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Abstract— We develop an economic model for networks offer-
ing tiered services and we formulate the problem of selecting
the service tiers from three perspectives: one that considers
the users’ interests only, one that considers only the service
provider’s interests, and one that considers both simultaneously,
i.e., the interests of society as a whole. We also present dynamic
programming algorithms that solve these problems optimally.
Our work provides a theoretical framework for reasoning about
Internet tiered services, as well as a practical toolset for network
providers to develop customized menus of service offerings.

I. INTRODUCTION

Internet service providers have introduced several forms
of a tiered service, in which users may select from a small
set of service levels (tiers) which offer progressively higher
bandwidth with a corresponding increase in price. The in-
troduction of tiered service has important engineering (e.g.,
in terms of operation, control, and management) and finan-
cial implications for the network provider. A continuous-
rate network must be designed to accommodate any arbitrary
rate of service requested by the users. In a tiered-service
network, on the other hand, a wide range of core functions,
including equipment configuration, traffic engineering, quality
of service (QoS) support and service level agreements, billing,
and customer support are simplified, enabling the providers
to scale their operations to millions of customers. Currently,
service tiers are either based on the bandwidth hierarchy of
the underlying network infrastructure (e.g., DS-1, OC-3, etc.),
or are determined in some ad-hoc manner (e.g., the ADSL
tiers available from various providers). In [5] we developed a
systematic framework for tiered-service networks by adopting
the network operator’s perspective. We have also demonstrated
the benefits of tiered service for traffic engineering [6] and
packet scheduling for QoS [7].

In this paper, we extend our work in [5] by developing
an economic model for tiered-service networks that allows us
to formulate the problem of selecting the service tiers from
three perspectives: one that considers the users’ interests only,
one that considers only the service provider’s interests, and
one that considers both simultaneously, i.e., the interests of
society as a whole. We also present dynamic programming
algorithms that solve these problems optimally. Our work
provides a theoretical framework for reasoning about Internet
tiered services, as well as a practical toolset for network
providers to develop customized menus of service offerings
that cater to user needs while ensuring that both parties are
satisfied.

This work was supported by the NSF under grant CNS-0434975.

The rest of the paper is organized as follows. In Section II,
we introduce the tiered-service network we consider in this
study. In Section III, we introduce an economic model for
tiered-service networks that takes into account the user’s per-
spective, the provider’s perspective, or both. We also formulate
and solve three corresponding problems for selecting the set
of service tiers optimally. We present numerical results in
Section IV and we conclude the paper in Section V.

II. THE TIERED-SERVICE NETWORK

We consider a network with N users. The network provides
a service characterized by the amount of bandwidth x allocated
to each user, as is typical of current residential (e.g., DSL or
cable modem) and business Internet access services (e.g., T1,
T3, or higher). We assume that users may request any amount
of bandwidth depending on their needs and their willingness or
ability to pay the corresponding service fee. We let di denote
the bandwidth request (i.e., demand) of user i, and define
the demand vector D =< d1, d2, · · · , dN >, where we have
labeled the user demands in non-decreasing order of requested
bandwidth, d1 ≤ d2 ≤ · · · ≤ dN . In this paper we assume that
the demand vector is known to the service provider.

The network provider offers K bandwidth levels (tiers)
of service, where typically K is a small integer such that
K � N . We define S =< s1, s2, · · · , sK > as the vector
of service tiers offered by the network provider; without loss
of generality, we assume that the service tiers are labeled such
that s1 < s2 < · · · < sK . For notational convenience, we also
define the “null” service tier s0 = 0.

With tiered service, a user i with bandwidth demand di

will have to subscribe to service tier sj such that sj−1 <
di ≤ sj so as to experience a QoS that meets or exceeds
its requirements. Figure 1 shows a sample mapping from a
vector of 13 bandwidth demands to a vector of 6 service tiers.
Note that the network provider needs to provide each user i
with additional bandwidth (sj − di) ≥ 0, and will typically
incur higher costs for doing so; consequently, the provider
will be inclined to select the service tiers so as to recoup
these costs (and make a profit). On the other hand, user i
subscribes to a service (i.e., sj) that is at least as good as
the one requested (i.e., di), but the additional value, if any,
that the user receives may be offset by the higher cost of
the service. Our aim is to apply economic theory to capture
analytically these tradeoffs, and to develop techniques to select
the service tiers in a manner that accounts for both the users’
and providers’ perspectives.
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Fig. 1. Sample mapping of bandwidth demands to service tiers
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Fig. 2. Utility, cost, and price functions

