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Abstract

We consider the problem of scheduling packet transmissions
in single-hop WDM networks, with tunability provided only
at one end. Qur objective is to design schedules of minimum
length for a given traffic demand matriz. The coniribution of
our work is twofold. First we define a special class of sched-
ules which permil an intuitive formulation of the schedul-
ing problem. We then present algorithms which construct
schedules of length equal to the lower bound provided that
certain optimalily conditions are satisfied. We also develop
heuristics which, in the general case, give schedules of length
equal or very close 1o the lower bound. Secondly, we identify
two distinct regions of network operation. In the firsi region
the schedule length is determined by the tuning requirements,
while in the second it is determined by the traffic demands.
The point at which the nelwork switches between the two re-
gions is identified in terms of the number of nodes and chan-
nels, and the tuning latency. Accordingly, we show that it is
possible to appropriately dimension the network to offset the
effects of even large values of tuning latency.

1 . Introduction

Wavelength division multiplexing (WDM) is the most
promising approach to exploiting the vast information-
carrying capacity of single-mode fiber. By dividing the band-
width of the optical medium into narrower channels, WDM
makes it possible to implement communication networks
with a large number of users, and an aggregate throughput
that can be in the order of Terabits per second. Our focus in
this paper is on a WDM network architecture known as the
single-hop architecture [1], which is all-optical in nature. In
other words, any information transmitted into the medium
remains in the optical form until it reaches its destination.

Critical to the design of single-hop networks is the availabil-
ity of tunable devices with the ability to access the various
channels. Such devices do exist today; however, their ca-
pabilities are limited in terms of both tunability range and
speed. Furthermore, ideal devices that can tune across the
useful optical spectrum in sub-microsecond times [2] are not
expected in the foreseeable future. As a result, for emerg-
ing communication environments characterized by very high
data rates rates (Gigabits per second) and small packet sizes
(e.g., 53-byte ATM cells), the latency of even the fastest
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available tunable devices dominate over packet transmission
times. An important design goal in these environments is
to minimize the impact of tuning latency on network perfor-
mance.

When the number N of stations is greater than the number
C of wavelengths, at most C stations may be transmitting at
any given slot. Other stations may use that slot for retuning
to a new channel, so that they will be ready to access that
channel at a later slot. Thus, transceiver tuning times may
be overlapped with transmissions by other stations. The ob-
jective, then, is to design schedules of minimum length, given
a traffic demand matrix. This scheduling problem has been
studied in various contexts [3, 4, 5, 6]. Our work is more gen-
eral, as it considers arbitrary traffic demands and arbitrary
values of tuning latency, and presents sufficient conditions for
the existence of optimal schedules. We also make the fun-
damental observation that, depending on the traffic matrix
and various system parameters, the network can be oper-
ating in one of two distinct regions. We then develop two
scheduling algorithms, and demonstrate that an algorithm
optimal for one region performs sub-optimally when applied
to a network operating in the other region. We also present
new heuristics (again one for each region) which are based
on the intuition provided by an appropriate formulation of
the scheduling problem.

In Section 2 we describe our system traffic model, and in Sec-
tion 3 we show that the scheduling problem is N'P-complete;
we also derive lower bounds, and discuss the effect of the
dominant bound on the network operation. We introduce a
special class of schedules in Section 4, and develop scheduling
algorithms which, under certain conditions, construct opti-
mal schedules within this class. Scheduling heuristics are
developed in Section 5, and in Section 6 we present some
numerical results. We conclude the paper in Section 7.

2 System Model

We consider packet transmissions in a single-hop WDM net-
work with a passive star topology. Each of the N nodes in the
network employs one transmitter and one receiver. The pas-
sive star supports C wavelengths; in general, C < N. With-
out loss of generality, we only consider tunable-transmitter,
fixed-receiver networks. Each tunable transmitter can be
tuned to any and all wavelengths A.,e = 1,...,C. The fixed
receiver at station j, on the other hand, is assigned wave-
length A(j) € {A1,...,Ac}, and we define R = {5 | A(j) =
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Act,e=1,...,C, as the set of receivers sharing channel A,.
We also let § denote the normalized transmitter tuning la-
tency, expressed in units of packet transmission time; then
A = [6] is the number of transmitter tuning slots.

