978-1-5386-4128-6/18/$31.00 ©2018 |EEE

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Virtual Network Reconfiguration with
Load Balancing and Migration Cost Considerations

Lingnan Gao®, George N. Rouskas®?
“Department of Computer Science, North Carolina State University, Raleigh, NC, USA
bDepartment of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—Efficient allocation of resources is an essential yet
challenging problem in a virtual network environment, especially
in an online setting whereby virtual network requests may
arrive, depart, or be modified in real time. Virtual network
reconfiguration may help to improve network performance by
remapping a subset of virtual nodes or links to better align
the allocation of resources to current network conditions. In
this paper, we develop a virtual network reconfiguration scheme
that aims to balance the load on the substrate network by
dynamically reconfiguring the embedding of both virtual nodes
and links. Our solution consists of decomposing the problem into
two subproblems: i) virtual node selection, for which we present a
linear programming-based fully polynomial time approximation
scheme to select the virtual nodes to be migrated, and ii) virtual
node remapping, for which we make use of random walk on a
Markov chain to select new substrate nodes for the migrated
virtual nodes.

I. INTRODUCTION

Network virtualization [1] has drawn significant attention
from both the academic and industry communities due to its
potential to overcome what is referred to as Internet ossifica-
tion [2], a situation where necessary or innovative transforma-
tions to the network architecture are difficult or impossible to
achieve. In a network virtualization environment, the Internet
Service Provider (ISP) is logically decoupled into two entities:
the Service Provider (SP) and the Infrastructure Provider (InP).
The InP is responsible for the operation and maintenance of
the physical infrastructure, while the SP aggregates resources
from InPs to create virtual networks (VNs) and provide end-to-
end services to users [1]. Virtualization allows heterogeneous
networks to co-exist on a shared infrastructure, and hence, it is
widely considered as the most promising vehicle for research,
experimentation, and deployment of innovative solutions for
the next generation Internet.

In a network virtualization scenario, services are offered
in the form of VNs, each VN consisting of a number of
virtual nodes connected by virtual links. Therefore, for a VN
to become fully functional, it has to be embedded onto the
substrate network (SN) such that the requirements for the
virtual nodes and links (e.g., CPU capacity and bandwidth,
respectively) are satisfied. Efficient embedding of the VNs
onto SNs gives rise to the virtual network embedding (VNE)
problem [3], a challenging problem that remains NP-hard even
when all the VN requests are known in advance.

In reality, the resource allocation problem in this context
is online in nature: the lifetime of the VN requests may be
finite and arbitrary; the arrival pattern of VN requests may

be unpredictable; and the resource demands for existing VNs
may change whenever users decide to scale up or down their
requirements. If these dynamics are not taken into account and
resource allocation is viewed as a purely static problem, the
whole infrastructure may drift into an inefficient configuration
that results in degraded performance for existing VNs and a
higher rejection rate for subsequent VN requests [4].

One of the challenges in tackling online VNE problems has
to do with modeling the dynamic behavior of VN requests,
including the arrival process, the lifetime distribution, and the
distribution of the time to the next scale up/down of resource
requirements. An alternative approach is to reconfigure the VN
embedding on a periodic basis by updating the mapping of
virtual nodes and links to infrastructure resources in response
to changes in VN requests. This is referred to as the virtual
network reconfiguration (VNR) problem [11], and its objective
is to improve resource utilization (for providers) and enhance
performance (for users). Similar to the VNE problem, VNR is
also concerned with the mapping of virtual nodes and links,
but it also takes the existing configuration into account.

In our previous work [16], we presented a scheme to
partition the virtual network requests and map them into
different domains so that the traffic between different domains
is minimized. In this work, we focus on algorithm design for
the VNR problem so as to improve network performance by
balancing the offered load across the substrate nodes and links.
We first present a link-arc based mixed integer programming
(MIP) formulation of the reconfiguration problem. The objec-
tive of the formulation is to minimize the maximum utilization
of substrate nodes and links while bounding the number of
virtual nodes that have to be migrated. This problem is NP-
hard, since it reduces to the VNE problem if there is no bound
on the number of virtual nodes to be migrated. Therefore,
we decompose the problem into two phases, namely, virtual
node selection and virtual node remapping. The first phase
selects the virtual nodes to be migrated, while the second
selects the new substrate nodes for the migrated virtual nodes.
For the first phase, we solve the linear programming (LP)
problem derived from the MIP. Specifically, we use a path-
based formulation that achieves a near-optimal solution to the
LP problem without intensive computation overhead. For the
second phase, we use a Markov-chain based approach to filter
candidate substrate nodes and solve a MIP problem to select
the substrate node and complete link reconfiguration.

In Section II, we review previous work in this topic, and

2303

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

in Section III, we formally define the VNR problem and
introduce the augmented graph model we use in developing
the formulation. We present the algorithm we have developed
for the VNR problem in Section IV, and we evaluate its per-
formance in Section V. We conclude the paper in Section VI.

II. RELATED WORK

The VNE problem has been studied extensively [3]. Al-
though much research effort has been directed towards finding
an efficient way of allocating substrate resources to virtual
network requests, most studies consider the static problem with
a focus on maximizing InP revenue or load balancing. To the
best of our knowledge, only a few works consider a dynamic
version of the problem where the objective is to reconfigure
the VN that are already mapped on the SNs; we review these
works in the remainder of this section.

