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Abstract

We study a class of circuit-switched wavelength routing networks
with and without wavelength converters, and we present the first
part of a new analytical framework to accurately and efficiently
evaluate the blocking performance of such networks. Our model
allows non-uniform traffic, it accounts for the correlation among
the loads at all links in a path, and it can be used when the loca-
tion of converters is fixed but arbitrary. We first construct an exact
Markov process that captures the behavior of a path in terms of
wavelength use. We also obtain an approximate Markov process
which has a closed-form solution that can be efficiently computed
for short paths. We then develop an iterative algorithm to analyze
approximately arbitrarily long paths. The algorithm decomposes
a path into shorter segments which are then studied in isolation
using the corresponding approximate Markov process. The indi-
vidual solutions are appropriately combined to obtain a solution
for the original path. Finally, we demonstrate how our analytical
technigues can be used to gain insight into the problem of con-
verter placement in wavelength routing networks.

1 Introduction

To take full advantage of the potential of optical fiber, the use of
wavelength division multiplexing (WDM) techniques has become
the option of choice, and WDM networks have been a subject of
research both theoretically and experimentally. In particular, the
wavelength routing mesh architecture appears promising for wide
area distances. The network architecture consists of wavelength
routers and fiber links that interconnect them. A wavelength router
is capable of switching a light signal at a given wavelength from
any input port to any output port. A router may also be capable of
enforcing a shift in wavelength, in which case a light signal may
emerge from the switch at a different wavelength than the one it
arrived. By appropriately configuring the routers, all-optical paths
(lightpaths) may be established between pairs of nodes in the net-
work. Lightpaths represent direct optical connections without any
intermediate electronics. Because of the long propagation delays,
and the time required to configure the routers, wavelength routing
WAN:S are expected to operate in circuit switched mode.

The call blocking performance of optical wavelength routing net-
works has been studied in [7, 1, 5, 2, 9]. In [5] it was assumed that
statistics of link loads are mutually independent, while the model
developed in [1] is based on the assumption that wavelength use
on each link can be characterized by a fixed probability, inde-
pendently of other wavelengths and links. The work in [2] used
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a Markov chain with state-dependent arrival rates to model call
blocking in arbitrary mesh topologies, a computationally inten-
sive approach. Another model was presented in [7], where it was
assumed that the load on link ¢ of a path depends only on the load
of link 4 — 1. A study of call blocking under non-Poisson traffic
was presented in [9], but it assumes that link loads are statistically
independent. The problem of optimal converter placement in a
single path of a network was studied in [8], again assuming no
correlation among link loads.

The above studies indicate that wavelength routing networks are
rather hard to analyze. In this paper we present the first part of
a new analytical framework which permits us to accurately study
the call blocking performance of wavelength routing networks.
Our work improves upon previously published work in several
ways. First, we allow non-uniform traffic, i.e., call arrival rates
may vary for each source-destination pair. Second, our model
accounts for the calls between any source-destination pair in the
path, and it can be used to compute the blocking probability not
only for the end-to-end traffic, but also for the traffic along shorter
segments of the path. More importantly, our model captures the
correlation among the loads on all links of a path. Finally, the ap-
proximate analytical techniques we develop are very efficient and
can be used for long paths one would encounter in realistic wide
area networks.

The main results of our work are as follows. We first develop
an exact Markov process model that captures the correlation of
wavelength use among all links of a k-hop path with and with-
out converters. We then show how to slightly modify this process
to obtain an approximate Markov process model which is time-
reversible and which has a closed-form solution that resembles
the product form solution in queueing networks [4]. The solu-
tion to the time-reversible Markov process provides an accurate
approximation to the blocking probabilities obtained through the
original ones. Because of computational requirements, both the
exact and the approximate Markov process models can only be ap-
plied to relatively short paths. For longer paths, we then develop
an iterative algorithm for computing the blocking probabilities by
decomposing a path into a series of shorter segments connected in
tandem. Finally, we show how our analytical techniques can be
used to gain insight into the problem of converter placement in a
wavelength routing network.

In the following section we describe the wavelength routing net-
work under study. In Section 3 we obtain the exact and approx-
imate Markov process models for computing call blocking prob-
abilities, and in Section 4 we develop an iterative decomposition
algorithm for long paths. We present numerical results in Section
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Figure 1: A k-hop path

5, and we conclude in Section 6.

