MTCP: Scalable TCP-like Congestion Control for Reliable Multicast

Injong Rhee'

Nallathambi Balaguru*

George N. Rouskas?

fDepartment of Computer Science, North Carolina State University, Raleigh, NC 27695-7534
'A&T Systems Inc., 12520 Prosperity Drive, Silver Spring, MD 20904

Abstract

We present MTCP, a congestion control scheme for large-scale
reliable multicast. Congestion control for reliable multicast is im-
portant, because of its wide applications in multimedia and col-
laborative computing, yet nontrivial, because of the potentially
large number of receivers involved. Many schemes have been pro-
posed to handle the recovery of lost packets in a scalable manner,
but there is little work on the design and implementation of con-
gestion control schemes for reliable multicast. We propose new
techniques that can effectively handle instances of congestion oc-
curring simultaneously at various parts of a multicast tree.

Our protocol incorporates several novel features: (1) hierarchi-
cal congestion status reports that distribute the load of processing
feedback from all receivers across the multicast group, (2) the rel-
ative time delay (RTD) concept which overcomes the difficulty of
estimating round-trip times in tree-based multicast environments,
(3) window-based control that prevents the sender from transmit-
ting faster than packets leave the bottleneck link on the multicast
path through which the sender’s traffic flows, (4) a retransmission
window that regulates the flow of repair packets to prevent local
recovery from causing congestion, and (5) a selective acknowl-
edgment scheme that prevents independent (i.e., non-congestion-
related) packet loss from reducing the sender’s transmission rate.
We have implemented MTCP both on UDP in SunOS 5.6 and on
the simulator ns, and we have conducted extensive Internet ex-
periments and simulation to test the scalability and inter-fairness
properties of the protocol. The encouraging results we have ob-
tained support our confidence that TCP-like congestion control
for large-scale reliable multicast is within our grasp.

1 Introduction

The Multicast Backbone (MBONE) and IP-multicast are two In-
ternet technologies that have enabled a wide range of new appli-
cations. Using multicast, large-scale conferencing involving hun-
dreds to thousands of participants is possible over the Internet. As
multicast technologies become more widely deployed, we expect
to see new multicast-based applications, many of which will re-
quire reliable data transfer. Multicast traffic generated by these
applications can be of two types: quality-of-service guaranteed
and best effort. QoS guaranteed traffic requires the underlying
network to provide per-flow resource reservation and admission
control services. Unless these services become widely deployed
over the Internet and made sufficiently inexpensive for general
use, they will likely be available only to a small fraction of future
Internet traffic, and multicast traffic will be primarily best-effort.

0-7803-5417-6/99/$10.00 ©1999 IEEE.

This paper is concerned with the flow and congestion control of
best-effort multicast traffic.

Congestion control is an integral part of any best-effort Inter-
net data transport protocol, and the end-to-end congestion control
mechanisms employed in TCP [1] have been one of the key con-
tributors to the success of the Internet. A conforming TCP flow is
expected to respond to congestion indication by drastically reduc-
ing its transmission rate and by slowly increasing its rate during
steady state. This congestion control mechanism encourages the
fair sharing of a congested link among multiple competing TCP
flows. A flow is said to be TCP-compatible if it behaves similar to
a flow produced by TCP under congestion [2]. At steady state, a
TCP-compatible flow uses no more bandwidth than a conforming
TCP connection running under comparable conditions.

Most of the multicast schemes proposed so far do not employ end-
to-end congestion control. Since TCP strongly relies on other net-
work flows to behave similarly to its own, TCP-incompatible traf-
fic can completely lock out competing TCP flows and monopolize
the available bandwidth. Furthermore, multicast flows insensi-
tive to congestion (especially congestion caused by their own traf-
fic) are likely to cause simultaneous congestion collapses in many
parts of the Internet [3]. Because of the far-reaching damage of
TCP-incompatible multicast, it is highly unlikely that transport
protocols for large-scale reliable multicast will become widely ac-
cepted without TCP-like congestion control mechanisms.

The main challenge of congestion control for reliable multicast
is scalability. To respond to congestion occurring at many parts
of a multicast tree within a TCP time-scale, the sender needs to
receive immediate feedback regarding the receiving status of all
receivers. However, because of the potentially large number of
receivers involved, the transmission of frequent updates from the
receivers directly to the sender becomes prohibitively expensive
and non-scalable. Another challenge is the isolation of the effects
of persistent congestion. As a single multicast tree may span many
different parts of the Internet, TCP-like congestion control will re-
duce the sender’s transmission rate upon indication of congestion
in any part of the tree. While such a feature fosters fairness among
different flows (inter-fairness), it does not address the issue of
fairness among the receivers in the same multicast group (intra-
fairness) [4]. Specifically, it would be unfair for non-congested
receivers to be subject to a low transmission rate just because of
some isolated instances of congestion.

In this paper, we introduce Multicast TCP (MTCP), a new con-
gestion control protocol for reliable multicast that addresses the
inter-fairness and scalability issues. The issue of intra-fairness is

1265

outside the scope of this paper, and it will be addressed in future
work. Our protocol is based on a multi-level logical tree where
the root is the sender, and the other nodes in the tree are receivers.
The sender multicasts data to receivers, and the latter send ac-
knowledgments to their parents in the tree. Internal tree nodes,
hereafter referred to as sender’s agents (SAs), are responsible for
handling feedback generated by their children and for retransmit-
ting lost packets. MTCP also incorporates several novel features,
described in the next section. We have implemented MTCP both
on UDP in SunOS 5.6 and on the simulator ns, and we have con-
ducted extensive Internet experiments and simulation to test the
scalability and inter-fairness properties of the protocol. The en-
couraging results from these experiments indicate that MTCP is
an effective congestion control protocol for reliable multicast.