Under the packet transmission scenario we are considering,
there is an N x N traffic demand matrix D = [d;], with d;;
representing the number of slots to be allocated for transmis-
sions from source 7 to destination j. Given a partition of the
receiver set into sets R, we obtain the collapsed N x C traffic
matrix A = [a;;]). Element a;c = Ej er, dij represents the
number of slots to be assigned to source ¢ for transmissions
on channel A.. Without loss of generality, we assume that
a;c > 0V i,c, that is, each source 7 has to be allocated at least
one slot on each channel !. We also let D = 3, }:j‘;l di;
denote the total traffic demand.

There are several situations in which such a transmission sce-
nario arises. For instance, under a gated service discipline,
quantity d;; may represent the number of packets with des-
tination j in the queue of station ¢ at the moment the “gate”
is closed. Alternatively, it may represent the number of slots
to be allocated to the (7, ) source-destination pair to meet
certain quality of service (QOS) criteria; in the latter case dj;
may not directly depend on actual queue lengths, but may
be derived based on assumptions regarding the arrival pro-
cess at the source. The exact nature of d;; is not important
in this work and does not affect our conclusions.

While the traffic matrix, D, is given, the collapsed matrix,
A, is not uniquely specified, but depends on the assignment
of receivers to wavelengths. For the moment, we will assume
that the receiver sets R. are known; how to construct these
sets will be discussed in Section 3.1.

2.1 Transmission Schedules

A transmission schedule is an assignment of slots to source-
channel pairs such that if slot 7 is assigned to pair (i, A.),
then in slot 7, source ¢ may transmit a packet to any of the re-
ceivers listening on A.. Exactly a;. slots must be assigned to
the source-channel pair (7, A;), as specified by the collapsed
matrix A. If the a;. slots are contiguously allocated for all
pairs (4, Ac), the schedule is said to be non-preemptive; other-
wise we have a preemptive schedule. Under a non-preemptive
schedule, each transmitter will tune to each channel exactly
once, minimizing the overall time spent for tuning. Since our
objective is to assign slots so as to minimize the time needed
to satisfy the traffic demands specified by the collapsed traffic
matrix, A, we only consider non-preemptive schedules.

A non-preemptive schedule is defined as a set S = {7},
with 7;. the first of a block of a;c contiguous slots assigned
to the source-channel pair (i,A.). Since each transmitter
needs A slots to tune between channels, all time intervals
[Tic =1, Tic+aic + A — 1) must be disjoint ?, yielding a set of

1This assumption is reasonable, especially when the number of
nodes, N, is significantly greater than the number of channels.
2We make the assumption that slot T occupies the interval fr=1,7).
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Figure 1: Schedule for a network with N =5, C =3, A=2.

hardware constraints on schedule S,Ve#¢', i=1,...,N:
[Tic—l,Tic+aic+A—1)D[Tiu—l, Tie 400 +A=1) = ¢ (1)

In addition, to avoid collisions, at most one transmitter
should be allowed to transmit on a given channel in any
given slot, resulting in a set of no-collision constraints,

Vi£id, e=1,...,C:

[Tic—l,ric+aic“1) ﬂ [Ti'c“laTi‘c+ai'c‘1) = ¢ (2)

A non-preemptive schedule § is admaissible if and only if §
satisfies both the hardware and the no-collision constraints.
The length, M, of a schedule § for the collapsed traffic matrix
A is the number of slots required to satisfy all traffic demands
aic under S. An optimum length schedule for A is one with
the least length among all schedules. Figure 1 shows an
optimum length non-preemptive schedule for a network with
N = 5 nodes, C = 3 channels, and A = 2; the collapsed
traffic matrix A can be easily deduced from the figure.

In the following, we make the assumption that the schedule
repeats over time; in other words, if 7;. is the start slot of
transmitter 7 on channel A, under schedule § of length M,
then so are slots 73 + kM, k = 1,2,3,..., where k denotes
the k-th identical copy of the schedule as it repeats in time.
Also, the term “schedule” will be used as an abbreviation for
“admissible non-preemptive schedule”.

3 Optimization and Lower Bounds

Qur objective is to determine an optimum length schedule
for a traffic matrix D. This problem, which we will call the
Packet Scheduling with Tuning Latencies (PSTL) problem,
can be stated concisely as:

Problem 3.1 (PSTL) Given the number N of nodes, the
number C of wavelengths, the traffic matriz D = [d;;], and
the tuning slots A, find a schedule of minimum length.