A method to reconfigure the VN requests to maximize
the InP revenue has been proposed in [5]. In this study,
emphasis is on the embedding of virtual links under the
assumption that the traffic of a virtual link may be split
and carried over several substrate paths. Consequently, the
authors propose a reconfiguration scheme that dynamically
adjusts the splitting ratio of a virtual link or sets up a new
path in the substrate network. Although virtual link splitting
and migration improves the acceptance ratio for VN requests,
migration of virtual nodes is not considered in this work.

A proactive reconfiguration algorithm, referred to as global
marking algorithm, was proposed in [4]. In the reconfiguration
phase, the workload of the substrate nodes and links is
examined. If a given substrate node or link is overloaded,
then all virtual nodes and virtual links mapped on top of that
particular substrate node or link, respectively, are marked for
remapping. During the remapping phase, marked virtual nodes
and links are re-assigned to the SN. This approach may incur
unnecessary reconfigurations: often, only a fraction of the
virtual nodes on a stressed substrate node need to be migrated,
whereas this method tends to reconfigure all of them. Also, for
congested substrate links, solely reconfiguring the mapping of
the virtual links without migrating the virtual nodes causing
the overload may not fully alleviate the congestion.

Another reconfiguration scheme to maximize InP revenue
was proposed in [13]. This approach takes into account the
migration overhead so as to limit the service disruption caused
by reconfiguring the virtual nodes. Reconfiguration is triggered
whenever a VN request is blocked, and follows the solution of
a MIP problem. Since this method relies on solving the MIP
problem, it may not scale to large problem sizes or may not be
appropriate whenever a low reconfiguration delay is required.

Based on the observation in [11] that VN request rejection
is mainly caused by bandwidth shortage, a reactive VN re-
configuration algorithm was presented in [12]. The algorithm
aims at improving the VN request acceptance rate while
limiting the number of virtual nodes to be migrated, so as
to minimize the overall reconfiguration cost. Virtual nodes are
selected for migration based on the number of congested links
along which they route their traffic. Selected virtual nodes are

iteratively reconfigured until either the incoming VN request
is successfully embedded or the number of virtual nodes
reconfigured exceeds the given threshold. This work solely
considers congested links and does not account for overloaded
substrate nodes. Also, it does not take into consideration the
magnitude of traffic demands originating/terminating at the
virtual nodes. This may result in a situation whereby virtual
nodes with little traffic (and hence, small impact on the SN)
are selected for migration just because they happen to use
congested paths. As an extension to the work in [11], a VN
reconfiguration strategy was developed in [12] to handle the
scale-up/down of VN requirements requested by users. This
study used a genetic algorithm to minimize the combined cost
of embedding and reconfiguration.

A scheme to reconfigure the VN within an evolving sub-
strate network was proposed in [6]. In this work, reconfigu-
ration is triggered in response to changes in the underlying
SN, i.e., whenever substrate nodes and/or links are added or
removed. The objective is to reconfigure the VN such that
delay constraints are preserved while migration overhead is
minimized. To this end, a heuristic algorithm was proposed
to relocate virtual nodes that are affected by the changes or
violate the delay constraints.

III. NETWORK MODEL AND PROBLEM FORMULATION
A. Virtual Networks and Substrate Networks

We model the SN as a weighted, undirected graph G* =
(V*,E®). The vertices of G° stand for the substrate nodes,
while the edges of G* represent the substrate links. Each node
A and edge (A,B) on G° are weighted, and we let Capa
denote the resource (e.g., CPU) capacity of the substrate node
A, and Clap 4 p denote the bandwidth capacity of substrate link
(A,B).

Likewise, we model a VN as a weighted, undirected graph
GV = (VY,E"), whose vertices and edges represent virtual
nodes and links, respectively. The weight Req, of vertex a
reflects the resource (e.g., CPU) requirement of the virtual
node, while the weight ., denotes the traffic demand of the
virtual link (a,b)!. In addition, each virtual node may specify
additional constraints, including the type of the substrate nodes
they may be mapped onto, geographical constraints, etc., such
that a virtual node may be placed only on a specific group of
substrate nodes. We denote the set of substrate nodes that may
support a virtual node a as O(a) C V*.

We assume that there exists a mapping of virtual nodes
and links to the substrate network, F : G — G*°. We
also assume that the resource requirements Req, and traffic
demands t,, of the VNs evolve over time such that the
current mapping J is not representative of the current state
of the network. Although our work is agnostic with respect to
how reconfiguration is triggered (e.g., whether it is performed
periodically or is initiated as soon as a performance measure
crosses a predefined threshold), our focus is on updating the
mapping F to align it with current network conditions.

'We will use upper-case (respectively, lower-case) letters to denote substrate
(respectively, virtual) nodes throughout this paper.

2304

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Fig. 1. Reconfiguration of virtual network requests

Fig. 2. Augmented graph

B. Reconfiguration Objectives

Our goal is to develop an online VN reconfiguration algo-
rithm that remaps part of the VN requests so as to balance
the load on the substrate nodes and links in a scenario where
multipath routing could be supported [5]. Since the migration
is more expensive than the reconfiguration of virtual links [4],
we also aim to limit the number of virtual nodes that have
to be migrated, so as to keep the reconfiguration cost low
and minimize service disruption. A reconfiguration example
is shown in Figure 1. The top part of the figure shows the
two VN requests and the original embedding of the requests
onto the substrate network, whereas the bottom part of the
figure shows the new embedding of the two requests after
reconfiguration has taken place.