Tree-based protocols are not new and have been studied by many
researchers [5, 6, 7, 8, 9]. However, little work has been done
on TCP-like congestion control for these protocols. Instead, most
previous work has focused on the issues of error recovery and
feedback implosion. In [5, 10] it has been analytically shown
that tree-based protocols can achieve higher throughput than any
other class of protocols, and that their hierarchical structure is the
key to reducing the processing load at each member of the mul-
ticast group. However, the analysis does not consider the effects
of congestion control. Tree-based protocols such as RMTP [6]
and TMTP [8] do not incorporate end-to-end congestion control
schemes an do not guarantee inter-fairness. In [9, 11] it was pro-
posed to use a tree structure for feedback control, and a detailed
description of how to construct such a tree was provided, but no
details on congestion control were given.

In Section 2 we provide an overview of MTCP, in Section 3
present a description of the protocol, in Section 4 present results
from Internet experiments, and conclude the paper in Section 5.

2 Overview of MTCP

MTCP was designed with two goals in mind: TCP-compatibility
and scalability. Compatibility with TCP traffic is needed because
TCP is the most commonly used transmission protocol in the In-
ternet, and also because the utility of TCP depends on all other
network flows being no more aggressive than TCP congestion
control. Scalability is necessary because the target applications of
reliable multicast may involve a very large number of receivers.
Below we give an overview of MTCP, and in the next section, we
provide a detailed description of the protocol.

Packet loss detection and recovery via selective acknowledg-
ments. A sender multicasts data packets using IP-Multicast [12].
SAs in the logical tree store packets received from the sender in
their buffers, and set a retransmission timer, for each packet they
buffer. The sender also sets a retransmission timer for each of the
packets it transmits. Each receiver may send a positive (ACK) or
a negative (NACK) acknowledgment to its parent in the tree. An
SA (or the sender) discards a buffered packet when it receives an
ACK from all of its children. On the other hand, an SA retrans-
mits a packet via unicast (a) upon receiving a NACK reporting
that the packet is missing, or (b) if it does not receive an ACK for
the packet from all its children in the logical tree before the timer
associated with the packet expires.

Hierarchical congestion reports. Each SA independently mon-
itors the congestion level of its children. When an SA sends an
ACK to its parent, it includes in the ACK a summary of the con-
gestion level of its children (called congestion summary). The
parent then summarizes the congestion level of its own children,
sends the summary to its parent, and so on. The sender regulates
its rate based on its own summary. The congestion summary car-
ries an estimate of the minimum bandwidth available along the
muliticast paths to the receivers contained in the subtree rooted at
the SA that sends the summary. An SA computes its summary us-
ing the summaries it has received from its children and a TCP-like
congestion window maintained using feedback from its children.
As a result, the summary computed at the sender represents the
current available bandwidth in the bottleneck link on the paths to
all receivers in the multicast group. By sending only as much data
as the bottleneck link can accommodate, the sender will not ag-
gravate congestion anywhere in the network.

TCP-like congestion window. Each SA (including the sender)
estimates the minimum bandwidth available in the multicast
routes from the sender to its children by maintaining a TCP-like
congestion window (cwnd). An SA maintains its cwnd using
TCP-Vegas [13] congestion control mechanisms such as slow start
and congestion avoidance. The only differences with TCP-Vegas
are that (1) the congestion window is incremented when an SA
receives ACKs for a packet from all of its children, and (2) re-
ceivers send NACKSs for missing packets, and an SA immediately
retransmits the packets reported missing.

Congestion summary. The congestion summary sent by an SA
whose children are leaf nodes, consists of two pieces of informa-
tion: the size of its congestion window (cwnd), and the estimated
number of bytes in transit from the sender to the SA’s children
(twnd). twnd is initially set to zero, it is incremented when
a new packet is received from the sender, and it is decremented
when a packet is acknowledged by all of the SA’s children. The
congestion summary of the other SAs consists of (1) the mini-
mum of their cwnds and the cwnds reported by their children
(minCwnd), and (2) the maximum of their twnds and the twnds
reported by their children (maxTwnd). maxTwnd estimates the
number of unacknowledged bytes in transit to the receivers in the
tree and minCwnd estimates the congestion level of the bottle-
neck link on the multicast routes to the receivers in the tree. The
sender always transmits data in an amount less than the difference
between the values of maxTwnd and minCwnd that it computes.
This window mechanism prevents the sender from transmitting
faster than packets leave the bottleneck link.

Relative time delay (RTD). Unlike TCP, MTCP does not provide
closed-loop feedback: SAs have to adjust their windows based on
the ACKs for packets that another node (the sender) transmitted.
In this open-loop system, an SA cannot accurately estimate the
round trip time (RTT) of a packet because of the unpredictable de-
lay variance in the network and the fact that the sender’s and SA’s
clocks are not synchronized. In MTCP, we measure the difference
between the clock value taken at the sender when a packet is sent,
and the clock value taken at the SA when the corresponding ACK
is received from a child node. We call this time difference the rel-
ative time delay (RTD). The RTD to a child receiver can be eas-

1266

ily measured by having each ACK carry the transmission time of
the packet being acknowledged. Thus, RTD measurements can be
taken every time the SA receives an acknowledgment. A weighted
average of RTDs is used to estimate the retransmission timeout
value (RTO) of packets. An SA sets the retransmission timer of a
packet to expire only after the sum of the send time of the packet
and the RTO of the SA becomes less than the current clock value
of the SA. The use of RTD for this purpose is appropriate because
the protocol uses only the relative differences in RTDs.

Retransmission window for fast retransmission. Retransmis-
sion may also cause congestion if many packets are lost in a loss
burst and an SA retransmits them without knowing the available
bandwidth between itself and its children. Recall that the conges-
tion window at the SA only estimates the amount of data that can
be sent from the sender to the SA’s children. Because new and
repair packets may travel through different routes, the congestion
window cannot be used to regulate repair traffic. In MTCP, each
SA maintains another window, called the retransmission window,
used only for repair packets. The retransmission window is up-
dated in the same way as cwnd (i.e., slow start, congestion avoid-
ance, etc.). Since SAs receive ACKs for the packets they retrans-
mitted anyway, maintaining the retransmission window does not
incur significant overhead.