Problem PSTL can be logically decomposed into two sub-
problems: (a) sets of receivers, R,, sharing wavelength
As,e=1,...,C, must be obtained, and from them the col-
lapsed traffic matrix, A= [a;], constructed, and (b) for all ¢
and ¢, a way of placing the a;. slots to minimize the length
of the schedule must be determined. Let us now turn our
attention to the second subproblem; for reasons that will be-
come apparent shortly, we will refer to this as the Open-Shop
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Scheduling with Tuning Latencies (OSTL) problem. It can
be expressed formally as a decision problem:

Problem 3.2 (OSTL) Given the number N of nodes, the
number C of wavelengths, the collapsed traffic matriz, A,
the tuning slots A > 0, and a deadline, M > 0, is there a
schedule S = {r;.} that meets the deadline?

OSTL reduces to the non-preemptive open-shop scheduling
(OS) problem in [7] when we let A = 0. Problem OS is N'P-
complete for C' > 3; but for C' = 2, 05 admits a polynomial-
time solution [7]. The following theorem confirms our in-
tuition that OSTL is in a sense more difficult than OS; its
proof can be found in [8]. We next derive lower bounds for
problems PSTL and OSTL, and discuss their implications.

Theorem 3.1 OSTL is N'P-complete for any fired C > 2.

3.1 Lower Bounds for PSTL and OSTL

First, observe that the length of any schedule cannot be
smaller than the number of slots required to satisfy all trans-
missions on any given channel, yielding the bandwidth bound:

N D
1?2(0{2&“} 2 ¢ (3)

!
M =

i=1

The rightmost term depends only on the total traffic demand,
D, and is a lower bound on PSTL independently of the ele-
ments d;; of D. Expression (3) implies that the bandwidth
bound is minimized when the traffic load is perfectly bal-
anced across the C channels.

Alternatively, each transmitter i needs a number of slots
equal to the number of packets it has to transmit plus the
number of slots required to tune to each of C wavelengths.
We call this the tuning bound:

MO =

max
1<i<N

= D
2odis+CA > H4CA  (9)
j=1
The tuning bound is independent of the assignment of receive
wavelengths to the nodes, and only depends on parameters
N, C.and A, and the total traffic demand D; it is minimized
when each source contributes equally to the total traffic de-
mand. We obtain the overall lower bound as

MO = max{ MO Mf”} (5)

bw>

This overall bound is minimized when

D D D NCA
T =W + CA & T T N-C (6)
Quantity %—f—é—, which we will call the critical length, is in-

dependent of the demand matrix, and characterizes the net-
work under consideration. Relationship (6) between the min-
imum bandwidth bound, %, and the critical length repre-
sents the point at which wavelength concurrency balances

the tuning latency. If a schedule has length equal to the crit-
ical length, it is such that exactly C (respectively, N — ()
nodes are in the transmitting (respectively, tuning) state
within each slot. Consequently, all NCA tuning slots are
overlapped with packet transmissions, and vice versa. Such
a schedule is highly desirable, as it has three important prop-
erties: (a) it completely masks the tuning latency, (b) it is
the shortest schedule for transmitting a total demand of D
packets, and (c) it achieves 100% utilization of the available
bandwidth, as no channel is ever idle.

In general, we will say that a network is funing limited,
if the tuning bound dominates, (M®) = M,m > M,f;)),
or bandwidth limited, if the bandwidth bound is dominant
(MO = M,fi,) > M,(I)). To see why this distinction is im-
portant, note that any near-optimal scheduling algorithm,
including the ones to be presented shortly, will construct
schedules of length very close to the lower bound. If the
network is tuning limited, the length of the schedule is de-
termined by the tuning bound in (4), which in turn is di-
rectly affected by the tuning latency. The schedule length
of a bandwidth limited network, on the other hand, depends
only on the traffic requirements of the dominant channel,
i.e., the channel ). such that Efil Qjc = Mb(,lu) It is then
desirable to operate the network at the bandwidth limited
region, as doing so would eliminate the effects of tuning la-
tency. Consequently, we would like to make the bandwidth
bound in (6) greater than the critical length:

D _ Nea i
c > N-C (7)

Given a value for A, the above expression may be satisfied
by carefully dimensioning the network (i.e., initially choosing
appropriate values for N and C) so that it operates in the
bandwidth limited region.