2 The Wavelength Routing Network

We consider a single path in a circuit-switched wavelength routing
network, where each link supports W wavelengths. Call requests
arrive according to a Poisson process with a rate that depends on
the source-destination pair. If the request can be satisfied, an op-
tical circuit is established between the source and destination for
the duration of the call. Call holding times are exponentially dis-
tributed.

If a node in the path employs wavelength converters, it can switch
an incoming wavelength to an arbitrary outgoing wavelength.
(When there are converters at all nodes, the situation is identical
to that in classical circuit-switching networks, a special case of
the one studied here.) If no wavelength converters are employed
in the path, a call can only be established if the same wavelength
is free on all the links used by the call. This is known as the wave-
length continuity requirement, and it increases the probability of
call blocking. If a call cannot be established due to lack of wave-
lengths, the call is blocked. On the other hand, if a call can be
accommodated, one of the wavelengths that are available on the
links used by the call is randomly assigned to it. Thus, we only
consider the random wavelength assignment policy.

We define a “segment” as a sub-path consisting of one or more
consecutive links of the original path. We will use the following
notation in this paper (refer to Figure 1):

e A k-hop path consists of k + 1 nodes labeled 0,1, - - -, k, and
hop ¢, is the link between nodes ¢ — 1 and <.

Aij,J 2 1, is the Poisson arrival rate of calls that use hops ¢
through 7, i.e., they originate at node ¢ — 1 and terminate at
node j.

1/, is the mean of the (exponentially distributed) holding
time of all calls. Also, p;; = A;j/p is the offered load of
calls using hops 7 through j.

Ny, J > 1, is the number of calls using hops 4 through j that
are currently active in the network.

fij»3 > 1, is the number of wavelengths that are free on all
hops ¢ through j.

3 Markov Process Models
3.1 Exact Markov Process Model

Let us first consider the 2-hop path (without converters) shown
in Figure 2. It is straightforward to verify that the evolution of
this system can be characterized by the four-dimensional Markov
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Figure 2: A two-hop path

process (n11,n12,N22, f12). Since, on each hop, the number of
busy wavelengths plus the number of wavelengths that are free on
both hops may not exceed W, the following two constraints must
be satisfied:

< W and nyp +na2+ fie

N1+ ni2 + fio < W

This result can be generalized to k-hop paths, k¥ > 2. Let My
denote the Markov process for a k-hop path. There are k? random
variables in a state n of M, as follows:

(nll)"'anlkan227""nzka"'>nkk)
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n

M

The first 250 random variables n4;,1 < & < j < k, in (1)
provide the number of active calls between all source-destination
pairs in the path. The last Sk;zl)—’i random variables f;;,1 <4 <
j < k, represent the number of free wavelengths on all segments

consisting of two or more links. The constraints on the state space
can be found in [10].

M|, captures the correlation of wavelength use on all links of
the path, and it can be used to provide an exact solution for the
call blocking probability. However, the large number of ran-
dom variables in its state description makes it impossible to nu-
merically solve it for large K or W. In addition, the transi-
tion rates of My are state-dependent. In Figure 3 we show
the transition diagram of M, for W = 2 wavelengths. From
this figure we can see that there exist sequences of states for
which Kolmogorov’s criterion for reversibility [3, Theorem 1.8]
is not satisfied, and the Markov process is not time-reversible.
Two such sequences are: (1,1,1,0),(1,0,1,1),(1,0,0,1),(1,1,0,0),
and (1,1,1,0),(1,0,1,1),(0,0,1,1),(0,1,1,0). This result is true in
general, and that My, k > 2 is not time-reversible for W > 1.

Next, we show how to modify some of the transition rates of M
in order to obtain an approximate Markov process which is time-
reversible and which has a closed-form solution.