Handling of Independent Loss. MTCP decreases the sender’s
transmission rate if any link of the multicast routing tree is con-
gested. This may raise a concern that the protocol is too sensitive
to independent packet loss: since for large multicast groups, al-
most every transmitted packet may experience independent loss,
it might be argued that the overall throughput will be reduced
to zero. However, in MTCP, most occurrences of independent
loss trigger NACKs to SAs which immediately retransmit the lost
packets. Only packet loss accompanied by indication of conges-
tion, such as retransmission timeouts or several consecutive dupli-
cate NACKs, reduces the congestion window. Simulation results
(not presented here) confirm that independent packet loss is im-
mediately recovered by SAs and does not have a negative effect
on the overall throughput.

3 Detailed Description of MTCP
3.1 Selective Acknowledgment Scheme

In MTCP, we use a selective acknowledgment (SACK) scheme in
which each feedback contains information about all the received
packets. We also adopt a delayed acknowledgment scheme in
which each acknowledgment is delayed for a few tens of millisec-
onds before its transmission. Since an SA can quickly detect the
packets lost by a receiver and retransmit them, these schemes re-
duce the number of acknowledgments and retransmissions. Also,
our SACK scheme provides a good means to recover from inde-
pendent, uncorrelated losses.

When an SA receives an NACK for a packet, it immediately uni-
casts the missing packet to the receiver that sent the NACK, unless
the same packet was (re)transmitted to this receiver within a time
period equal to the current estimated round trip time between the
SA and the receiver (which is one of the SA’s children). Since
the SACK scheme indicates exactly which packets have been re-
ceived, the SA (or the sender) can identify the packets lost by its

SA’s Child

— DataPath
— = Acknowladgment Path

~— Data Packst
—= Acknowledgment Packet

xy.z d

X - sequence number of the data packet

X - stantseq of the Acknowledgment
y - tima the packet was sant at tha Sendar ¥ - endseq of the Acknowledgment

2 - send time of tha first packet being acknowledged

Figure 1: Example of RTD measurement

children and retransmit only them, avoiding unnecessary retrans-
missions. Each ACK also contains the send time of the packet ac-
knowledged, the congestion summaries, and the number of buffers
available at the receiver. This information is used for flow and
congestion control as described in the following sections.

3.2 Relative Time Delay (RTD) Measurement

In MTCP, an SA sets a retransmission timer for each packet it re-
ceives. The timer for a packet must be set to the mean time period
between the time that the packet was transmitted by the sender and
the time that the SA expects to receive an ACK from all of its chil-
dren. However, this time period is hard to measure because of the
clock differences between the SA and the sender. To overcome
this difficulty, we introduce the concept of relative time delay
(RTD), defined as the difference between the clock value, taken at
the SA, when the ACK for a packet is received from a child node,
and the clock value, taken at the sender, when the same packet
was transmitted. MTCP requires that each packet carry its trans-
mission time at the sender, and that each ACK carry the transmis-
sion time of the packet with sequence number startseq — 1 (as
explained above), to help SAs compute the corresponding RTDs.

We use RTD in the same way as RTT in TCP-Vegas. For in-
stance, the difference between the minimum measured RTD and
the currently measured RTD to a child node is used to estimate the
number of packets in transit (i.e., the actual throughput) from the
sender to the child. Also, a weighted average of RTDs and their
deviations in time are used to estimate the retransmission timeout
value RTOgrp. Using the RTD for these purposes is appropri-
ate because MTCP uses only the relative differences in the RTDs.
Given a value for RT'Ogrp, MTCP sets the retransmission timer
of a packet to expire only after the sum of the send time of the
packet (according to the sender’s clock) plus the RT'Ogrrp of the
SA becomes less than the current clock value of the SA.

Figure 1 illustrates how the RTD is measured. In this example, the
SA’s clock is ahead of the sender’s by one time unit. The sender
transmits a packet at time 4 which is received by both the SA and
its child, which then send an acknowledgment to their respective
parents in the logical tree. Recall that the data packet includes
its send time, and that the receivers copy this send time in their
acknowledgments. Then, the RTD measured at the SA is 3 in this
example, since the packet was transmitted by the sender at time 4,

1267

and it was received by the SA at time 7.

3.3 Round Trip Time (RTT) Measurement

An SA will retransmit a packet whose timer has expired, at which
time it needs to reset the retransmission timer. Recall, however,
that retransmissions are unicast from an SA to its children and
may follow a different path than the original multicast transmis-
sion from the sender. As a result, while the retransmission timeout
RTOgrp for the first retransmission of a packet should be based
on the RTD, for subsequent retransmissions an SA must adjust its
timer to the round-trip time (RTT) between itself and its children.

In order to estimate the RTT, an SA periodically polls its chil-
dren by sending a probe packet. In the current implementation,
the polling period is set to 2 seconds. Upon receiving this probe,
a child immediately sends an acknowledgment to its parent. The
SA can then measure the difference between the time when it sent
a probe and the time it received the corresponding acknowledg-
ment. These RTT measurements are used to set the retransmission
timeout RT'O gy for packets retransmitted at least once.

3.4 Estimation of Timeouts and Timer Backoff

The timeout and retransmission mechanisms employed in MTCP
require the estimation of retransmission timeout values RT'OgTp
and RTOgrr. As these values can change over time because
of routing and network traffic changes, MTCP needs to track
these changes and modify its timeout values accordingly. We
use the techniques employed by TCP [1] to set the RTOgrTp
and RTOgrT based on the average measured length of RTDs
and RTTs, respectively, and their deviations in time. In MTCP,
each SA (including the sender) sets its RTOgrrp (respectively,
RTOgr7) to the maximum of the computed RT'Ogrps (respec-
tively, RT'Ogrrs) for all of its children.