Let us now suppose that expression (7) is satisfied, i.e., that
the network operates in the bandwidth limited region with
the bandwidth bound Mb(:u) the dominant one. Recall that

M b(fu) represents the total slot requirements for some channel,
hence, under the non-uniform traffic scenario we are consid-
ering, it is possible for M,ffu) to be significantly greater than

%. Since, assuming that a near-optimal algorithm is avail-

able, the length of the final schedule will depend on Mb(g, it
is important that the receiver sets R. be constructed so that
the offered traffic is well balanced across all channels. This
load balancing problem [9, 10] is a well-known and widely-
studied N'P-complete problem. We will not consider this
problem any further, but we will once more emphasize the
importance of using some approximation scheme to effec-
tively balance the traffic across the channels.

4 A Class of Schedules for OSTL

Let A be a collapsed traffic matrix, and S a schedule of
length M satisfying the hardware and no-collision constraints
(1) and (2), respectively. Consider now the order in which
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Figure 2: Schedule for a bandwidth limited network

the various transmitters are assigned slots within, say, chan-
nel A;, starting with some transmitter 7. We will say that
s1 = (w1, 79, ..., 7N) is the transmitter sequence on channel
Ay if w9 is the first node after 7, to transmit on A;, 3 is the
second such node, and so on. Since we have assumed that
schedule S repeats over time, after node 7y has transmitted
its packets on A;, the sequence of transmissions implied by s;
above starts anew. Given S, the transmitter sequences with
my as the first node, are completely specified for all channels
Ac. In general, these sequences can be different for the vari-
ous channels. However, in what follows we concentrate on a
class of schedules such that the transmitter sequences (with
w1 as the first node) are the same for all channels:

se = (m1,T2,...,7TN) c=1,...,C. (8)

This class of schedules greatly simplifies the analysis, allow-
ing us to formulate the OSTL problem in a way that provides
insight into the properties of good scheduling algorithms. We
now proceed to derive sufficient conditions for optimality and
algorithms for the class of schedules defined in (8). At this
point, it is important that we distinguish between bandwidth
and tuning limited networks, as different conditions of opti-
mality apply to each case [8]. However, we have found that
the two cases are in a sense dual of each other (see [8] for
details), so we only discuss bandwidth limited networks here.

4.1 Bandwidth Limited Networks

We start by presenting an alternative formulation of problem
OSTL, applicable to bandwidth limited schedules within the
class (8). Let S be a schedule of length M for such a net-
work, and let (1,2,..., N) be the transmitter sequence on all
channels. For each channel, consider the frame which begins
with the first slot assigned to transmitter 1. Let the start of
the frame on channel A; be our reference point, and let A,
denote the distance, in slots, between the start of a frame on
channel A and the start of the frame on the first channel, as
in Figure 2. Note also that K} = 0.

Consider the transmissions on, say, channel A,, within a
frame of M slots. Following the a;. slots assigned to node 1,
the next ag. slots are assigned to node 2, unless this assign-
ment does not allow the laser of 2 enough time to tune from
Ac—1 to A.. In the latter case, channel A, has to remain idle
for a number of slots before node 2 starts transmitting. In

general, we let g;. denote the number of slots that channel
A. remains idle between the end of transmissions by node 7
and the start of transmissions by node i + 1; we will refer to
quantities g;. as the gaps within the channels.

The problem of finding an optimum schedule such that (a)
the schedule is in the class defined in (8) and (b) the trans-
mitter sequence is (1,2,..., N), can now be formulated as
an integer programming problem, to be referred to as band-
width limited OSTL (BW-OSTL). Note that constraints (10)
and (11) in the formulation below correspond to the hard-
ware constraints (1). The no-collision constraints (2) are
accounted for in the above description by the constraint
gic > 0V i,c; by definition of g;., this guarantees that the
slots assigned to node ¢ + 1 on channel A, will be scheduled
after the slots assigned to node ¢ in the same channel.