3.2 Approximate Time-Reversible Markov Process
Model

A closer examination of Figure 3 reveals that the two four-state
sequences mentioned above are the shortest sequences for which
Kolmogorov’s criterion is not satisfied. We also note that these
sequences involve transitions that cause changes in the value of
random variable ny2. Define Lo . as the sub-chain of Mj that
includes only states for which the value of random variable n is
constant, i.e., N1z = ¢:

W@

Lo = {(n11,m2,n9, fi2) 1 ni2=c¢}, ¢=0,---
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Figure 3. State space (ni1,n12,n22, fi2) of a 2-hop path with
W = 2 wavelengths

Sub-chain £, . corresponds to a new with W — ¢ wavelengths per
hop, in which no calls using both hops ever arrive (A2 = 0). It
can be easily verified that Kolmogorov’s criterion for reversibility
is satisfied by any sequence of states in sub-chain £ ., and that
My is not time-reversible due to transitions between states with
different values of random variable n5.

Returning to Figure 3, if the transition rate from state (1,0,1,1)
to state (1,1,1,0) is changed to 2A;3, then the process becomes
time-reversible. This is an important result because we can obtain
a closed-form solution for the time-reversible process. However,
when each hop supports more than 2 wavelengths, a larger num-
ber of transition rates must be modified to yield a time-reversible
process. The rule for changing the transition rates can be found
in [10].

For a k-hop path, k > 2, a time-reversible process M, can be
derived from M, as follows. M) has the same state space and
the same transitions as My. The vast majority of its transition
rates are the same as the respective transition rates of My,. How-
ever, to ensure that the new Markov process is time-reversible, the
transition rates between some pairs of states must be appropriately
modified as explained in [10].

M, has a product-form solution for its steady-state probabil-
ity [4]. Let Gi(W) denote the normalizing constant for a
k-hop path with W wavelengths per link. Then, the solu-
tion to M}, corresponding to a 3-hop path with state n =
(n11,ma2,m13, Na2, N2, N33 fi2, fi3, fa3) is given by:

ni1 ni2 ,M13 N22 N23 N33 ( fll )( 1 )
L P prs®pis® ped pas® pss® \ fe faz — fi2

mn) =
<_) G3(W) n11!n12!n13Ingsngslings! ( n“f+ S )
22
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fi12 n22 + n12 + f22 — fi2 f22 — f12 n22 + ni2
y fis fas — fi3 f23 — f1s f33 — fa3
n22 + ni12 + f22 n2z + ni2 + fao ~ fi2 )
f33 fazs — f13

where fi1 = W —ni1 — ngg — nag, fao = W — nja — ngp —
n13 — Na3, and faz = W — ny3 — ngg — nas.

In general, the solution to M}, k > 3, is the product of k* terms.
The first k(k+1)/2 terms are of the form p?j"j /i, corresponding
to the random variables n;; in (1). The last k£(k — 1)/2 combina-
torial terms correspond to the dependent variables f;; in the state
description (1).

The significance of the new Markov process M), will be illus-
trated in Section 5, where it will be shown that the blocking proba-
bilities obtained through the product-form solution of M}, closely
approximate the exact blocking probabilities obtained through the
numerical solution of M. In order for the closed-form solution to
be useful, we need to have a computationally efficient procedure
for calculating the normalizing constant. However, the computa-
tion of the normalizing constant in time that is polynomial in W
and k has turned out to be a very difficult task. In Section 4, we
describe an iterative decomposition algorithm that can be used to
efficiently obtain the blocking probabilities for long paths.

When the path employs wavelength converters, it is straightfor-
ward to derive exact and approximate Markov processes similar to
(but simpler than) the ones described above. Specifically, in [10]
we present a method which can be used to obtain exact and ap-
proximate call blocking probabilities in a k-hop path when the
placement of converters is known.

4 Decomposition Algorithm for Long Paths

Let K denote the largest integer such that the closed-form solu-
tion to Markov process M’ can be computed within a reason-
ably short amount of time. Consider a k-hop path. If k < K, the
path can be analyzed approximately by solving the correspond-
ing Markov process M. If, however, k > K, the approximate
closed-form solution cannot be used directly. In this section, we
develop an iterative decomposition algorithm to analyze paths of
length greater than K. We first consider paths without converters,
and we then extend the algorithm to handle wavelength conver-
sion.