We view this VNR problem as a multi-objective optimiza-
tion problem, with three metrics to be minimized: substrate
link utilization, substrate node workload, and the number
of virtual nodes to be migrated. Specifically, we take link
utilization as the primary objective and bound the other two,
such that we formulate the goal in this form:

Minimize the maximum link utilization A\, under two
constraints: resource utilization of each substrate node
does not exceed p), and the total number of virtual
nodes being migrated does not exceed a threshold M.

M and p are parameters defined by the network operator.
Parameter p may be used to adjust the tradeoff between
minimizing the utilization of substrate links and nodes.

C. Augmented Graph

Our problem formulation makes use of the augmented graph
presented in [15]. We start with the graph G* that represents
the substrate network and follow these steps to construct the
augmented graph G*“9 (refer also to Figure 2). For each
substrate node A, we create a mirror node A’, as well as an

edge (A, A’) with weight equal to the capacity of node A,
Cap 4. For each virtual node a, we also create a corresponding
node in the augmented graph. Recall that O(a) is the subset
of substrate nodes to which virtual node ¢ may be mapped.
Therefore, for each substrate A € O(a), we create an edge
(a, A") between the virtual node a and the mirror node of A.
For instance, in Figure 2 we assume that ©(a) = {A, D},
hence the augmented graph contains the edges (a, A’) and
(a, D'). The capacity of these edges is set to infinity.

In addition to the weight (capacity), we associate a cost
with each edge in the augmented graph, as follows: the cost
on all edges except the ones between virtual nodes and mirror
substrate nodes is zero. If, in the current configuration, a
virtual node a is mapped on, say, substrate node A, then the
cost of edge (a, A’) is also zero. Otherwise, the cost of the
edge (a,D’),A # D € ©(a), is the reciprocal of the total
traffic of virtual node a, i.e., 1/, tas.

D. MIP Formulation

Using the augmented graph defined above, we formulate the
VNR problem as the following mixed-integer programming
(MIP) problem.

Decision Variables:
x%: binary variable, indicating whether virtual node a is
mapped onto substrate node A.

b, : flow variable, indicating the fraction of traffic between
virtual nodes @ and b that is mapped onto substrate link (A, B).
MIP Formulation:

min A @))]
s.t.
BINETED DIV A}
A€06(a) A€06(a)
Va,be V? (a,b) € EY)
Soofsh— Y fEh =1,
BeO(b) BeO(b)
Va,be V" (a,b) € EY 3)
Z ffzibB_ Z fglhzov
AcVSs AcVS
Va,be V' (a,b) e E", BeV*® (4)
> tafis <ACapap, VA,BeV® 5)
(a,b)EE®
Z Req,z% < pACapa, VAeV?® (6)
acVv
ST =Y 2%, YabeV', VAeV® (7
beVv beVv
> (1—2%) <M, Yae V' A= Ext(a) (8)
acVv
Z 24 =1, Yae V" 9
A€OB(a)
0< fip <1 (10)
z% € {0,1} (11

2305

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Remarks:

The objective of the MIP is to minimize the maximum
utilization of any link in the SN.

Constraints (2)-(4) are the flow related constraints. Assume
there exists a virtual link (a,b) between virtual nodes a and
b, i.e., that the traffic between them t,, > 0. Constraint (2)
specifies that all traffic between a and b must pass pass through
the mirror nodes that are connected to virtual node a in
the augmenting graph. Similarly, constraint (3) ensures that
all traffic will be routed to virtual node b via mirror nodes
connected to that node in the augmented graph. Constraint (4)
is the flow conservation constraint, and ensures that the net
traffic in and out of a substrate node is zero.

Constraints (5) and (6) are the substrate link and node
capacity constraints, respectively. Constraint (5) states that the
total amount of traffic on a substrate link may not exceed A
times its capacity, while constraint (6) asserts that the resource
requirement on a substrate node may not exceed pA times its
capacity.

Constraint (7) maintains consistency between decision vari-
ables = and f, as it guarantees that, if virtual node a is mapped
onto substrate node A, then all traffic associated with a will
go through the augmented link between node a and the mirror
node A’.

Constraint (8) ensures that the number of virtual nodes to
be migrated does not exceed the threshold M. Here, Ext(a)
stands for the substrate node upon which virtual node a
is mapped prior to reconfiguration. If, after reconfiguration,
virtual node a is still placed upon substrate node A = Ext(a),
then the term (1 — x%) will be 0. Thus, the sum on the left
hand side of the constraint equals the number of virtual nodes
that are remapped due to reconfiguration.

Constraint (9) ensures that each virtual node is mapped
to exactly one substrate node, while the last two constraints
define the range of the decision variables.

IV. RECONFIGURATION ALGORITHM
A. General Procedure for Reconfiguration

Since VNR is an NP-hard problem, to tackle it efficiently
we decompose it into two subproblems, namely, virtual node
selection and virtual node remapping, described below.
Virtual Node Selection. Inspired by the work of [15], we
use an LP relaxation based approach to select the virtual
node to be migrated. First, we relax the integral constraints
on variables z9, i.e., constraints (11), and solve the resulting
linear programming problem. Hence, virtual node selection is
carried out by jointly considering the load on substrate links
and nodes. Although LP problems are solvable in polynomial
time, the computation time may be prohibitive for large-
scale networks. To overcome this difficulty, we propose an
approximation algorithm to obtain a near-optimal solution with
small computation overhead. As a result, the delay to reach a
reconfiguration decision may be kept low.