N
BW —-0STL: min M = max{Z(aic-I-gic)} (9)

gie K¢

i=1
subject to:
i-1 i-1
K.+ Z(ajc + gjc) > K.+ Z(aj,a—l + gj,c-l)
i=1 ji=1
+ i1+ D ¢c=2,...,C,i=1,...,N (10)
i-1 i-1
M+Z(aj1+gj1) 2 Kc+Z(ajc+gjc)+a;c+A
j=1 j=1

i=1,...,N (11)

gic, Ne, M integers; ¢;c >0V i,¢; Ky =0;
K.>Kee1¢=2,...,C; M > K¢ (12)

Finding an optimal schedule within the class (8) for problem
OSTL involves solving N! BW-OSTL problems, one for each
possible transmitter sequence, and choosing the sequence
resulting in the smallest frame size. Furthermore, solving
problem BW-OSTL is itself a hard task, as it is an inte-
ger programming problem with a non-linear objective func-
tion. Recall, however, that we are considering bandwidth
limited networks. For these networks, the bandwidth bound
(3) dominates, therefore, the lower bound on the schedule
length is such that M = Mg,lu) > th. The key observa-
tion which we will exploit in the following analysis is that, if a
schedule of length M (") exists, then at least one channel, say,
channel A., will never be idle; in terms of the above problem
formulation, this schedule will be such that g;c = 0V 1. It will
be shown shortly that fixing the values of g;. for one channel
makes it possible to solve problem BW-0OSTL in polynomial
time. But first, we answer a fundamental question related to
the existence of schedules of length M) within class (8).

4.1.1 A Sufficient Condition for Optimality

Let A be the collapsed traffic matrix of a bandwidth limited
network, M) be the lower bound on any schedule for A,
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and define the average slot requirement as a = I‘% Ifa;. =

aV1i,c, then an optimum length schedule is easy to construct;
all of (10) - (12) will be satisfied by letting

Ke=(c=1)(a+A)Vc;gic =0Vi,e; M = MV = Na (13)

The question that naturally arises then, is whether we can
guarantee a schedule of M(D slots when we allow non-
uniform traffic. The answer is provided by the following
lemma. Note that ¢ in the lemma is greater than zero only
when M() > %fg; this is consistent with our hypothesis of
a bandwidth limited network.

Lemma 4.1 Let A be a collapsed traffic matriz such that
the lower bound M) = M,,(:U) > M,(‘) (bandwidth limited net-
work). Then, a schedule of length equal to the lower bound
ezxists within the class (8) for any transmitter sequence, if
the elements of A satisfy the following condition:

O]
aic — -IMW— { < ¢ Yi,c (14)
with € given by:
MO 11 A
= MO (L_l_ A (15)
N+1 \C N MO
Proof. See Appendix A. u|

Lemma 4.1 provides an upper bound on the “degree of non-
uniformity” of matrix A in order to guarantee a schedule of
length equal to the lower bound. For N = 100, C = 10, and
ignoring the term 38y 3, we get wo7w ~ -89. Thus, the

variation of elements a;. around MNL')- can be up to 8.9% to
guarantee a schedule of length M) Our proof, however, is
based on a worst case scenario; in general, we expect such
an optimal schedule to exist for higher degrees of variation.

4.1.2 Scheduling Algorithm

We now develop an algorithm which, under the conditions of
Lemma 4.1, produces schedules of length M), In fact, we
shall shortly prove that the algorithm is optimal under looser
conditions that do not impose any bound on the variation
of a;. around -A# The key idea is to schedule the trans-
missions on channel A; so that this channel is always busy,
except, maybe, after all nodes have been given a chance to
transmit; we expect this strategy to work well when channel
A; is the dominant one, that is Z.N=1 ain = MO,

Algorithm Make_Bandwidth_Limited_Schedule (MBLS), de-
scribed in detail in Figure 3, operates as follows. All gaps in
channel A, are initialized to zero; then, during Pass 1, trans-
missions in channels Az through A¢ are scheduled at the ear-
liest possible time that satisfies constraints (10). Doing so,
however, may introduce large gaps into these channels, re-
sulting in a sub-optimal schedule (refer to (9)). During the

3In general, we expect the frame length to be much greater than A.

Algorithm Make_Bandwidth_Limited_Schedule (MBLS)
Channel A, is assumed to be dominant. Also, references to
channel A.4; when ¢ = C denote the next frame on J;.