4.1 Paths With No Wavelength Conversion

We analyze a k-hop path, k = IK +m,l > 1,m < K, by de-
composing it into one m-hop segment and ! K-hop segments in
tandem. Each segment is first analyzed in isolation using the cor-
responding Markov process M, or MY.. The arrival rates of
calls originating in a segment but terminating in another segment
are accounted for by increasing the arrival rate of calls in the indi-
vidual segments. The individual solutions are appropriately com-
bined to obtain an initial value for the blocking probability of calls
that traverse more than one segment. Using these initial estimates,
the arrival rates to each segment are modified and each segment is
again solved in isolation in order to obtain a new solution. These
new individual solutions are again combined to update the block-
ing probability of calls traversing multiple segments. This is re-
peated until the blocking probabilities converge.



Decomposition Algorithm for Paths Without Converters

A k-hop path, k = K +m,m < K, is decomposed into a K-
hop segment (Segment 1) and an m-hop segment (Segment 2).
Segment 1 consists of nodes 0 to K, and Segment 2 consists of
nodes K to K = m of the original path. );; refer to the call

arrival rates in the original path, whereas Ag;’)
rates in Segmentn,n = 1, 2.

refer to call arrival

1. begin

2. h+« 0 /Mnitialization step
1 p(l) (R) is the blocking prob. of calls using hops
/1i to j of Segment 1; F( ) is the average number
// of free wavelengths on hops i to j of Segment 1
PP(h) <0, F) W, 1<i<j<K
I p(z) (h) is the blocking prob. of calls using hops
/l i to j of Segment 2; Fi(f) is the average number
/I of free wavelengths on hops ¢ to j of Segment 2
PP 0, FP «W, 1<i<j<m
/1 g;;(h) is the conditional probability that an inter-
/f segment call will be blocked in Segment 2, given
// that it has found a free wavelength in Segment 1
q,-j(h)<—0, 1515K<]§K+m

3. h«h+1 //h-th iteration

4. // Segment 1
M) <Ny, 1<i<i<K
/I Include the effective arrival rate of calls
// continuing to Segment 2

MR (h) + Aik
S AP ~ai(h~1),1<i <K

Solve Segment 1 to obtain p;; ) (h) and F(l) (h)

S. // Segment 2

AP (R) ¢ Akrigs, 1<i<j<m

1 Include the effective arrival rate of calls
// continuing from Segment 1

M2 (h) & Atk
+ 2 Ak (1-PR(A- 1), 1< <m
Solve Segment 2 to obtain p(2) (h) and Fi(jz) (h)
6. // Conditional blocking prob. of inter-segment calls
ais(h) = P2 () + (1= p{)_x(w))

F(h) Fx® . .
X {1~ =2 WN<i<K<j<K+m
W

7. Repeat from Step 3 until convergence
. end of the algorithm

oo

Figure 4: Decomposition algorithm for long paths
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Figure 5: (a) A 4-hop path and (b) its decomposition into two
2-hop segments in tandem

A summary of our iterative algorithm is provided in Figure 4. We
now describe the algorithm using the 4-hop path in Figure 5(a),
decomposed into the two 2-hop in Figure 5(b). Let A;;,1 <@ <
j < 4, be the arrival rates of calls to the original 4-hop path, and let
)\ﬁ), )\512), )\(212) and ,\ﬁ) ) )\g? , )\(2) denote the arrival rates of calls
in the first and second segments, respectively. The interpretation

of the arrival rates in the segments is as follows. )\%) accounts
for all the calls in the original 4-hop path that originate at node 0
and terminate at nodes 2 or higher; similarly for /\glz). Also, /\g)
accounts for all calls in the original path that originate at nodes 2
and lower and terminate at node 4; similarly for )\ﬁ)

Initially, we solve the first segment in isolation using

A = Q—@dhe + (- qs)his + Ao (3)
A

(1 —gaa)doa + (1 —qa3)Aas + Aoz 4
Y = An )

Quantity g;;, 1 <1 <2 < j < 4, represents the current estimate
of the conditional probability that a call using hops i through j
(where ¢ lies in the first segment and j lies in the second segment)
will be blocked in the second segment, given that a free wave-
length for the call exists within the first segment. Initially, we use
g;j = 0 for all i and j7; these values are updated in subsequent
iterations as described shortly. Thus, the term (1 — gy4) A4 in (3)
represents the effective arrival rate of calls using all four hops, as
seen by the first segment; similarly for the term (1 — g13)A13. Ex-
pression (4) for )\92) includes similar terms that account for the
effective arrival rate of calls which originate at node 1 and ter-
minate at nodes 2 or higher. But expression (5) for ,\511’ does not
include any such terms, since this type of calls do not involve calls
in the original path that continue to the second segment.