Once the LP problem is solved (optimally or using the
approximation algorithm), we ascending sort variables z%,
where A = Ext(a). Note that we can think of x% as the

Fig. 3. An illustrative example to the path based formulation

likelihood that virtual node a is to remain in the same substrate
node A. Consequently, we mark the M virtual nodes with the
smallest value of =% as the nodes to be migrated.

Virtual Node Remapping: We have developed an algorithm
based on a random walk on a Markov chain to filter substrate
nodes for the virtual nodes selected in the solution to the
previous subproblem, and use a MIP to map them back to the
substrate network. This remapping phase takes into account
load balancing across the substrate nodes and links.

B. Virtual Node Selection

As we mentioned above, solving a large-scale LP problem
is computationally expensive, and may result in long recon-
figuration delays that are not acceptable in an online scenario
such as the one we are considering. Furthermore, we note that
solving the LP problem exactly is not necessary: our focus
is not on the exact values of variables =% but rather on their
relative values, since the goal is to rank virtual nodes based
on their likelihood to be migrated. With this in mind, we build
upon the work of [7] to design an approximation algorithm to
obtain a near-optimal solution to the relaxed LP.

1) Path-based Formulation: In order to develop the approx-
imation algorithm, we first present a path-based formulation
that is equivalent to the link-arc MIP formulation (1)-(11), and
relax the integral constraints. The path-based formulation is
based on the observation that, by construction, the augmented
graph imposes a connection between the mapping of a virtual
node and routing. Specifically, if there is traffic flow between
a virtual node a and a mirror node A’, this implies a mapping
of a onto substrate node A.

For simplicity, we denote the edges of the augmented graph
between a substrate node A and its mirror node A’ as e, and
its capacity as c¢(e“) (recall that this is equal to the capacity of
the corresponding substrate node). Similarly, we denote edges
representing substrate links as e, and their capacity as c(e).
Let P, be the set of paths between virtual nodes a and b,
and T, denote the traffic originating at virtual node a, i.e.,
Ty = Y pcyw ta. We define the decision variables z(p) as
the amount of flow routed along path p. We also define 7}, as
a normalization factor which builds an association between
the routing of the flow and the mapping of virtual nodes
to substrate nodes: if routing flow along path p indicates

2306

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

that virtual node a is mapped onto substrate node A, then
r; = Req,/T,. Note also that, since the flow on a path
p indicates the substrate node to which the virtual nodes
generating that flow are mapped, it also indicates whether
or not these virtual nodes are to be migrated. Therefore, we
introduce binary parameter 7, defined as follows: if path p
indicates that virtual node a is to be migrated, then 772 =1,
otherwise 7, = 0.

An illustrative example to this is shown in Figure 3. The
numerical value besides virtual network and substrate network
stands for demands and capacities respectively. Two examples
for the routing of the traffic are shown in Figure 3(b). If we
route traffic along the green path, it implies that the virtual
nodes a and b are placed on the substrate node A and C
respectively. With the help of normalization factor r,, the
traffic we send on AA’ and C'C’ will be the virtual node
requests, namely, 15 and 40. Since this route does not imply
virtual node migration, the penalty factor i will be set to 0O
for this path. Likewise, if we send traffic along the red path,
it will imply we are mapping virtual nodes a and b onto the
substrate nodes A and B, and the amount of flow will be
routed accordingly. The difference is that such this path would
signify the migration of the virtual node b, and in return, the
penalty factor 1 on this path will be set to 1.

In addition, we notice the problem of utilization minimiza-
tion is equivalent to that of the throughput maximization. With
a solution that will maximize the throughput, one can obtain a
solution to the utilization minimization problem by scale down
the traffic by the factor of the achieved throughput.

Based on these observations, we have the following path-
based LP formulation of the relaxed version of the above MIP
problem.

LP Formulation:

max A\ (12)
s.t.
Z z(p) < c(e), VeeE? (13)
p:e€p
> ra(p) < pe(A), (14)
petep

Va: (aA" or A'a) € p,YA€V?®

> x(p) = Map, Va,be N (15)
PEPap
p
> a(p) <AM (16)
pa ¢
x(p) >0, Vp (17)

In this path based formulation, the objective function of the
LP is to maximize the throughput for the traffic requirement.
Constraint (13) enforces the capacity constraints for the sub-
strate links, and is equivalent to constraint (5) in a throughput
maximization scenario. Constraint (14) represents the capacity
constraint for substrate nodes.

Based on the information from the augmenting graph,
routing an amount x(p) of traffic along this path determines the

virtual nodes to be mapped to the substrate nodes at both ends
of the path. Based on the definition of 7, and combined with
equation (18), one can verify that .., rp2(p) is the total
amount of node resource requests placed on substrate node
A from path p. By summing up over all paths p that contain
this node A, constraint (14) is equivalent to constraint (6) in
essence.

Constraint (15) ensures the traffic demand is satisfied. By
maximizing the factor A, we are sending as much flow as pos-
sible between each pair of the virtual nodes. As this constraint
considers only the paths p between two specific virtual nodes
in the augmented graph, and only non-negative flow is routed
along each path p, we conclude that constraints (2) to (4), the
flow continuity constraints, are satisfied.

Constraint (16) is equivalent to constraint (8), which ensures
that the total number of virtual nodes to be migrated does not
exceed the given threshold M. Since n;/T,z(p) > 0 only
when path p indicates migration of virtual node a, the sum of
all paths associated with virtual node a indicates the fraction
of virtual node a to be migrated; consequently, the sum over
all paths and all virtual nodes, >_ 75 /Tox(p), indicates the
total (non-integer) number of virtual nodes to be migrated.