1. begin
2. Set M =N a;
3. Set K, and all gaps g;1 on A; equal to 0
// Begin Pass 1
4, forec=2to C do
5. fori=1to N do
6. Schedule the a;. slots at the earliest time

such that (10) is satisfied between A, and A._;
7. // end of for ¢ loop
// End of Pass 1 — initial values to all g;. have now
been determined
8. Let M’ be the smallest integer satisfying (11)
9. Set M = max{M, M'}
// Begin Pass 2
10. for ¢ = C downto 2 do

11. for i = N downto 1 do

12. Shift the a;. slots as much right as possible
while maintaining (10) between A; and Ac4;

13. forj=i+1to N do

14. Shift the a;. slots as much left as possible

while maintaining (10) between A, and A._;
15. // end of for i loop - the final values of gaps for
this channel have now been determined
16. Let M, = Ef;l(aic + gic)
17. M = max(M, M.)

18. // end of for ¢ loop ~ M is the final schedule length
19. // end of algorithm

Figure 3: Scheduling algorithm

second pass, the algorithm attempts to compact the gaps
within each channel by shifting the slots to the right or left,
but only as far as constraints (10) and (11) allow.

That algorithm MBLS is correct follows from the fact that it
constructs a schedule satisfying constraints (10) - (12). It is
easy to verify that its running-time complexity is O(CN?).
We now state and prove its optimality properties.

Theorem 4.1 Algorithm M BLS constructs a schedule of
minimum length among the schedules that (a) are within the
class (8) and the sequence of transmitters is (1,2,...,N),
(b) channel Ay is a dominant channel, and (c) channel ),
s never idle, excepl, possibly, al the very end of the frame
(i.e., g = O,i= 1,...,N - 1)

Proof. See Appendix B. o

Corollary 4.1 (Optimality of Algorithm MBLS) Let
A1 be a channel such that Zf\f__l a;y = MW, and arbitrarily
label the transmitters I through N. Under the conditions of
Lemma 4.1, MBLS constructs an optimum length schedule.
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Proof. According to Lemma 4.1, there exists a schedule
of length M) within the class defined by (8), such that
the transmitter sequence is (1,2,...,N). Since Ay is the
dominant channel, any schedule of length M is such that
channel A; is never idle. Therefore, because of Theorem 4.1,
algorithm MBLS will construct such a schedule. m]

5 Optimization Heuristic

We now develop a heuristic to obtain near-optimal sched-
ules for arbitrary instances of OSTL and bandwidth limited
networks. Recall that solving the OSTL problem involves
solving N! BW-OSTL problems, one for each possible trans-
mitter sequence, and that we have no efficient algorithm for
solving the most general version of BW-OSTL. Our approach
then is based on making two compromises.

Suppose that an optimal transmitter sequence for a network
of n nodes has been determined, and that a new node is
added to the network (a new row is added to the collapsed
traffic matrix A). Instead of checking all possible (n + 1)!
transmitter sequences, our first approximation is to assume
that, in the optimal sequence for the (n + 1)-node network,
the relative positions of nodes 1 through n are the same as
in the sequence for the n-node network; thus, we only need
to determine where in the latter sequence node n + 1 has
to be inserted (before the first node, between the first and
second nodes, etc.). This can be accomplished by solving
n+ 1 BW-OSTL problems on a (n + 1)-node network, one
for each possible placement of node n+1 within the sequence
of n nodes. Our second compromise has to do with the fact
that we have no efficient algorithm for BW-OSTL. Thus, we
let A; be the dominant channel, and use algorithm MBLS
to solve the version of BW-OSTL which requires that A; is
never idle except at the end of the frame. From Theorem
4.1, we know that if a schedule of length equal to the lower
bound exists for the given transmitter sequence, MBLS will
find such a schedule. But if the optimal schedule has length
greater than the lower bound, MBLS may fail to produce
an optimal solution as the idling in the first channel may be
anywhere within the frame, not necessarily at the end.

Our heuristic is described in Figure 4. Regarding its com-
plexity, note that Step 2 will dominate. During the i-th
iteration of Step 2, algorithm M BLS is called ¢ times on a
network of ¢ nodes. Since the complexity of MBLS on a
network of i nodes is O(Ci?), the overall complexity of the
heuristic is O(CN*).

6 Numerical Results

We now consider four different algorithms for the OSTL
problem and compare their performance: (1) algorithm
MBLS, described in Figure 3; the algorithm is applied after
the channels have been labeled A, through A¢ in decreasing
order of E,Nzl a;c, and the transmitters have been labeled
1 through N in decreasing order of Zil a;c; (2) algorithm
MTLS, with the same labeling of both channels and trans-
mitters; MTLS has not been described, but is very similar to

Bandwidth Limited Scheduling Heuristic (BLSH)

1. Relabel the channels such that:

N

N N
M(’):Z ailZZ aizZ«nZZ“iC (16)
i=1 i=1

i=1

Arbitrarily label the transmitters as 1,..., N, and let
s(1) = (1). Repeat Step 2fori=2,...,N.