To develop an economic model for tiered-service networks,
we assume the existence of three non-decreasing functions
of bandwidth x, as shown in Figure 2. The utility function,
U(x), is a measure of the value that users receive from the
service, and it stands for their willingness to pay for the
service. The cost function, C(x), represents the bandwidth cost
incurred by the provider for offering the service. Finally, the
price function, P (x), represents the amount that the service
provider charges for the service. Figure 2 shows that U(x)
lies above P (x) (otherwise users would not be willing to pay
for the service), and in turn P (x) lies above C(x) (otherwise
providers would not be inclined to offer the service); however,
our results are obtained for general functions U(x), P (x), and
C(x), independent of the relative behavior of the correspond-
ing curves. We make the reasonable assumption that utility,
cost, and price are all expressed in the same units (e.g., US$).
Note that utility and cost typically depend only on the user
and service provider, respectively, but that price is the result
of market dynamics and the relative bargaining power of users
and service providers.

III. ECONOMIC MODEL FOR TIERED-SERVICE NETWORKS

We now use concepts from economics to describe the
relationship between users and service providers, and we
propose a series of optimization problems for determining the
bandwidth tiers in tiered-service networks. We also illustrate
how to solve these problems using dynamic programming to
obtain a set of optimal bandwidth tiers.

Consider now the demand-supply relationship between the
users and network service providers. On the one hand, users

want to maximize the utility they obtain from the service while
keeping the fee they have to pay to the service provider as low
as possible; in economic terms, users want to maximize the
user surplus [2], [3], defined as the difference between the
utility they obtain from the service and the price they have to
pay for it. On the other hand, the network providers’ objective
is to charge a high fee so as to offset the cost of offering the
service and make a profit; in other words, service providers
want to maximize the service provider surplus [2], [3], defined
as the difference between price and cost. The concepts of user
surplus and service provider surplus are illustrated in Figure 2.

From the point of view of the society as a whole, it is
preferable to maximize the overall social welfare, defined as
the sum of the user surplus plus the provider surplus (see
also Figure 2). We will refer to the social welfare as social
surplus [2], [3]. Once the maximum social surplus has been
determined, the users and service providers may negotiate
its division into user and service provider surpluses through
bargaining.

In the tiered-service network under consideration, the prob-
lem of maximizing the surplus of users, service providers, or
society, amounts to selecting appropriately the set of service
tiers to be offered. The following three subsections formulate
each of these optimization problems and present efficient
algorithms for solving them optimally.

A. Service Tier Optimization: The User Perspective

Let us first consider the problem of optimally selecting
the service tiers from the users’ point of view. We make
the assumption that the utility function U(x) and the price
function P (x) are known and fixed; we will address the issue
of determining an optimal price function shortly. Based on
our earlier discussion, the objective of each network user is to
maximize its surplus. Considering all the users in the network
as a whole, the objective is to select the set of service levels
so as to maximize the aggregate surplus, i.e., the sum of the
individual user surpluses. This optimization problem, which
we will refer to as the Service Tier Optimization for Users
(STO-U) problem, can be formally expressed as follows.

Problem 3.1 (STO-U): Given a vector D of N bandwidth
demands, d1 ≤ · · · ≤ dN , an integer number K < N of
service tiers, a utility function U(x), and a price function
P (x), find a service tier vector S =< s1, · · · , sK > that
maximizes the objective function (aggregate user surplus):

FU (S) =
K∑

j=1

| Dj | (U(sj) − P (sj)) (1)

subject to the constraints:

sj−1 < di ≤ sj , di ∈ Dj , j = 1, · · · ,K (2)

where Dj is the set of demands mapped to service tier sj , j =
1, · · · ,K, and s0 = 0 is the “null” service tier.

The STO-U problem is an instance of the directional k-
median problem we introduced in [5], and can be solved
using a dynamic programming algorithm similar to the one we



presented there. For completeness, we describe the dynamic
programming formulation next.