In addition, based on equation (18) below, one can verify
that with an integer solution, each virtual node is mapped onto
one and only one substrate node, satisfying constraint (9).

Finally, to prove that this path-based LP formulation is
equivalent to the MIP problem we discussed in Section III
when we relax the integral constraint, we now show how to
obtain the values of the decision variables of the MIP problem
from the LP solution z(p).

First note that ¢ is no longer a binary variable but rather
takes values in [0,1] and represents the fraction of traffic
from virtual node a that goes through substrate node A, i.e.,
it is routed along the edge (a, A’) in the augmented graph.
Therefore, we may obtain =% as the ratio of the traffic on that
path to the total traffic originating at a:

> z(p)/AT,

p:(a,A’)€p

rY = (18)

Similarly, f4% may be obtained by taking the ratio of the
amount of traffic that passes through an edge (A, B) over the
total traffic from virtual node a to b, i.e.,

g\bB = Z x(p)/Atub

p:(AB)€p,pEPay

19)

2) Minimum Cost Multi-Commodity Flow Perspective:
From our previous discussion, we know that the routing of
the traffic implies the mapping of virtual nodes. This helps to
build a connection between the mapping of the virtual nodes
and multi-commodity problem. Indeed, if we see the migration
penalty factor in constraint (16) as the cost for the flow along
path p, bounded by the cost A, then the problem can be seen as
a Minimum Cost Multi-Commodity Flow (MCMCF) problem.

In [7], a fully polynomial time approximation scheme
(FPTAS) has been proposed to solve an LP-based MCMCF
approximately. Specifically, the FPTAS obtains a solution that

2307

IEEE INFOCOM 2018 -

is within a factor of (1 +w) of the optimal solution and runs
in time O(w™2|E|?), where E is the number of edges in the
augmenting graph.

Our MCMCEF formulation above is similar to the MCMCF
problem in [7], except for the following two differences:

1) There exists two set of capacity constraints, namely,

constraint (13) and constraint (14).

2) In (16), the cost is not bounded by a constant value.

This means that the FPTAS of [7] may not be directly
applied to solve our problem. As the first step we take to
accommodate the differences, we replace A\ by a constant
factor o (how to determine o shall be addressed later). Which
converts constraints (16) into:

o
Ty
p,a
The cost will then be agnostic of the throughput A. The
obstacle to apply FTPAS [7] is the existence of capacity
constraints. In the remainder of this section, we show how
to extend the FPTAS of [7] to solve for our problem.
3) Dual Problem: We start by stating the dual form of the
MCMCF problem.
Decision Variables:
I(e): Associated with constraint (13), interpreted as the length
of substrate edge on augmented graph
I(e?): Associated with constraint (14), interpreted as length
of the edge between a substrate and mirror substrate node
z(ab): Associated with constraint (15), interpreted as the
shortest path between a and b
¢: Associated with constraint (20), interpreted as the penalty
factor for migration.
Dual Problem

x(p) < oM (20)

%HD(z,gz;) =Y c(e +pz)+ oM
) (21)
s.t.
a b1/ B p 772
;pl +r8l(e™) + rhi(e)+(i+ﬁ)¢ (22)
> z(ab), Vp € G*Y, Va,b
> tapz(ab) > 1 (23)
ab

We denote the dual objective as D(l,¢) in (21), which
consists of two parts: total length of the augmenting graph
Soe(e)l(e) + p>c(e?)i(e?) weighted by the edge capacity,
and weighted migration penalty oM ¢. Therefore, the dual
problem can then be seen as an assignment of length functions
I(e), I(e?) to the edges of the augmented graph, and penalty
factor ¢ such that the weighted sum D(l, ¢) is minimized.

We define the length of a path between virtual node a and
b under the length function as follows:

> i)

ecp

b
Ny M
i+l

“(e
T T, " T,

)+ 1b1(e?) + (Yo (24)

IEEE Conference on Computer Communications

More specifically, if path p implies no migration for either
a or b, then the distance between a and b will be measured
by the length function; otherwise, for each virtual node to be
migrated, an additional penalty of ¢/7T is incurred. When we
have a feasible solution to the dual problem, we interpret z(ab)
as the shortest path between virtual nodes a and b under the
length function and penalty factor.

We now design a primal-dual approximation algorithm to
solve the MCMCEF problem.

4) FPTAS Algorithm to Solve the MCMCF: The FPTAS for
the MCMCEF problem is shown as Algorithm 1, and is based
on the FPTAS in [7]. At a high level, the algorithm operates as
follows. We assign an initial length to all edges, and then we
iteratively route flow along the shortest path. We determine ¢
and precision factor € in the same way as in [7].

The length of a path p is defined in (24). Each time we
send flow along path p, the length of each edge along this
path increases, thus reducing the likelihood that subsequent
flow will follow this edge. This helps to spread traffic evenly
among all edges and increases the overall throughput.

The algorithm proceeds in phases, each phase having |V
iterations. During the a!” iteration, we route the flow along
the shortest path between virtual node a and all its neighbors
in the VN under the current length function and penalty factor.
For example, if virtual nodes @ and b are neighbors in the VN
with traffic demand ¢y, then in the iteration corresponding to
node a, we route t,, amount of flow between virtual nodes a
and b.