2. Let s¢=1) = (my,..., m—1) be the permutation produced
by the previous iteration on a network with only the
first 1 — 1 transmitters of the original network. Consider
transmitter . Run MBLS on each of the ¢ permutations

Gome, e mie1), (71,6 Ty, Tict )y ooy
(7(1,...,7Tj,i,7l'j+1,...,7(,'_1),...,(7[1,...,7ri_1,i) (17)

Let s() be the permutation that results in the least
length schedule.

Figure 4: Scheduling Heuristic

MBLS, only targeted to tuning limited networks; (3) schedul-
ing heuristic BLSH, described in Figure 4; (4) scheduling
heuristic TLSH for tuning limited networks; this heuristic
has not been described, but is very similar to BLSH.

Given a matrix A, the lower bound M) on the schedule
length can be obtained from (5). Let M be the actual length
of a schedule for A produced by some scheduling algorithm.
Quantity M—;,-(A-,”)(—l) 100% then represents how far the length
M of the schedule produced by the algorithm is from the
lower bound. All figures in this section plot the above quan-
tity against the number of nodes, N, for the four algorithms
described here. Each point plotted represents the average of
twenty randomly generated matrices A for the stated values
of N, C, and A. The elements of each matrix A were chosen,
with equal probability, among the integers 1 through 20.

In Figures 5 ~ 7 we show results for two values of the number
of channels, namely C' = 5 and C = 20 (additional results
can be found in [8]). The number N of nodes within each
figure takes values from C' to 80. We also use three different
values for A, A = 1,4,16. For data rates of 1 Gigabits per
second, and ATM cell sizes, these values of A correspond to
transceiver tuning times of 424ns, 1.7us, and 6.8us, respec-
tively; the last two values are representative of current state
of the art in optical transceiver technology [2).

We first observe that the two heuristics, BLSH and TLSH,
always perform as good as, or better than the correspond-
ing algorithms, MBLS and MTLS, respectively. However,
this performance gain is achieved at the expense of higher
computational complexity. The figures also confirm our in-
tuition regarding the two regions of network operation, and
Jjustify the need for algorithms specially designed for each
region. As we can see, MBLS and BLSH outperform their
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counterparts within the bandwidth limited region, while the
opposite is true within the bandwidth limited region. In ad-
dition, when the network operates well within the bandwidth
limited region (i.e., for sufficiently large values of N), BLSH,
and sometimes MBLS, construct schedules of length equal
to the lower bound (similar observations can be drawn re-
garding the performance of MTLS and TLSH in the tuning
limited region). This is an important result, as it establishes
that the lower bound accurately characterizes the scheduling
efficiency in this type of environment. Since the lower bound
is independent of the tuning latency in this region, this result
also implies that it is possible to appropriately dimension the
network to eliminate the effects of even large values of tuning
latency. Finally, the fact that our algorithms deviate from
the lower bound at the boundary between the tuning and
bandwidth limited regions is not due to inefficiency inherent
in the algorithms, rather, it is due to the fact that optimal
schedules at the boundary of the two regions have length
greater than the lower bound, as we proved in [8].

7 Concluding Remarks

We have considered the problem of designing TDM schiedules
for arbitrary traffic demands in broadcast optical networks.
Based on the insight provided by an appropriate new formu-
lation of the scheduling problem, we presented algorithms
which construct schedules of length very close to, or equal
to the lower bound. We also established that, as long as
the network operates within the bandwidth limited region,
even large values of the tuning latency have no effect on the
length of the schedule. The main conclusion of our work is
that through careful design, it is possible to realize single-
hop WDM networks operating at very high data rates, using
currently avatlable optical tunable devices.
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A Proof of Lemma 4.1

In proving Lemma 4.1 we will make use of the following result
whose proof is straightforward and is omitted:

Lemma A.1 If constraints (14) hold, then for all P C
{1,...,N} with | P |= n, and any two channels A\, A.,:

Zam, - F‘__‘ai,,:2 < Ne¢ (18)
i€P i€P

We are now ready to prove Lemma 4.1. Although the proof
refers to the problem formulation in (9) - (12), it does not
depend on the actual transmitter sequence. As a result, it

holds for any transmitter sequence, not just the (1,2,...,N).

sequence implied in (9) — (12).