Define Φ(n, k) as the maximum value of the objective
function (1) when the number of users (demands) is n and
the number of service tiers is k ≤ n. Then, it is possible to
solve STO-U by using the following dynamic programming
formulation to compute Φ(n, k) recursively:

Φ(n, 1) = n(U(dn) − P (dn)), n = 1, · · · , N (3)

Φ(1, k) = U(d1) − P (d1), k = 1, · · · ,K (4)

Φ(n, k +1) = max
q=k,···,n−1

{Φ(q, k)+(n− q)(U(dn)−P (dn))}

k = 1, · · · ,K − 1; n = 2, · · · , N (5)

Expression (3) states that when K = 1, due to con-
straints (2), the optimal service tier is equal to the largest
demand dn; in this case, all n users obtain utility U(dn) and
pay price P (dn). Expression (4) states that if there is only one
user with demand d1, the user will select a service tier equal to
di

1. The recursive equation (5) can be explained by noting that
the (k+1)-th service tier must be equal to the largest demand
dn. If the k-th service tier is equal to dq, q = k, · · · , n−1, the
aggregate user surplus is given by the expression in brackets
in the right-hand side of (5), since n− q demands are mapped
to service tier dq . Taking the maximum over all values of q
provides the optimal value.

A straightforward implementation of the recursion (3)-(5)
takes time O(KN2). By exploiting the fact that the N × K
matrix Φ satisfies the concave Monge condition [1], we were
able to develop an O(KN) implementation of the dynamic
programming algorithm that is efficient when the number N
of users is large; for the details of the implementation, the
reader is referred to [5].

B. Service Tier Optimization: The Provider Perspective

The goal of the service provider is to maximize its aggregate
surplus, P (x)−C(x), over all N users. Given a price function
P (x) and a cost function C(x), the problem of determining
an optimal vector of K service tiers can then be formulated
in a manner similar to expressions (3)-(5) and solved using a
similar dynamic programming algorithm.

We now develop a more realistic formulation of the prob-
lem, based on the observation that, in general, the total cost
to the network provider of offering K tiers of service consists
of two components. The first component is due to the cost
of the bandwidth: the more bandwidth acquired by the users,
the higher the cost. We use the nondecreasing function C(x)

1Strictly speaking, expression (4) will optimize the objective function (1)
only when the gap U(x)−P (x) between the utility and price functions does
not increase for x > d1. In this case, whenever the number of service tiers is
greater than or equal to the number of users, each user receives exactly the
amount of service it requests. Since for most typical scenarios the utility of a
service or product tends to increase slower than price (otherwise, users would
purchase the largest amount of product or service offered), it is reasonable
to use expression (4) in the dynamic programming solution. More generally,
let x� > d1 be a value such that U(x�) − P (x�) is maximum over all
x > d1; then, one would set Φ(1, k) in (4) to U(x�)−P (x�). We have not
considered this alternative here.

to denote this cost, representing the link cost for carrying
user traffic, as well as the switching cost at routers. The
second component captures the cost of software and hardware
mechanisms at the routers for supporting a given number K
of service tiers. Specifically, we assume that the incremental
cost (e.g., due to the additional queueing structures, policing
mechanisms, control plane support, etc.) of offering one ad-
ditional service tier is equal to α. Hence, the total cost for K
tiers is2 αK.

Based on the above discussion, the provider’s optimization
problem, which we refer to as the Service Tier Optimization
for Providers (STO-P) problem, is defined as follows.

Problem 3.2 (STO-P): Given a vector D of N bandwidth
demands, d1 ≤ · · · ≤ dN , a price function P (x), a bandwidth
cost function C(x), and a per-service tier cost α, find the
number K,K ≤ N , of service tiers and an optimal service
vector S =< s1, s2, · · · , sK > that maximize the objective
function (aggregate provider surplus):

FP (K,S) =




K∑
j=1

| Dj | (P (sj) − C(sj))


 − αK (6)

subject to the constraints:

sj−1 < di ≤ sj , di ∈ Dj , j = 1, · · · ,K (7)

where Dj is again the set of demands mapped to service tier
sj , j = 1, · · · ,K.