The solution to the first segment yields an initial value for the
probability p;), 1 < i < j < 2, that a call using hops i through
J of the first segment will be blocked within the segment. There-
fore, the effective arrival rate of calls originating at node 0 and



terminating at node 4 that is offered to the second segment can be
initially estimated as A;4(1 —Pglz)), while the effective rate of calls
originating at node 1 and terminating at node 4 can be estimated
as Aga (1 — pglz)). We can now solve the second segment using

A2 = A=) + Asa(l =) +Ass (6)

A2 = @ =) + A=) s (D)

2D = Ay ®

Ag) in (6) represents the effective arrival rate of calls using the
last two hops of the 4-hop path, as seen by the second segment.
Expression (7) for Aﬁ) can be explained using similar arguments.
Expression (8) for /\gzz) contains only one term since it does not
involve calls that originate in segment 1. The solution to the sec-
ond segment provides an estimate of the blocking probabilities
pg? , 1 < 7 <2, of calls traversing hops 1 and 2 of the second
segment.

We can now obtain new values for the conditional blocking prob-
abilities g;; used in (3), (4). Consider a call using hops ¢ through
j, where ¢ lies in the first segment and j in the second segment.
Given that free wavelengths exist on hops % through 2 (i.e., the call
makes it through the first segment), the call will be blocked if (a)
there is no free wavelength in the links it uses in the second seg-
ment, or (b) there exist free wavelengths in the second segment,
but they are not the same as the free wavelengths in the first two
hops.

The probability of the first event occurring is equal to pf])-_Q, ob-
tained through the solution of the second segment. The probabil-
ity of the second event is equal to (1 — pfj)._2)Q, where @ rep-
resents blocking due to the wavelength continuity requirement.
Probability @) cannot be computed exactly since each segment
is solved independently of the other, and thus, it is not possible
to determine whether a wavelength which is free in one segment
will also be free in the other. An approximate value for @) can
be obtained from the average number of free wavelengths in the
two segments. Let Fi(jl) (resp., Fi(]-?)) be the current estimate of
the average number of free wavelengths on hops 7 through j of
segment 1 (resp., segment 2); this estimate is obtained from the
solution to the segment. Consider a call using hops 7 through 7,
1 €1 <2 < j <4, of the original path, which captures one of
the free wavelengths in hops ¢ through 2 of segment one. Because
of the random wavelength assignment policy, the probability that
any given wavelength is assigned to this call can be approximated
by Fi((‘,l) /W . The probability that this wavelength is not free in the
next segment (given that there are free wavelengths in that seg-
ment) can be approximated by (1 — Fig) JW)HE 1i-2, Finally, the
conditional blocking probability g;; for this call, given that free
wavelengths exist for the call in the first segment, is approximated
by:

)
qij = pf])'—2 + (1 “Pf}—z) (1- Fi(zl)/"V)F""‘2 (&)

The new estimates for ¢;; are used in expressions (3) to (5) to up-
date the arrival rates for the first segment. The first segment is
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solved again, the estimates for pEJI ) are updated and used in ex-

pressions (6) to (8), and so on. We iterate in this fashion until the
blocking probabilities for all calls in the original path converge
within a certain tolerance. In our study, we have found that the al-
gorithm converges in only a few iterations even for long paths, and
that the blocking probabilities obtained closely match simulation
results.

This decomposition algorithm is similar in spirit to the decompo-
sition algorithms developed for tandem queueing networks with
finite capacity queues (see [6]). The algorithm can be easily ex-
tended to handle paths decomposed into more than two segments.
It is well known in decomposition algorithms that the larger the
individual sub-systems that have to be analyzed in isolation, the
better the accuracy of the decomposition algorithm. Thus, as we
mentioned earlier, we have decided to decompose a path in seg-
ments of the largest size K for which we can efficiently analyze
the Markov process M., plus, possibly, a segment of smaller
size, if the path length is not a multiple of K.