The a'" iteration of each phase of the algorithm considers
traffic from virtual node @ and terminates when all traffic from
that node has been routed. At each step of the a'”* iteration,
we build a Dijkstra shortest path tree rooted on vertex a of the
augmented graph. Flow is routed along the shortest path, and
the amount of flow routed between each pair of virtual nodes is
equivalent to the minimum remaining edge capacity along this
shortest path. In particular, the flow we put on the augmented
edge that represents the substrate node is r;; times the flow
we put elsewhere. In terms of minimum capacity along the
path, capacity of the augmenting edge is factorized by 1/ry
to ensure that the substrate node is not overloaded.

Each time we route flow along a particular edge, the
remaining capacity of that edge is updated accordingly, along
with the length function I(e) and ¢. If the remaining flow is
less than the capacity of the edge, we route all remaining flow
along the shortest path. The algorithm will terminate when the
weighted sum in (21) D(l, ¢) > 1.

Note that the total amount of flow we route will violate
the capacity constraints. To obtain a feasible solution, we
determine the most congested links and we also compute the
total number of migrated nodes from x(p). Let A be the
maximum ratio by which any of the constraints are violated.
Then, we scale down the all the flows by a factor of A to
obtain a feasible solution.

Using proof techniques similar to the ones in [7], we can
show that this algorithm obtains a solution that is within 14w

2308

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Algorithm 1 FPTAS for MCMCF

Algorithm 2 Overall Algorithm for MCMCF

Input:
G*9: augmented graph, c(e): edge capacity on G*“9
tqp: traffic request, 7";: normalizing factor
T,: total traffic from a, e: precision factor
p: balancing factor, o: estimated throughput
Output: \: maximum utilization of substrate link
x(p): assignment of flow to the substrate network

1: Initialize I(e) = d/c(e), I(A) = /pc(e?),d = 5/M;

2: while D(l,¢) < 1 do > Phase
3: for a=1,2,---,|V"| do > Iteration
4: thy, =tap,b=1,...,|V"| > Remain Traffic
5: c"(e) :=c(e) > Remain Capacity
6: while D(l,¢) <1 and t;, >0,3 k do > Step
7: S PT, := shortest path tree rooted on node a
8 for all b with 7, > 0 do

9: > Find min remaining capacity on path pgp
10: ¢ :=min{c(e), = pc(e?), & pc(e?)},

DPab € §PTa’ eaeﬁﬂfB € Pab;

11: Route flow along p,y

12: > Update edge length, capacity and cost
13: c"(e) :=c"(e) —c, e €paps thy, =1, —c
14: l(e) = (1 +ec/c(e))l(e)

15: Iet) = (1+ er%‘c/pc(eA))l(eA)

16: 1(eP) = (1 + erbe/pe(e?))i(e?)

17: ¢ = (14 ecnf/TaM + ecnly /Ty M) ¢

18: end for

19: end while
20: end for

21: end while
22: Scale down the flow to obtain feasible solution.

of the optimal one, and its runtime is O(w™2|E|?). Due to
page constraints, the proof is omitted.

5) Bisection Search for o: Recall that in the MCMCF
formulation, we must set parameter ¢ = A* in order to solve
the problem and obtain the optimal assignment of routes. Since
we do not know * in advance, we first establish lower and
upper bounds for o and then carry out a binary search to find
a value for o that yields a solution close to *.

As reconfiguration shall yield a solution no-worse than
the current configurations, its throughput shall serve as
lower-bound for o. The upper-bound of the throughput is
when the load on substrate links or nodes is completely
balanced, in another word, we take the minimum ratio of
{link resource/link request, node resource/node request}
as the given upper bound for the throughput value.

With the upper and lower bound established, we can then
carry out the bisection search for a suitable 0. We denote the
upper and lower-bound for o as o and o’ respectively. We
use the mid-point of the interval, (o© + o¥)/2 as estimated
o¥. The bisection will terminate if the throughput achievable
via FPTAS, \(c¥), is close to o, otherwise, we shall update
o’ and oV accordingly and iteratively repeat the process until
this we find o.

Input:
o%: o upper bound ¢V: o lower bound

Output:

Virtual nodes to be migrated.
: Construct the augmented graph G
. Find lower and upper-bound, o* and oV
. while o # \F do
setting 0¥ = (ol + oY) /2
2(p), A(cF) + solve MCMCF by FPTAS
if of > AN0P): oY = A(oF), else: o = A\(oF)
end while
: Obtain the migration indicator from z(p) from (18)
: Select virtual nodes with largest migration indicator

R I A S

6) Complete Algorithm: The algorithm for virtual nodes se-
lection is shown as Algorithm 2. We first construct augmented
graph that includes the SN and VNs, and then we iteratively
solve the MCMCF problem with a given parameter o. We
terminate this process once we identify an appropriate value
for o.

After normalization, we obtain the migration x¢ based on
the assignment of flow in the primal problem according to
equation (18), and we use this value of the indicator for virtual
node migration. Then, we select M virtual nodes with the
largest migration indicator, mark them for reconfiguration, and
pass them to the second subproblem that we discuss next.

C. Remapping of Selected Virtual Nodes

Inspired by the work of [8] and [9], we propose an algorithm
to map the virtual nodes selected by the previous subproblem
onto new substrate nodes, based on random walk on a Markov
chain. For each virtual node a to be migrated, the algorithm
assigns a numerical value to each substrate node A that
represents the fitness of mapping a to A. We use this fitness
value to reduce the search space for placing a virtual node.
Specifically, for each virtual node, we select the N, substrate
nodes with the highest fitness value, and then search for the
most suitable substrate node using an MIP.