The objective function (6) is derived under the assumption
that the bandwidth cost to the network provider is simply the
sum, over all users, of the individual cost C(x) of providing
service x to a user in isolation. An alternative objective
function can be obtained by assuming that the bandwidth cost
to the provider is just the cost of providing the aggregate
bandwidth over all users:

F ′
P (K,S) =

K∑
j=1

|Dj |P (sj) − C




K∑
j=1

|Dj |sj


 − αK (8)

The STO-P optimization problem is a generalization of
the directional k-median problem [5] as the number K of
service tiers is now a variable. STO-P belongs to the family
of uncapacitated facility location problems [4]. This family of
problems include as part of the input a facility-build cost (in
our case, a service tier cost α), and the objective is to optimize
jointly the number of facilities and their locations. Of course,
due to the directionality constraint (i.e., the requirement that a
user subscribe to a service tier at least as large as its bandwidth
demand), algorithms for existing location problems in which
a demand may be served by any facility, to the left or right of
it in the real line, cannot be applied to the STO-P problem.

We now present a solution approach for the STO-P problem
with the objective function (6) that is based on dynamic pro-
gramming; the STO-P problem with the alternative objective

2We emphasize that our formulations and results can be extended in a
straightforward manner to any non-decreasing function g(K) in place of αK.



function (8) can be solved in a similar manner. As in the
previous subsection, we define Φ(n, k) as the maximum value
of the aggregate service provider surplus in (6) when the
number of users is n and the number of service tiers is k ≤ n.
We can obtain Φ(n, k) using the following recursion:

Φ(n, 1) = n(P (dn) − C(dn)) − α, n = 1, · · · , N (9)

Φ(1, k) = P (d1) − C(d1) − αk, k = 1, · · · , N (10)

Φ(n, k+1) = max
q=k,···,n−1

{Φ(q, k)+(n−q)(P (dn)−C(dn))}−α

k = 1, · · · , N − 1; n = 2, · · · , N (11)

Expressions (9)-(11) are similar to (3)-(5), respectively. The
main difference is the introduction of the service tier (“fa-
cility”) cost α, which decreases the service provider surplus
accordingly. For instance, in expression (11), the cost of the
additional (i.e., (k + 1)-th) service tier is accounted for in
the right hand side by subtracting the value of parameter α.
We also note that similar comments to the ones we made for
expression (4) apply to expression (10) as well.

At the end of the recursion, the entries of the last row of the
table Φ, i.e., the values of Φ(N, k), k = 1, · · · , N , correspond
to the optimal servicer provider surplus for the given demand
vector D when there are k service tiers. Let k� be the optimal
value of k, i.e., a value such that Φ(N, k�) ≥ Φ(N, k) for all
k, k = 1, · · · , N . The value k� and the corresponding service
tiers comprise the optimal solution to the STO-P problem.

Since this N × N matrix Φ also satisfies the concave
Monge condition [1], the time complexity of the dynamic
programming algorithm is O(N2) using the implementation
we described in [5]. Finding the optimal value k� by searching
the last row of matrix Φ takes time O(N), hence the overall
time complexity of the algorithm is O(N2).

C. Service Tier Optimization: The Society Perspective

So far we have assumed that users and service providers
may select the service tiers optimally based only on their own
interests. In reality, this assumption may not be reasonable or
practical. An optimal service vector for the users may not be
acceptable to the service provider, and vice versa. Therefore, it
is important to obtain a jointly optimal solution that takes into
account the perspectives of both users and service providers.
Furthermore, the optimization problems STO-U and STO-P
take the price function P (x) as input. In general, the price
function is the result of negotiation between users and service
providers, hence it may not be known in advance. We now
show that considering the welfare of the society (i.e., users and
providers) as a whole overcomes these difficulties, allows us to
determine the optimal service tier vector without knowledge
of the price function, and leads to an elegant approach for
determining optimal prices for the service tier vector.

From the society’s perspective, it is desirable to maximize
the social surplus, i.e., the sum of user and service provider
surpluses. Let us assume that the utility function U(x) and
the cost functions (i.e., bandwidth cost C(x) and per-tier cost

α) are known. Then, maximizing the social surplus leads to
the following optimization problem, which we call the Service
Tier Optimization for Society (STO-S) problem:

Problem 3.3 (STO-S): Given a vector D of N bandwidth
demands, d1 ≤ · · · ≤ dN , a utility function U(x), a bandwidth
cost function C(x), and a per-service tier cost α, find the
number K,K ≤ N , of service tiers and an optimal service
vector S =< s1, s2, · · · , sK > that maximize the objective
function (social surplus):

FS(K,S) =




K∑
j=1

| Dj | (U(sj) − C(sj))


 − αK (12)

subject to the constraints:

sj−1 < di ≤ sj , di ∈ Dj , j = 1, · · · ,K (13)

where Dj is the set of demands mapped to service tier sj .
This problem is identical to the STO-P problem, except that

in the objective function (12) U(x) is used whenever P (x)
is used in (6). Hence, STO-S can be solved in time O(N2)
with the dynamic programming algorithm in (9)-(11). After
solving the STO-S problem, we obtain an optimal service
vector S� =< s1, s2, · · · , sK > that maximizes the social
surplus and depends only on the utility and cost functions
provided by the users and network provider, respectively.