When a packet is initially transmitted by the sender, or is received
for the first time by an SA, the sender(or SA) buffers it and set
its retransmission timeout to RT'Ogrp, which represents the es-
timated amount of time for the packet to travel through the multi-
cast tree to the children of the SA and for the corresponding ACKs
to arrive at the SA. As we explained in Section 3.2, the retransmis-
sion timer for the packet is set to expire when the sum of the send
time of the packet plus the RT'Ogrrp becomes less than the cur-
rent time. When a packet is retransmitted because of a NACK
or the expiration of its retransmission timer, the latter is set to
RTOgrr, since retransmissions are performed by an SA via uni-
cast. Following this retransmission, whenever the timer expires,
the timeout value is multiplied by two (exponential backoff) until
an acknowledgment from all children is received.

Figures 2 and 3 illustrate how the timeouts are used in a part of
-a multicast tree involving three nodes: the sender, an SA who is
a child of the sender in the logical tree, and a child of the SA.
Figure 2 shows how the RTD-based timeouts are computed at the
SA. In this scenario, the sender’s clock is assumed to be ahead of
the SA’s clock by three time units. The sender transmits packet 25
at time 5; the send time is included in the packet header. The SA
and its child transmit their acknowledgments, which also include
the send time of the packet, to their respective parents. The SA
receives the ACK at time 4, and calculates the RTD as -1 (=4-5).

1268

Sender

SA'a children

x - sequence number of the data packet
y - time the packet was sent at the sender

x - startseq of the acknowledgment

Tz .0 y - endseq of the acknowledgment

z - send time of the first packet being acknowledged

—ew—— Data Packet

Ackr

----- = Retransmitted Data Packet

Figure 2: Example of timeouts based on RTD

Assume that the estimated RT'Ogrrp is also -1. The sender then
transmits packet 26 at time 7.2. The SA receives the packet and
buffers it for possible retransmission. It also sets its retransmission
timer to the send time of the packet plus the RTOgrrp, i.€., to
7.2+(-1)=6.2. The packet is lost on the route to the SA’s child.
Since the SA has not received an ACK for the packet when the
timer expires at time 6.2, it retransmits packet 26 to its child. At
that time, the SA also sets its retransmission timer to RTOrrT
(not shown in the figure).

In Figure 3, the RT'Ogrp and RTOgrr values are assumed to
be 7 and 1, respectively, and the SA’s clock is five units of time
ahead of the sender’s clock. The sender sends a packet at time 0,
which reaches the SA at time 5.5. When the SA buffers the packet,
it sets the retransmission timer of the packet to expire at time 7,
based on the sum of the send time and the RTOgrrp. Since the
SA does not get an acknowledgment within that time period, it
retransmits the packet at time 7. At that time, the SA also sets the
retransmission timer of the packet to expire at time 8, based on
the RT O g value of 1. Since it does not receive an ACK within
the timeout period, it retransmits the packet again at time 8 and
doubles the timeout value to 2. This doubling of the timeout value
continues until an ACK for the packet is received.

3.5 Slow Start

MTCP employs a slightly modified version of slow start [1] to
estimate the available bandwidth in the multicast paths. Specifi-
cally, the sender and SAs maintain a TCP-like congestion window
whose size is indicated by cwnd. The algorithm starts by initial-
izing cwnd to one segment size. When an SA (or the sender) re-
ceives an ACK for a segment from all of its children, it increments
cwnd by one segment size. This increases cwnd exponentially
until it reaches the slow start threshold (ssThresh). ssThresh is ini-
tially set to 64 Kbytes. When cwnd is greater than ssThresh,
the SA increases its cwnd by 1/(segment size), effectively increas-
ing the cwnd at a linear rate. This linear increase period is called
the congestion avoidance period.

Since during slow start cwnd increases exponentially, this process
itself can cause congestion. MTCP adopts the slow start mecha-
nisms of TCP-Vegas [13] to detect congestion even during slow
start. For this purpose, the sender and the SAs maintain two ad-
ditional variables: baseRTD which is the minimum of the RTDs

1 G —L
‘] RTORTD @
2 T 7 4Heaenn -+
RTO 7 o vmmmmemeeae oL
RTT[i
3 + 8 fmmemma 74/ -
2-RprTO_ [| TTTTTEee-- /

4 4 RTT| o _’_ _}_

-+ R 74/ —r—

6 -+ 4 * RTO 11+ g

RTT] [

7 T 12 ﬁ- 4

8 T+ 13 + €

2 4 14 o emea ...T

10 + 15 -\;'_//1}—

11+ 16 + +

12 -[: 17 -[: +

18 - 18 - -
Sender SA SA’'s child

Multi d packet from the sender

Retransmitted packet

Acknowledgment

Figure 3: Example of timeouts and exponential retransmission
timer backoff

seen so far, and mRTD which is the currently measured RTD. If
the difference between mRTD and baseRTD is less than a thresh-
old v, cwnd is increased exponentially. If the difference is greater
than -y, the algorithm enters the congestion avoidance period.

3.6 Congestion Avoidance

During congestion avoidance, cwnd increases or decreases lin-
early to avoid congestion. When an SA (or the sender) receives
ACKs for a packet from every child, it compares the mRTD and
baseRTD of the slowest child. Let Diff = mRTD — baseRTD. As
in TCP-Vegas, we define two thresholds « and 3, a < (3, corre-
sponding to having too little or too much, respectively, extra data
in the network. When Diff < a, we increase cwnd by 1/(seg-
ment size) and when Diff > [, we decrease cwnd by cwnd/8.
cwnd remains unchanged if o < Diff < .

When a timeout occurs, ssThresh is set to one half of cwnd,
cwnd is set to one segment size, and slow start is triggered.
If, on the other hand, three consecutive NACKs are received,
ssThresh is set to one half of cwnd, cwnd remains the same
and the algorithm remains in congestion avoidance.