Proof (of Lemma 4.1). By our hypothesis, we have that
Zf’;l aic < MM V ¢, For the proof we consider a worst
case scenario, under which the total slot requirement on each
channel is equal to the lower bound: va:l ag.=MOVe A
schedule of length M) under such a scenario would ensure
a schedule of length M) for the case when the slot require-
ment on some channel is less than M), as one can simply
introduce slots in which this channel is idle. Since we are
trying to achieve a schedule of length M), and because of
the above worst case assumption, we are seeking a solution
to problem BW-OSTL such that g;. = 0V 7, c (refer also to
the objective function (9)). We can then rewrite constraints
(10) and (11), respectively, as

i—1 i-1
K, — K. z Zaj,c—l - Qjc + Qi c-1 + A
Jj=1 j=1
c=2,...,.C,i=1,...,N (19)
i—1 t—1
M - K¢ > Zajc —_ Zajl + aic + A (20)
ji=1 i=1

Hence, Lemma A.1 guarantees that choosing K. — K._; =
Ne+ M,gl +e+4A,¢c=2,...,C,satisfies constraints (19) and

(12). Noting that Ky = 0, we can set:
MO
K.=(c-1) ((N+1)6+—N~+A) c=1,...,C (21)

Finally, it is easy to check that letting M = M ™ ensures
that (20) is also satisfied. o

B Proof of Theorem 4.1

Proof (of Theorem 4.1). Let Sched(c) denote the frame of
the schedule on channel A, starting with the first slot in
which transmitter 1 transmits on channel A;. Sched(C+1)
refers to the next frame on channel A;. Once the schedule
length M and gaps gic,t=1,..., N —1, are known, gap gn.
after the last transmitter is uniquely determined. Therefore,
any reference to “gaps” in what follows does not include this
last gap on each channel. Let OPT denote the optimal sched-
ule length under the assumptions of Theorem 4.1. We will
prove that OPT > M, hence proving that OPT = M. To
do so, we trace through the algorithm as it computes M and
show that OPT > M at every step of the algorithm.

That OPT > M at the end of Step 2 is obvious, since the
optimal can be no smaller than the lower bound. In Pass
1, all transmitters are assigned the earliest possible slots on
each channel, and Step 9 makes sure that the schedule length
is large enough so that each transmitter gets enough time to
tune back to channel A, after its transmission on channel A¢c
(in fact this is exactly what constraint (11) tries to capture).
Therefore OPT > M at the end of Pass 1.

In Pass 2, channels as well as transmitters are processed in
reverse order, and the algorithm tries to compact the gaps
it =1,...,N=1,¢=2,...C, as much as possible. We
show that once the gaps on a channel A, have been com-
pacted by Pass 2 of the algorithm above, it is not possible
to compact them any further to reduce the schedule length,
thus proving that OPT > M. The proof is by a two-level
induction — the first on ¢ and the second on ¢ within the
same channel A.. The induction proceeds by assuming that
Sched(c+1) is optimal (meaning that the gaps on channel
Ac+1 cannot be compacted any further), and, that transmit-
ters i+ 1,..., N are optimally scheduled on channel A. (i.e.,
that the gaps giy1,c-..9n-1,c cannot be compacted any fur-
ther; note that gap gn. is not considered), and then showing
that the gap g;c cannot be compacted any more than what
Pass 2 does. There are only 2 ways gap g;. can be compacted
- either by moving the a;. slots to the right, or by moving
slots ajc,j =1+ 1,..., N, to the left. But the a;. slots can-
not be moved any more to the right (otherwise Step 12 would
have done so), neither can slots a;. be moved any more to
the left (otherwise Step 14 would have done so). Hence gap
gic s as compact as can be, and hence channel ), is optimal
by induction. To complete the induction proof, note that
the inductive hypothesis holds for ¢ = C, since Sched(C+1)
is the same as the schedule on channel X;, which is optimal
by assumption, as we only consider schedules in which chan-
nel A; is idie only at the end of the frame (this will happen

if at the end of the algorithm M > "% a;y). o

i=]
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