4.2 Paths With Wavelength Conversion

The addition of [ < k converters leads to a natural decomposition
of a k-hop path into ! + 1 segments, each consisting of the links
between successive nodes where converters are employed. Given
such a decomposition, the blocking probability of calls spanning
several segments depends only on the number of calls within each
segment, not on the actual wavelengths used by those calls, and
there is no wavelength continuity requirement between segments.
Each segment is analyzed in isolation as described above. Specif-
ically, if it is feasible, we analyze the segment’s underlying ap-
proximate time-reversible Markov process M. Otherwise, we
analyze it using the decomposition algorithm in Section 4.1.

As an example, consider a k-hop path with a converter located
at node K < k. This path can be analyzed using the algorithm
in Figure 4 after making a single modification: in Step 6, the
expression for the conditional blocking probabilities is changed
0 g;; = pf}_ k- The second term in this expression represents
blocking due to the wavelength continuity requirement, and since
@ = 0 in this case, it drops out. The algorithm can be extended
in a straightforward way to handle paths with more than one con-
verters.

5 Numerical Results
5.1 Validation of the Time-Reversible Process

In Figure 6 we plot the blocking probability of calls for each
source-destination pair in a 2-hop path without converters, against
the number W of wavelengths per hop. For each type of call we
show two curves. The first curve is obtained through a numerical
solution of the exact Markov process M3, and is referred to in the
figure as “exact solution.” The second curve is obtained from the
closed-form solution of the approximate Markov process MY, and
is referred to as “approximate solution”. The overall behavior of
the two curves is similar for all types of calls, and the approximate
blocking probability is always very close to the exact value.

Figure 7 presents results for a 3-hop path. We only plot the block-
ing probability of calls for three of the six source-destination pairs,
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Figure 7: Exact and approximate blocking probabilities of various
calls in a 3-hop path

namely, calls that traverse all three hops, calls that use only the last
two hops, and calls that use only the first hop. The blocking prob-
ability curves for the other three types of calls are very similar to
the ones shown in Figure 7. Again, we observe that the values
of the blocking probabilities obtained through the closed-form so-
lution of the time-reversible Markov process M} are very close
to the exact numerical values obtained from the Markov process
M3. However, the figure does not include values for the exact
blocking probability when W > 4 because of the state space ex-
plosion of the exact Markov process.

5.2 Validation of the Decomposition Algorithm

We now present results for 6-hop and 10-hop paths with W =
10 wavelengths, with and without converters. We have used the
following values for the traffic parameters:

=7 ao

6-hop path, W=10, calls traversing hops 1-6
T T

—T —T T T

3x3 decomposition with one converter at node 3 -e—

Simulation with one converter at node 3 -+-
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Simulation without converter: 27

Blocking Probability

o
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1 1 L L L L "

0.1 0.5

02 .. . . 0.4 0.
Arrival rate of calls traversing only one hop (other rates fixed to 0.3)

Figure 8: Blocking probability of calls traversing all links of a
6-hop path with W = 10

Figures 8 to 11 plot the call blocking probability as a function of
A, the arrival rate of calls traversing exactly one hop.

In Figures 8 and 9 we present results for a 6-hop path with and
without converters, and for W = 10. We show results for only two
source-destination pairs in the 6-hop path. The blocking probabil-
ity of calls traversing all six hops in the path is plotted in Figure
8, and the blocking probability of calls traversing hops 1 through
4 of the path is shown in Figure 9. In both figures, the value of
A is varied from 0.1 to 0.5, while the arrival rate of all other calls
is fixed to 0.3. Each figure contains two sets of plots, one for the
6-hop path without converters, and one for the same path with a
single converter. Each set consists of two plots, one for the results
from our decomposition algorithm, and the other for the simula-
tion results. We analyzed the 6-hop path without converters by
decomposing it into two 3-hop segments. We refer to this as a
“3 x 3 decomposition”. When there is a single converter in the
path, it is placed at node 3, also resulting in a 3 x 3 decomposi-
tion.

As the value of X increases, the blocking probability of both types
of calls increases. We also note that, when there is a converter at
node 3, the blocking probability for both types of calls is signif-
icantly lower than when there is no converter. Both these results
are expected. Furthermore, the values of the blocking probability
obtained through our iterative decomposition algorithm are very
close to the values obtained through simulation. Results similar to
the ones shown in these figures were obtained for calls for all other
source-destination pairs, and for a wide range of traffic loads.