3.7 Retransmission Window

The packets retransmitted by an SA to one or more of its children
may take a different route than the multicast path these packets
followed when originally transmitted by the sender. Consider the
situation arising when an SA receives an ACK reporting a list of
lost packets. If the SA is allowed to retransmit a large number
of packets regardless of the available bandwidth between itself
and its children (recall that cwnd estimates only the bandwidth
between the sender and the SA’s children), it may cause another
congestion. To overcome this problem, each SA maintains an-
other window, called the retransmission window for each child,
which is used only for retransmitted packets. Maintaining the re-
transmission window is possible because SAs receive ACKs for
the packets they send (i.e., a closed-loop system). The size of the

window changes in the same way that TCP-Vegas modifies cwnd
(i.e., slow start, congestion avoidance, and fast recovery).

3.8 Window-Based Flow Control

In MTCP, each receiver advertises the number of buffers available
to its parent. We define the advertised window of a node to be the
minimum of the buffers reported by the children of the node. The
sender always sends no more than its own advertised window.

Another issue which affects the congestion control mechanism is
how fast the sender transmits packets. In MTCP, the sender uses
ACKs as a “clock” to strobe new packets in the network. Each
SA (and the sender) maintains a variable called transit window,
twnd. twnd is initially set to zero, it is incremented when a new
packet is received from the sender, and it is decremented when a
packet is acknowledged by all of the SA’s children. Whenever a
retransmission timeout occurs, twnd is set to zero. The informa-
tion about twnd is propagated up the tree to the sender and it is
used to regulate the transmission rate of the sender.

The congestion summary an SA sends to its parent consists of
two parameters: (1) parameter minCwnd, which is the minimum
of the SA’s cwnd and the cwnds reported by its children, and
which estimates the congestion level of the bottleneck link on
the multicast routes to the receivers in the tree, and (2) parame-
ter maxTwnd, which is the maximum of the SA’s twnd and the
twnds reported by its children, and which estimates the number
of unacknowledged bytes in transit to the receivers in the tree. The
difference between maxTwnd and minCwnd is called the current
window. The sender always transmits data in an amount no more
than the current window. This mechanism prevents the sender
from transmitting faster than packets leave the bottleneck link.

3.9 Hierarchical Status Reports

If the sender is allowed to determine the amount of data to be
transmitted based only on its own cwnd and twnd, which it
maintains using feedback from its immediate children alone, it
is highly likely that the sender will cause congestion somewhere
in the multicast routes. This possibility arises from the fact that
the sender’s cwnd and twnd provide information only about the
multicast paths to the sender’s immediate children in the logical
tree; the sender receives no first-hand information about the con-
gestion status of the multicast paths to other nodes. To ensure that
an MTCP session will not cause congestion anywhere in the multi-
cast routes, we require that the sender regulate its rate based on the
congestion status of all receivers in the tree. This is accomplished
by using a hierarchical reporting scheme, in which information
about the status of each receiver propagates along the paths of the
logical tree from the leaves to the root (the sender) in the form of
the congestion summaries discussed in the previous subsection.

Figure 4 illustrates how congestion summaries propagate from
leaf receivers to the sender along the edges of the logical tree.
In the figure, cwnd and twnd are expressed in units of number of
segments (normally defined in bytes). The SAs of leaf nodes send
their cwnds and twnds to their parents. Upon receiving this in-
formation, the parent SAs send to their own parents the minimum
of the received cwnds and their own cwnd, and the maximum of
the received twnds and their own twnd. The sender sends no

1269

minewnd = MIN(cwnd, MIN(SAcwnd))
= MIN(20, MIN(25, 15)) = 15

maxtwnd = MAX(twnd, MAX(SAtwnd))

= MAX(4, MAX(5,10)) = 10

mincwnd = MIN{ cwnd, MIN{SAcwnd))
= MIN(25, MIN(30,15)) = 15

maxtwnd = MAX{ twnd, MAX(SAtwnd))
= MAX(3,MAX(10,8)) = 10

Figure 4: Example of hierarchical status reports

more than the minimum of the current window and the advertised
window. Note that the minimum bandwidth within the subtree
rooted at a given SA is computed based only on information re-
ported in the congestion summaries sent to this SA by its children.
Since the maximum number of the children of a node is limited to
a small constant, this scheme achieves good load-balancing.

We also note that the delay between the time when an SA detects
congestion and the time when the sender reduces its transmission
rate in response to this congestion, may be longer than the TCP
time-scale. Since the congestion status report has to travel all the
way to the root of the tree, this delay can be larger than a round
trip delay. However, unless congestion is reported directly to the
sender (an approach that inevitably leads to ACK implosion), this
extra delay is unavoidable. Furthermore, as it has been pointed
out [14], extra delays up to a few seconds can be tolerated because
network links where a single flow can create severe transient con-
gestion are likely to employ an appropriate queue management
mechanism such as random early detection (RED) [15, 2]. We
have observed through Internet experiments and simulation that
the delay in MTCP is well within this range.

3.10 Window Update Acknowledgments

In MTCP, congestion summaries are normally piggybacked on ev-
ery ACK and NACK. Thus, congestion summaries are reported by
an SA whenever a new packet is received. However, if congestion
summaries are reported only upon reception of data packets, dead-
locks are possible since the window size at an SA may change
even if the sender does not transmit any packets. Consider the fol-
lowing scenario. The sender transmits a number of packets and
receives ACKs for the packets from all of its children. One of the
SAs, say, SA A, on the other hand, does not receive ACKs for
these packets from its children. Thus, SA A will report a high
value for the twnd in the congestion summary it sends to its par-
ent, and which will propagate to the sender. It is possible that
this high twnd value will reduce the size of the current window
of the sender to zero, in which case the sender will not transmit
any more packets. Since the SA will not receive any packets from
the sender, it will not send any ACKs either. When the SA fi-
nally receives ACKs from its children, its twnd decreases from
the previously high value. Since no ACKs on which to piggyback
this window update are generated, the sender will never learn of
this updated window, and in turn, it will not send any packets at
all, resulting in a deadlock.