IV. NUMERICAL RESULTS

To illustrate our methodology for sizing of tiered services,
we consider the market for broadband Internet access. Specifi-
cally, we assume that user demands are in the range [256 Kb/s,
6.1 Mb/s], typical of current broadband speeds in the United
States. We consider two distributions for user demands, as in
Figure 3: a uniform distribution, under which a user is equally
likely to request any amount of bandwidth in the specified
range, and a six-modal distribution in which user demands
are concentrated around multiples of 1 Mb/s. In particular, the
six-modal distribution is such that with probability 0.1167 a
user demand will be in the range [k−0.1, k+0.1], k = 1, · · · , 6
Mb/s, and with probability 0.3 a user demand will take any
other value. We let the number of users N = 1000.

We let the bandwidth cost function C(x) = µx and the
tier cost function C(K) = αK. We let the utility function
U(x) = λxγ log(x). Recall that utility stands for the users’
willingness to pay, and in most cases it is an increasing,
strictly concave, and continuously differentiable function of
bandwidth. This function, which can be easily shown to have
all three properties, was considered within the context of
elastic traffic in [8]. The parameters λ and γ can be used to
control the slope of the utility function U(x); we use µ = 0.5,
α = 250, λ = 10, and γ = 0.4, 0.5, and we discuss these
choices shortly.

Due to space constraints, we only consider the STO-S
problem. Let us consider the impact of the number K of
tiers on the value of the social surplus. Figure 4 plots the



bandwidth

pd
f

256 Kb/s 6.1 Mb/s bandwidth

(a)

(b)

1 Mb/s 2 Mb/s 3 Mb/s 4 Mb/s 5 Mb/s 6 Mb/s

pd
f

Fig. 3. User demand distributions: (a) uniform, (b) six-modal

social surplus obtained by the dynamic programming algo-
rithm against K, for the utility function with γ = 0.5. Two
curves are shown, one for demands drawn from the uniform
distribution and one for demands drawn from the six-modal
distribution of Figure 3. We observe that the social surplus
initially increases with K, reaches a maximum value, and then
starts to decrease. This behavior can be explained by noting
that when K is small, the bandwidth cost C(x) dominates
the tier cost αK; therefore, introducing additional tiers allows
the provider to better match its service offerings to the user
demands, increasing the overall surplus. However, after K
crosses a threshold (that depends on the values of parameters
α, γ, λ, and µ), the tier cost starts to dominate, decreasing
the provider’s surplus and more than compensating for any
increase in the user surplus. The behavior is similar for the
two distributions, and for others not shown here.

Figure 4 also plots (as straight lines) the value of the
social surplus for a simple service offering with six tiers
at multiples of 1 Mb/s, for both demand distributions. As
we can see, the social surplus achieved by this set of tiers
is substantially lower than the maximum surplus determined
by the dynamic programming algorithm; this observation is
true even for the six-modal distribution of user demands.
This example illustrates that selecting the service tiers using
informal, ad-hoc approaches is likely to lead to suboptimal
solutions; our methodology, on the other hand, is designed to
find solutions that maximize the overall benefit to society.

Figure 5 is similar to Figure 4, except for the fact that we
used γ = 0.4 in the utility function U(x). For this value of γ,
the utility function is lower than the cost function C(x) over
most of the range of user demands. Consequently, the social
surplus is negative in this case. Nevertheless, our methodology
remains valid, and the dynamic programming algorithm can be
used to determine the service tiers that maximize the social
surplus; this optimal set of tiers again outperforms the set of
six tiers at multiples of 1 Mb/s.
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V. CONCLUDING REMARKS

We proposed an economic model for tiered-service networks
and developed dynamic programming algorithms to select the
service tiers. Our approach provides insight into the selection
of Internet tiered services, as well as a theoretical framework
of practical importance to network providers.
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