The algorithm to assign a fitness value to the substrate
nodes is presented as Algorithm 3. First, we compute the
remaining link capacity ¢"(e) after removing the virtual nodes
to be migrated. For each virtual node to be migrated, we
compute the traffic between this node and all the substrate
nodes. For example, if node a is selected for migration, and it
communicates with nodes b and d, both of whom are mapped
on substrate node A, the amount of traffic between a and A
is tqp + taq- Based on this value, we generate a probability
vector for virtual node a that represents the initial probability
of mapping a to each substrate node A:

tab/ Z tab
b

”((10—)>A = Z

b:b—A

(25)

2309

IEEE INFOCOM 2018 -

Algorithm 3 Selection of Candidate Substrate Nodes
Input: ¢"(e): remaining substrate link capacity

tqp: traffic request; T)y: iteration numbers

Ng: number of candidate substrate nodes to be selected
QOutput:
Set of candidate substrate nodes for each virtual node
Construct initial distribution according to equation (25)
Construct transition probability with equation (26)
for j=1,2,--- Ty do

Update probability distribution according to (27)
end for
For each a, select N, substrate node with largest m

A A

We also generate the transition probability matrix by letting
the transition probability from A to B as:

tpap = c"(ean /Z (26)

eAD

(t+1)
a—A

At each step, the probability 7
expression:

1
md = g+ (1=

is updated by the follows

)Y Aiptpparil ;@)
B

where p is a smoothing factor which controls the rate of
transition. The term ~%, 5 is defined as

a, = aHB/ZTraﬁB

and captures the interference between the placement of differ-
ent virtual nodes on the substrate link.

The algorithm terminates after a T, steps, at which time,
for each virtual node a to be migrated, we select the Ng
substrate nodes with the largest m value as the candidate
substrate nodes for migration.

The operation of this algorithm can be interpreted as fol-
lows. The initial probability values are determined by the
intensity of traffic between a virtual node and a substrate
node, such that a substrate node that receives more traffic
from a virtual node will have higher weight in the remapping
process. With this initial probability distribution, we start a
random walk on the Markov chain. During the t'* transition
step, aside from 7(*~1), the probability distribution from the
previous step, two additional factors affect the transition rate:
the remaining link capacity, and parameter p. Specifically, the
transition rate is proportional to the remaining link capacity,
meaning that virtual nodes are more likely to be placed onto
substrate nodes with a larger amount of available link capacity
towards the destination. Also, the transition rate is affected by
the value for other virtual nodes, i.e., if a link is likely to
be shared among several virtual links, the available network
resource decreases accordingly, and the probability of sharing
also decreases. We note that we have the algorithm terminate
after a fixed number of steps, instead of when the probability
vector converges. This helps with increasing locality in the
mapping, as it tends to place a virtual node upon a substrate

(28)

IEEE Conference on Computer Communications

node close to other substrate nodes it communicates with,
which in turn helps reduce the overall traffic.

In summary, by constructing a Markov chain in the above
manner, and carrying out a random walk for a fixed number
of iterations, we obtain a probability vector that represents the
likelihood of placing the selected virtual nodes onto substrate
nodes. The probability reflects the fitness of placement by
taking into account available bandwidth, interference with
other nodes, and locality of communication. For each virtual
node, we select N, substrate nodes as candidates.

As a final step, given the above probability vector, we
determine a new mapping of the selected virtual nodes onto
the substrate network by solving an MIP which aims at
minimizing jointly the node utilization, link utilization, and
cost of flow. This MIP can be efficiently solved by setting N
to a small number. The formulation, in essence, is similar to
MIP formulation in Section III. Due to page constraints, the
MIP formulation is omitted.

V. EVALUATION

We consider three different schemes in our evaluation study:
(1) no reconfiguration (no-rcnfg), (2) reconfiguration of virtual
links only (I-rcnfg) using the algorithm in [5], and (3) recon-
figuration of both virtual links and nodes (In-rcnfg(M)) with
our proposed algorithm, where M stands for the maximum
number of nodes that may be migrated during each iteration;
we use M = 2,4,6 in this study. We compare the three
schemes on three performance metrics: maximum (substrate)
link utilization, maximum (substrate) node utilization, and InP
revenue, defined as the sum, over all requests, of the bandwidth
and node resource request of a request times the request’s
lifetime.

For the experiments, we developed an embedding testbed
similar to the one in [5]. The topology of the substrate network
and the virtual network requests are generated by the GT-ITM
modeling tool [14] The substrate network consists of 50 nodes.
The capacity of the substrate links and nodes follow a uniform
distribution in [50, 100]. The number of virtual nodes in each
request is an integer uniformly distributed in [2,10], while
the requirements of virtual nodes and links are also uniformly
distributed in [20, 40].

The arrival and departure intervals of the virtual requests
follow an exponential distribution, with a mean inter-arrival
time of 10 and a mean inter-departure time of 100. For each
simulation, we generate 1000 virtual requests, and embed each
arriving virtual using the same virtual network embedding
algorithm of [5]. We assume that reconfiguration takes place
periodically at constant intervals, and we vary the interval
between reconfiguration events. And for each VM to be
migrated, we select Ny = 10 substrate nodes as candidate
substrate nodes.