A3 EMORY
&

Areas:
A1-EMOAY
A2-NCSU
AL-UNC

M- QaTECH
A8 - UTeas

Noden :
E1 - slsciron mathe.emory sdu
2+ labaslamathes emary st
€3 - tabaa 1 mathce. smory e
4 -bsate.mathe.emory.edu
€5 - Inbeatic.mathes.emoy.adu
€8 -abas i maths amory. e
E7 - Inbea? amethca.omory. o
€3 - labas 1t mathes emory s
N - ol catncau. s

N2 - casio,comncau.ady

U3 - capetear.ca.unc.edy

U2~ aunile.ca.uro.eds

U3 - e, ca.un. edu

©1 - touna.ce.gatsch ot

G2 - musato.oc. gatech. sdh

G2 dormaciia.cc. gatech.sdu
G4 - pugslay.ce.gutech.edu

GS - wednasday.cc.gatech et
Tt - dot.cu.tncas.adu

12+ rta.co utmxas. o

T3 posta. s eaxas o0

WAN MICP copectin

— AN MTUP cunsaction Ta - bobly.ca.tmas.ads

TS - brein.cs.uiexss.edu

e bkt TOP convetion
6 habonume.ca.utaxas. edu

Figure 5: Tree used for experiments

To overcome this problem, we require each receiver to periodi-
cally send a congestion summary to its parent. This information
is called a window update acknowledgment, and it is sent only if
a congestion summary has not been sent within the last period.
In the current implementation, the period within which a window
update acknowledgment is sent is initially set to 500 ms, and it
is incremented by 1 second each time the receiver sends the ac-
knowledgment. The period is reset to 500 ms when a new packet
is received from the sender. This periodic window update infor-
mation sent by the SAs effectively resolves the deadlock problem.

4 Internet Experiments

We have implemented MTCP on top of UDP in Posix Threads
and C, in SunOS 5.6. The members of the multicast group in
the Internet experiments were distributed in the five different sites
shown in Figure 5. We have used an assortment of SPARC Ultras,
SPARC 20s and SPARC 5s at each site, organized into the logical
tree in the figure. For the routing of MTCP packets, we have im-
plemented a special process at each site, called mcaster, whose
function is similar to that of mroutd in the MBONE. The packets
generated by the sender at the root of the tree are routed along the
edges of the tree using mcasters. An mcaster simply “tun-
nels” incoming packets by first multicasting them to its own sub-
net via IP-multicast, and then forwarding them to the mcasters
of its child sites in the tree via UDP.

As the experiments arc limited by the number of testing machines
we can access in the Internet (the tree in Figure 5 consists of 23
receivers and one sender), we have also implemented MTCP on
the network simulator ns to test it in a larger scale. Due to lack of
space, however, no simulation results are reported here.

4.1 Scalability

In the case of MTCP, the maximum fanout and the height of the
logical tree are two important parameters in determining its abil-
ity to scale to large numbers of receivers. Let us first discuss the
significance of the height of the tree. It is well known that the
scalability of reliable multicast protocols is directly related to the
degree of throughput degradation as the number of receivers in-

1270

creases. Since MTCP emulates TCP on a logical tree, the through-
put behavior of MTCP is similar to that of TCP and can be ap-
proximated as3]: T = R—qf'——-qf\/ﬁ, where s is the packet size, RTT
is the round trip time, p is the packet loss rate, and c is some con-
stant. When the maximum fanout is limited to a small constant,
the only factor in the expression for T" affected by the number of
receivers is the round trip time. In MTCP, the RTT grows linearly
with the height of the tree, since the sender recognizes congestion
through feedback that propagates from a congested node to the
sender via the ancestors of the node. In the best case, the through-
put of MTCP will degrade in proportion to log n, where f is the
maximum fanout of the tree and n is the number of receivers. The
worst case occurs when the height of the tree grows linearly with
n. Consequently, we expect MTCP to achieve a high throughput,
even for large numbers of receivers, when a well-balanced tree
with a relatively small number of levels is employed.

The second parameter of interest is the number of children that an
SA can accommodate, which determines the maximum fanout of
the logical tree. In light of the limitations on the tree height, it
is desirable to construct trees with a large fanout in order to sup-
port a large number of receivers. On the other hand, the larger
the number of children attached to an SA, the higher the load im-
posed on the SA who has to receive and process feedback (ACKSs,
NACKS and congestion summaries) from its children. Therefore,
unless the maximum fanout of the tree is bounded, SAs may be-
come overloaded and the throughput of MTCP will suffer.

Our first experiment investigates the maximum fanout of a logical
tree that can be supported by MTCP without inducing an exces-
sive load on each SA. The experiment involved a sender trans-
mitting a 70 MB file to multiple destinations on the same LAN.
The nodes were organized in a one-level tree rooted at the sender,
with all receivers on the same level. We measured the through-
put and CPU load at the sender as we increased the number of
receivers. We limited the number of receivers to 16, since if each
SA can accommodate 16 children, MTCP can support 69,904 re-
ceivers organized in a four-level tree. All the machines used in the
experiment were Ultra-Sparc 250 attached to a 100 Mbps LAN.

Figure 6 plots the throughput, the total transfer time, and the CPU
time of the sender, against the number of receivers. The CPU
time represents the amount of time that the CPU is used during
the transfer of the file, while the total transfer time is the time it
takes to transfer the file and includes the time spent by the sender
waiting for ACKs. We observe that as the number of receivers
increases, the throughput does decrease, but not significantly. We
also see that the CPU load (i.e., the CPU time as a fraction of total
time) also decreases with the number of receivers. This can be
explained by observing that, as the number of receivers increases,
the sender spends a greater amount of time waiting for ACKs, and
thus total transfer time also increases. Our results indicate that
even if the sender and the SAs have as many as 16 children, the
processing of ACKs does not pose a problem. In view of the fact
that the experiment was performed in a high-speed LAN (where
the sender can transmit at a fast rate, and also receives ACKs at a
fast rate), the number 16 appears to be a reasonable upper bound
on the number of children each SA can have in the logical tree,
suggesting that MTCP is suitable for large-scale implementation.