Figures 10 and 11 show results for a 10-hop path with W = 10.
Again, we only plot the blocking probability of calls for two
source-destination pairs against the arrival rate A, as the latter in-
creases from 0.05 to 0.21, while all other arrival rates are fixed
to 0.1. Figure 10 shows the blocking probability of calls travers-
ing all ten hops of the path, while Figure 11 presents the blocking
probability of calls using hops 2 through 6. As before, there are
two sets of plots in each figure, one for the 10-hop path with-
out converters, and one for the same path employing three con-
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Figure 9: Blocking probability of calls traversing links 1 through
4 of a 6-hop path with W = 10
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Figure 10: Blocking probability of calls traversing all links of a
10-hop path with W = 10

verters. For the no-converter case, in addition to simulation re-
sults, we present the blocking probability values obtained through
alx 3 x 3 x 3 decomposition into a 1-hop segment followed by
three 3-hop segments. For the converter case, the three converters
are assumed to be at nodes 1, 4, and 7, a configuration that also
resultsina 1 X 3 x 3 x 3 decomposition.

The general behavior of the curves in Figures 10 and 11 as A in-
creases is very similar to that of the curves in Figures 8 and 9.
Regarding the accuracy of our decomposition algorithm, we note
that the approximation results closely match the simulation results
for both paths (with and without converters), and for both types of
calls. Overall, we have found that the decomposition algorithm
gives accurate results for long paths and for a wide range of traffic
loads. We have also observed that the algorithm always converges
in a few iterations, taking one minute for a 10-hop path, while the
simulation takes several hours.
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5.3 Converter Placement

We now consider the problem of determining the best placement
of I converters on a k-hop path, k£ > [, that minimizes the block-
ing probability of calls that travel over all k hops. To find the best
converter placement we first enumerate all possible ways of plac-
ing [ converters on a k-hop path; then, we calculate the blocking
probability of interest for each alternative using the decomposi-
tion algorithm. The best placement is the one with the minimum
such probability.

We consider a 10-hop path with W = 10, and three different
traffic load patterns. Figure 12 plots the load of each hop in the
path for each pattern. In the “uniform” pattern, all hops are equally
loaded, while the “bowl” (resp., “inverted bowl”) pattern is such
that the load decreases (resp., increases) from hop 1 to hop 5, and
then it increases (resp., decreases) from hop 6 to hop 10. The load
values were chosen so that the total network load is the same for
all patterns.
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for the load patterns of Figure 12

In Figure 13 we plot the blocking probability of calls using all 10
hops of the path for the optimal placement of [ converters, 1 < I <
5. For comparison purposes, we also plot the blocking probability
of these calls on a path without converters (the values for zero
converters in these figures). The optimal location of the converters
for each load pattern is also given next to each point of the curves.

As expected, the blocking probability drops as the number of con-
verters increases. However, after an initial steep drop, the curves
in general flatten as the number of converters increases. This be-
havior is consistent with the results of earlier work [7, 8]. We
also observe that the effect of converters on the blocking proba-
bility is strongly dependent on the actual traffic pattern. Regard-
ing the optimal node location of converters for the different traf-
fic patterns, we first note that the results are intuitively obvious.
The figure indicates, for example, that converters be placed at the
middle of the path for the “inverted bowl” pattern. However, we
observe that the optimal placement also depends strongly on the
load pattern. This result suggests that in a dynamic environment
where traffic patterns vary over time, there is no single assign-
ment of converters to nodes that will work well for all possible
loads. Consequently, simple optimization approaches, such as the
one considered here, that seek to minimize the blocking probabil-
ity under a specific traffic pattern may lead to poor performance
if the pattern changes. Instead, more comprehensive approaches
to the converter placement problem are needed, such as provid-
ing bounds for the blocking probability over a wide range of load
patterns.

6 Concluding Remarks

We have presented a new framework to accurately and efficiently
evaluate the call blocking performance in a single path of a wave-
length routing network. We have derived exact and approxi-
mate Markov process models, and we have developed an iter-
ative approximation algorithm to analyze long paths by decom-
posing them into shorter segments which are studied in isolation.
We have also apnlied our techniques to the problem of converter
placement in such a network.
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