Figure 4 plots the maximum link utilization under three
different cases. Compared to the case of no reconfiguration
(non-renfg), our algorithm (In-renfg) reduces link utilization
by at least 28%, and further as the maximum number M of
nodes to be migrated increases. Compared to reconfiguration

2310

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Max Link utilization

0.8

0.7

\ N
0.6 \ \

B no-rcnfg @ I-renfg MIn-renfg(2) Oln-renfg(4) Nin-renfg(6)

Fig. 4. Maximum link utilization vs. number of reconfiguration events

Max Node Utilization

0.9
0.8
0.7

0.6

0.5

00

100 3 300
Bno-renfg l-renfg MIn-renfg(2) Oln-renfg(4) Bin-renfg(6)

Fig. 5. Maximum node utilization vs. number of reconfiguration events

of virtual links only (l-renfg), our scheme decreases the
maximum link utilization up to 15% when M = 6. Figure 5
plots the maximum node utilization. Again, our algorithm
improves upon the no- or link only-reconfiguration by up to
22%, but the results show that the improvement is sensitive to
the value of M, which must be selected appropriately.

Finally, the revenue of the infrastructure provider is shown
in Figure 6. As we can see, link only reconfiguration results
in higher revenue than no reconfiguration, as expected, as it
may accommodate additional requests. Our algorithm provides
further increase in revenue, between 12-36% compared to
link-only reconfiguration, and from 17-50% compared to no
reconfiguration.

We note that revenue and resource utilization are two
seemingly conflicting goals, since an increase in revenue
often implies higher resource utilization as more demands
are mapped onto the physical infrastructure. An important
insight that we gain from the above set of results, is that a
tradeoff between utilization and revenue does not necessarilly
exist. Migrating a small fraction of virtual nodes will not only
help accommodate additional virtual network requests, but will
also drive down resource utilization. In other words, by using
intelligent algorithms such as the ones we presented in this
work, the InP may benefit from an increase in revenue while
also providing customer with better service.

s00 Revenue

x 100000

400

200
100 300 500
Bno-renfg I-renfg Min-renfg(2) DOin-renfg(4) Bin-renfg(6)

Fig. 6. InP revenue vs. number of reconfiguration events

VI. CONCLUDING REMARKS

Resource reallocation is essential to the performance in a
virtual network environment. We designed a reconfiguration
scheme that aims at load balancing while minimize the cost of
reconfiguration by limiting the number of virtual nodes to be
migrated. We model this problem as a network flow problem,
and develop two algorithms to select both the virtual nodes
to be migrated and the substrate node where to place those
virtual nodes. Simulation results show that even when a small
number of nodes are migrated, our algorithm balances the load
and helps maximize InP revenue, reconciling two seemingly
conflicting goals.

REFERENCES

[11 A. Wang, M. Iyer, R. Dutta, G.N. Rouskas, and I. Baldin. Network
virtualization: Technologies, perspectives, and frontiers. Journal of
Lightwave Technology, 31(4):523-537, 2013.

[2] N.M. Mosharaf, K. Chowdhury and R. Boutaba. A survey of network
virtualization. Computer Networks, 54(5):862-876, 2010.

[3] A. Fischer, J.LE. Botero, M.T. Beck, H. De Meer, and X. Hesselbach.
Virtual network embedding: A survey. IEEE Communications Surveys
& Tutorials, 15(4):1888-1906, 2013.

[4] Y. Zhu and M.H. Ammar. Algorithms for assigning substrate network
resources to virtual network components. Proc. IEEE INFOCOM, 2006.

[5] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network
embedding: substrate support for path splitting and migration. ACM
SIGCOMM Comp. Comm. Rev., 38(2):17-29, 2008.

[6] Z. Cai, F. Liu, N. Xiao, Q. Liu, and Z. Wang. Virtual network embedding
for evolving networks. Proc. IEEE GLOBECOM, 2010.

[71 G. Karakostas. Faster approximation schemes for fractional multicom-
modity flow problems. ACM Tran. Algorithms (TALG), 4(1):13, 2008.

[8] L. Gong, et al. Toward profit-seeking virtual network embedding
algorithm via global resource capacity. Proc. IEEE INFOCOM, 2014.

[9] X. Cheng, et al. Virtual network embedding through topology-aware
node ranking. ACM SIGCOMM Comp. Comm. Rev., 41(2):38-47, 2011.

[10] A.V. Goldberg, et al. An implementation of a combinatorial approxi-
mation algorithm for minimum-cost multicommodity flow. Proc. IPCO,
pp- 338-352. Springer, 1998.

[11] 1. Fajjari, et al. Vnr algorithm: A greedy approach for virtual networks
reconfigurations. Proc. IEEE GLOBECOM, 2011.

[12] B. Dab, et al. Vnr-ga: Elastic virtual network reconfiguration algorithm
based on genetic metaheuristic. Proc. IEEE GLOBECOM, 2013.

[13] PN. Tran and A. Timm-Giel. Reconfiguration of virtual network
mapping considering service disruption. Proc. IEEE ICC, 2013.

[14] GT-ITM. http://aiweb.techfak.uni-bielefeld.de/content/
bworld-robot-control-software/.

[15] N.M. Mosharaf, et al. Virtual network embedding with coordinated node
and link mapping. Proc. IEEE INFOCOM, pp. 783-791, 2009.

[16] L. Gao and G. Rouskas. Network-aware virtual request partitioning
based on spectral clustering. Proc. IEEE ICCCN, 2016.

2311