L —— EDcrime e [

” \\\ nn —‘ ’. il -

= n TN o
N H{

Tir(asc)
&
Theougrousibyesises)

‘43
- ==
==
s T
§

Figure 6: One-level scalability test — LAN experiment

60000

T T
= “transmission® ——
j Seender’ ----

50000 |
40000

30000 |

bytes (window size)

20000

10000

° s s . i " N s . s
40000 40500 41000 41500 42000 42500 43000 43500 44000 44500 45000
time(ms)

Figure 7: Multi-level response time test — Internet experiment

The purpose of our second experiment was to test whether the pro-
tocol can respond to congestion within a TCP time-scale, as well
as to measure the time delay involved in responding to congestion.
To this end, we set up a four-level tree and examined how long it
takes for the congestion window of the sender to be adjusted in
response to changes in the congestion window of SAs in the path
to the congested receiver. The tree involves one machine from
each of the following sites: NCSU (the sender), Emory (the first
SA, SAl), GaTech (the second SA, SA2), and UTexas (the leaf
receiver). The experiment involved a source transmitting a 70 MB
file to the three destinations. During the experiment we recorded
the congestion window sizes at the sender and the SAs.

Figure 7 shows a five second segment of the experiment. In this
experiment we found UTexas to be the bottleneck, which caused
SAZ2 to have the smallest window size. The sender’s window size
is the largest. Recall that in MTCP, the sender regulates its trans-
mission rate based on the minimum of all the reported congestion
summaries and its own window. Let us call this minimum the
transmission window. As we can see, the transmission window
closely follows the window of SA2. Furthermore, we observe that
whenever any site runs into a slow start, the sender reduces the
size of its transmission window drastically within about 200 ms
to 250 ms. For example, in Figure 7 we see that SA2 initiated a
slow start at around 43 seconds, and that about 250 ms later the
transmission window also dropped to match the window of SA2.

1271

4.2 Inter-fairness

A protocol is said to be inter-fair if it uses no more bandwidth than
a conforming TCP traffic would use on the same link. We have
conducted a large number of experiments over the part of the In-
ternet shown in Figure 5 in order to study the interaction between
MTCP and TCP traffic under real-world scenarios. In Figures 8
to 10 we show results from three different experiments. Each ex-
periment involves independent TCP connections running over the
WAN routes in the tree of Figure 5. Recall that MTCP packets are
routed over the WAN via UDP, thus, the TCP and MTCP traffic
between the same sites in our experiments take the same WAN
routes. Since WAN links are the ones most likely to be a bottle-
neck, this setup is appropriate for studying how the bandwidth of
a link is shared between MTCP and TCP connections.

The first experiment involves areas A1 and A4 (refer to Figure 5),
the second experiment involves areas Al, A2, A3, and A4, and
the third involves the entire tree. In these experiments, the MTCP
sender and TCP senders transmit data as fast as it is allowed by
their congestion control protocols. Each TCP sender starts trans-
mitting at approximately the same time as the MTCP sender. We
expect MTCP to match its sending rate to the minimum band-
width available in the tree, therefore every MTCP receiver should
receive at approximately the same rate as the TCP receiver on the
bottleneck connection in the tree.

The result of the first experiment (over areas Al and A4) is shown
in Figure 8. We run MTCP and TCP connections for 300 sec-
onds and recorded the receiving rates of MTCP and TCP receivers.
Figure 8 shows the receiving rates of the MTCP and TCP and re-
ceivers averaged over S-second intervals. It is evident from the
graph that MTCP and TCP share approximately the same band-
width of about 280 KBps.

400000

*MTCP
“TCP-GATECH* ~+=--

350000
300000]\,
250000 /
200000

150000

Recaiving Rate(bytes/sec)

100000

50000 F

0 0 5‘0 H‘)O 1;0 2(.)0 2;0 300
Time(sec)

Figure 8: Receiving rates averaged over 5-second intervals (first

Internet experiment, areas Al and A4)

The receiving rates recorded during the second experiment (over
areas Al, A2, A3, and A4) are shown in Figure 9; only the aver-
age rates over 5-second intervals are plotted in this case. From the
figure, it is clear that the route from Emory to NCSU is the bottle-
neck because the TCP connection between these two sites gives
the minimum receiving rates. MTCP matches the TCP receiving
rate over this bottleneck route at around 70 KBps.

The results of the third experiment (over the entire tree) are shown

500000 —"

450000
400000 f;
350000 |-}

300000 .’

Rate (bytes/sec)

250000

iving

200000

Rece

150000 | “TCP.UNC

100000

50000

0

. " — s L
0 100 200 300 500 600 700 800

400
Time(sec)

Figure 9: Receiving rates averaged over 5-second intervals (sec-
ond Internet experiment, areas Al, A2, A3 and A4)

500000 r T . r T v v
450000 ‘,")
400000
350000 -
300000
250000

200000

Receiving Rate (bytes/sec)

150000

100000 +

50000

0

0 100 200 300 500 600 700 800

400
Time(sec)
Figure 10: Receiving rates averaged over 5-second intervals (third
Internet experiment, areas Al, A2, A3, A4 and AS)

in Figure 10, where again we plot the receiving rates averaged over
5-second intervals. The route from Georgia Tech to the University
of Texas is now the bottleneck. As we can see, the TCP connection
between GaTech and Utexas has the minimum receiving rate of
about 60 KBps, indicating that the route between these two sites
is the bottleneck link in the whole tree. Again, we observe that
MTCP is successful in matching its rate to the receiving rate of
the TCP connection on the bottleneck link.

