
J QinM Siddiqui,H. Truong,A. Villazon, and M. Wieczorek.
ASKALON: A Grid Application Development and Computing
Environment. Proceedings of 6th International Workshop on Grid
Computing (Grid 2005), IEEE Computer Society Press, Seattle,
Washington, USA.

[23] K.K. Drogemeier and R. Wilhelmson. Linked Environments
for Atmospheric Discovery (LEAD): A CyberInfrstructure for
MEsoscale Meteorology Research and Education. Proceedings
of 20th Conference of Interactive Information Processing Systems
for Meteoreology, Oceonography and Hydrology, 2004,Seattle,
Washington, USA.

[24] D.S. Katz, D.S.,J.C. Jacob, E. Deelman,C. Kesselman,G. Singh,
M. Su,G.B. Berriman, J. Good,A.C. Laity and T.A. Prince. A
Comparison of Two Methods for Building Astronomical Image
Mosaics on a Grid. Proceedings of the 34th International Confer-
ence Workshops on Parallel Processing (ICPP’05), pages 85-94,
June 14-17, Oslo, Norway.

[25] E. Deelman, C. Kesselman, G. Mehta,L.. Meshkat, L. Pearlman,
K. Blackburn,P. Ehrens, A. Lazzarini,R. Williams and S. Koranda.
GriPhyN and LIGO, Building a Virtual Data Grid for Gravitational
Wave Scientists. Proceedings of 11th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC’02),
pages 225-234, July 23-26, 2002,Edinburgh, Scotland.

[26] R.L. Henderson. Job Scheduling Under the Portable Batch
System. Proceedings of the Workshop on Job Scheduling Strategies
for Parallel Processing, Lectures Notes in Computer Sciences,
pages 279-294 , April 25, Santa Barbara, California, US.

[27] P. Maechling, H. Chalupsky, M. Dougherty, E. Deelman,
Y. Gil, S. Gullapalli,V. Gupta, C. Kesselman, J. Kim, G. Mehta,
B. Mendenhall, T. Russ,G. Singh, M. Spraragen,G. Staples and
K. Vahi. Simplifying construction of complex workflows for
non-expertusers of the Southern California Earthquake Center
Community Modeling Environment Journal of SIGMOD Record,
ACM Press, Volume 34, Issue 3, pages 24-30.

[28] S. Zhou, X. Zheng, J. Wang and P. Delisle. Utopia: a Load
Sharing Facility for Large, Heterogeneous Distributed Computer
Systems. Journal of Software Practica Experience, John Wiley &
Sons, Inc., Volume 23, Number 12, pages 1305-1336, 1993.

[29] M.J. Litzkow, M. Livny, and M.W. Mutka. Condor-A Huner
of Idle Workstations. Proceedings of IEEE 8th International
Conference on Distributed Computing Systems (ICDCS’88) , pages
104-111,June 13-17, San Jose, California, US.

[30] M. Hovestadt, O. Kao, A. Keller and A. Streit. Scheduling
in HPC Resource Management Systems: Queing vs. Planning.
Proceedings of 9th International Workshop on Job Scheduling for
Parallel Processing (JSSPP’03), pages 1-20, Lectures Notes in
Computer Science, Springer, June, 2003, Seattle, Washington,US.

[31] U. Farooq, S. Majumdar and E.W. Parsons. Impact of Laxity on
Scheduling with Advance Reservations in Grids. Proceedings of
the 13th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems
(MASCOTS’05), pages 319-322, September 26, 2005, Atlanta,
Georgia, US.

[32] G. Singh, C. Kesselman and E. Deelman. A Provisioning
Model and its Comparison with Best-effort for Performance-Cost
Optimization in Grids. Proceedings of the 16th International

Symposium on High Performance Distributed Computing, pages
117-126, June 27-29, 2007, Monterrey, California, US.

[33] R. Buyya and S. Venugopal. The Gridbus toolkit for Service
Oriented Grid and Utility Computing: An Overview and Status
Report. Proceedings of the 1st IEEE International Workshop on
Grid Economics and Business Models (GECON’04), pages 19—
36,IEEE Press, April, 2004, Seoul, Korea.

[34] I. Foster, C. Kesselman, C. Lee, R. Lindell,K. Nahrstedt and
A. Roy. A Distributed Resource Management Architecture that
Supports Advance Reservations and Co-Allocation. Proceeings of
the 7th International Workshop on Quality of Service (IWQ0S’99),
June 1-4, London, UK.

[35] A.S. McGough, A. Afzal, J. Darlington, N. Furmento, A. Mayer
and L. Young. Making the Grid Predictable through Reservation
and Performance Modelling. The Computer Journal, pages 358—
368, Volume 38, Number 3, 2005.

[36] H. Zhao and R. Sakellariou. Advance Reservation Policies for
Workflows. Proceedings of the 12th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP’06), pages 47-67,June
26, 2006,Saint-Malo, France.

[37] G. Singh, C. Kesselman and E. Deelman. Performance Impact of
Resource Provisioning on Workflows Applying. Technical Report
http://www.cs.usc.edu/Research/TechReports/05-850.pdf.

[38] M. Wieczorek, M. Siddiqui, A. Villazon, R. Prodan and
T. Fahringer. Applying Advance Reservation to Increase Pre-
dictability of Workflow Execution on the Grid. In Proceedings
of the 2nd IEEE International Conference on e-Science and
Grid Computing (E-SCIENCE’06), pages 82,December 4-6,2006,
Washington, DC, US.

[39] J. Cao and F. Zimmermann Queue Scheduling and Advance
Reservations with COSY Proceedings of the 18th Interna-
tional Parallel and Distributed Symposium (IPDPS’04), pages 63—
70,April 26-30, 2004, Santa Fe, New Mexico, US.

[40] C. Castillo, G. Rouskas and K. Harfoush. On the Design
of Online Scheduling Algorithms for Advance Reservations and
QoS in Grids. Proceedings of the 21th International Parallel
and Distributed Symposium (IPDPS’07), pages 1-10, March 26—
30,2007, Long Beach, California.

[41] HJ. Siegel and S. Ali. Techniques for mapping tasks to
machines in heterogeneous computing systems. Journal of Systems
Architecture, pages 627-639, Volume 46, Elsevier Science, 2000.

[42] A. Andrzejak and A. Reinefeld and F. Schintke and T. Schiitt.
On Adaptability in Grid Systems. Future Generation Grids, chap-
ter, pages 29—46,Springer Science+Business Media, Inc., January,
2006.

[43] T. Roblitz, F. Schintke and A. Reinefeld. Resource Reservations
with Fuzzy Requests. Journal on Concurrency and Computation:
Practice and Experience, pages 1681-1703,Volume 18, Number
13, November, 2006

[44] T. Roblitz, F. Schintke and J. Wendler. Elastic Grid Reservations
with User-Defined Optimization Policies. Proceedings of the
Workshop on Adaptive Grid Middleware (AGridM’04), September
30,Antibes Juan-les-Pins, France.

[45] D. Jackson, Q. Snell and M. Clement Core Algorithms of the
Maui Scheduler Proceedings 7th International Workshop of Job
Scheduling Strategies for Parallel Processing (JSSPP’01), pages
87-103, June 16, 2001, Cambridge, MA, US.

[46] IBM. http://www-03.ibm.com/systems/clusters/software/
loadleveler/index.html.