These three experiments indicate that MTCP uses no more band-
width than a TCP connection uses on the bottleneck route of a
given tree configuration. Although a bottleneck link may be lo-
cated several levels away from the root, MTCP is capable of ad-
justing its rate according to the available bandwidth on that link.
In all experiments, the fluctuation of MTCP’s receiving rate is not
perfectly synchronized with that of TCP’s. This is because MTCP
and TCP are not the same protocol, and the way that they detect
congestion is different. In addition, MTCP reacts to every instance
of congestion within a tree while TCP reacts to congestion only
between two end points.

To study the performance of MTCP when sharing a link with mul-
tiple TCP connections, we run a fourth experiment involving areas
Al and A4. In this experiment, while MTCP was transmitting,
we run three TCP connections, all along the WAN route between
Emory and GaTech, each of which is started at a different time.

1272

500000

450000

400000 [

8
S
8
8
8

300000

250000 F

200000 |-

Receiving Rate (bytes/sec)

150000

100000 |

50000 |

0

N N s "
o 200 400 800 1000 1200

600
Time({sec)
Figure 11: Receiving rates averaged over S5-second intervals
(fourth Internet experiment, areas Al and A4)

Specifically, the three connections TCP1, TCP2, and TCP3 were
started at around 150, 300, and 410 seconds, respectively, after
MTCP was started. All TCP connections were made between
different host machines to eliminate the effect of computational
overhead. We expect to see MTCP adjust its rate to match the
current level of bandwidth available over the link between Emory
and GaTech.

Figure 11 shows the results of this experiment. When MTCP runs
alone, its receiving rate reaches around 400 KBps. When TCP!
is added, MTCP reduces its rate from 400 KBps to 300 KBps
while TCP1 traffic slowly increases its rate to around 300 KBps.
As soon as TCP2 is added, both TCP1 and MTCP reduce their
rates. TCP1 goes down to 180 KBps while MTCP matches its
rate with TCP2 around 240 KBps. When TCP3 is added, both
MTCP and TCP2 reduce their rates slightly. MTCP still does
not use more bandwidth than TCP2. As soon as TCP1 finishes
its transmission, MTCP’s rate bounces up to match that of TCP2.
TCP3 also increases its rate. It appears that TCP3 always uses less
bandwidth than TCP2. The difference is about 50 KBps. There
could be a couple of reasons for this difference. First, although
the two TCP connections use the same route, their end points are
different. So there could be other background job activities at
the end points of TCP3 affecting its overall receiving rate. Sec-
ond, TCP itself sometimes can be too conservative in its estimate
of the available bandwidth. When TCP2 ends, both TCP3 and
MTCP increase their rates quite a bit. MTCP settles at around 330
KBps while TCP3 goes up to 260 KBps. The difference is close
to that between the receiving rates of TCP2 and TCP3. As soon
as TCP3 ends, MTCP restores its rate quickly to 400 KBps. From
this experiment, we observe that MTCP seems to adjust its rate as
quickly as TCP, according to the current available bandwidth on
the bottleneck link in a given tree.

5 Concluding Remarks

We have presented MTCP, a set of congestion control mechanisms
for tree-based reliable multicast protocols. MTCP was designed
to effectively handle multiple instances of congestion occurring
simultaneously at various parts of a multicast tree. We have imple-
mented MTCP, and we have obtained encouraging results through
Internet experiments and simulation. In particular, our results in-

1273

dicate that (1) MTCP can quickly respond to congestion anywhere
in the tree, (2) MTCP is TCP-compatible, in the sense that MTCP
flows fairly share the bandwidth among themselves and various
TCP flows, (3) MTCP is not affected by independent loss, and (4)
MTCP flow control scales well when an appropriate logical tree is
employed. Thus, we believe that MTCP provides a viable solution
to TCP-like congestion control for large-scale reliable multicast.

References

[1] V. Jacobson. Congestion avoidance and control. Proc. of
SIGCOMM, pages 314-329, Aug. 1988.

[2] B. Braden, er al. Recommedations on queue management
and congestion avoidance in the Internet. [Internet Draft,
March 1997.

[3] S. Floyd and K. Fall. Router mechanisms to support end-to-
end congestion control. Tech. Report, LBL, Feb. 1997.

[4] T. Jiang, M. H. Ammar, and E. W. Zegura. Inter-receiver
fairness: A novel performance measure for multicast ABR
sessions. Proc. of SIGMETRICS, pages 202211, June 1998.

[5] B.N. Levine, D. B. Lavo, and J. J. Garcia-Luna-Aceves. The
case for reliable concurrent multicasting using shared ack
trees. Proc. of Multimedia, pages 365-376, 1996.

[6] S.Paul, e al. Reliable multicast transport protocol (RMTP).
Proc. of INFOCOM, March 1996.

[7] H. W. Holbrook, S. K. Singhal, and D. R. Cheriton. Log-
based receiver-reliable multicast for distributed interactive
simulation. Proc. of SIGCOMM, pages 328-341, Aug. 1995.

[8] R. Yavatkar, J. Griffioen, and M. Sudan. A reliable dissem-
ination protocol for interactive collaborative applications.
Proc. of Multimedia, 1996.

[9]1 M. Hofmann. A generic concept for large-scale multicast.
Proc. of IZS ’96, Springer Verlag, Feb. 1996.

[10] B. N. Levine and J. J. Garcia-Luna-Aceves. A comparision
of known classes of reliable multicast protocols. Proc. of
ICNP, Oct. 1996.

[11] M. Hofmann. Adding scalability to transport level multi-
cast. Proc. of 3rd COST 237 Workshop, Springer Verlag,
Nov. 1996.

[12] S. Deering. Multicast Routing in a Datagram Internetwork.
PhD thesis, Stanford University, December 1991.

[13] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP
Vegas: New techniques for congestion detection and avoid-
ance. Proc. of SIGCOMM, pages 24-35, May 1994.

[14] S. Floyd. Requirements for congestion control for reliable
multicast. The Reliable Multicast Research Group Meeting
in Cannes, September 1997.

[15] S.Floyd and V. Jacobson. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Net-
working, 1(4):397-413, August 1993.

